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Abstract.  This paper presents the application of a recently developed meta-heuristic algorithm, called 
Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is 
based on the one-dimensional collisions between two bodies, where each agent solution is considered as a 
body. The performance of the proposed algorithm is investigated through four benchmark trusses for 
minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO 
with those of other available algorithms indicates that the proposed technique is capable of locating 
promising solutions using lesser or identical computational effort, with no need for internal parameter 
tuning. 
 

Keywords:  Colliding Bodies Optimization; meta-heuristic algorithms; optimum design; size and topology 

optimization; truss structures 

 
 
1. Introduction 
 

Decision makers are often interested in selection of topology of a structure due to its weight. 

Topology optimization aims to determine the optimal connectivity for the model of a structure as 

well as the size of the reminder members by minimizing a given criterion, such as weight, subject 

to some constraint, such as stress, displacement and dynamic constraints.  

The optimization algorithms can be divided into two general categories: 1. Mathematical 

methods; 2. Meta-heuristic algorithms. Mathematical algorithms are gradient-based methods 

which utilize gradient information to search the solution space and can be hard to apply and time-

consuming in these optimization problems. To avoid such difficulties, meta-heuristic algorithms 

are proposed for solution of practical optimization problems. In recent years, many meta-heuristics 

have been developed based on or have been inspired by natural phenomena from a variety of 

scientific fields. One can list some of these as: Particle Swarm Optimization (Eberhart and 

Kennedy 1995), Ant Colony Optimization (Dorigo et al. 1996), Big Bang-Big Crunch (Erol and 

Eksin 2006), Charged System Search (Kaveh and Talatahari 2010), Bat algorithm, (Yang 2011) 

and Water Cycle Algorithm (Eskandar et al. 2012).  
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As a newly developed type of meta-heuristic algorithm, the colliding bodies optimization 

(CBO) is introduced for design of structural problems (Kaveh and Mahdavai 2014a, b). This 

algorithm can be considered as a multi-agent method, where each agent is a Colliding Body (CB). 

Each CB is considered as an object with a specified mass and velocity before the collision. After 

collision occurs, each CB moves to a new position with a new velocity. This algorithm utilizes 

simple formulation; and it requires no internal parameter tuning.  

Some constraints should be considered in design of a structure, such as stress, displacement and 

dynamic constraints. It is well-known that the natural frequencies are fundamental parameters 

affecting the dynamic behavior of the structures. Therefore, some limitations should be imposed 

on the natural frequency range to reduce the domain of vibration and also to prevent the resonance 

phenomenon in dynamic response of structures (Gholizadeh et al. 2008). Weight optimization of 

structures with frequency constraints, especially when coupled with topology optimization, is 

considered to be a challenging problem. Mass reduction conflicts with the frequency constraints, 

especially when they are lower bounded. Frequency constraints also are highly non-linear, non-

convex and implicit with respect to the design variables (Kaveh and Zolghadr 2013). Thus, some 

frequency limitations are considered in three of four examples to show the efficiently of the 

proposed algorithm. 

The present paper is organized as follows: In the next section, formulation of the problem is 

presented. In section 3, the CBO algorithm is briefly discussed. This is followed by a section 

consisting of the study of four well-known structural design examples. Conclusions are derived in 

the final section. 

 

 

2. Problem formulation 
 

2.1 General framework of topology optimization approach 
 

As mentioned before, in topology optimization problem two goals are considered: 1) find the 

optimal shape or topology of a ground structure, 2) search for the optimal cross sections of the 

optimized shape for topology. Therefore, the problem starts with the ground structure, which is 

composed of all possible nodes and members. Then, the node layout and the cross-sectional areas 

are found such that the cost of the structure is minimized. This optimization problem can formally 

be stated as follows: 

Minimize 
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where C(A) is the structural cost; nm and nn denote the number of members and nodes of the 

ground structure, respectively; ρi , Ai and Li are density, cross sectional area and length of the ith 

member, respectively; bj is the cost of the jth node; kc and lc are the number of displacement 

constraints and loading conditions, respectively; ζil is the stress of the ith member under lth 

loading condition and ζimin and ζimax are its lower and upper bounds, respectively; δkl is the 

displacement of the kth degree of freedom under the lth loading condition, δkmin and δkmax are the 

corresponding lower and upper limits respectively; ζ
E

i is the stress at which the ith member 

buckles, i.e., Euler buckling stress; ωm is the mth natural frequency of the structure and ω∗
m is its 

upper bound. ωn is the nth natural frequency of the structure and ω∗
n is its lower bound. 

As can be seen from Eq. (1), the objective function of problem is the cost of structure, which is 

the sum of cost of the members and nodes. Cost of members is assumed to be as their masses, and 

a constant amount of mass is considered as the cost of a node when it is included. 

The Euler buckling stress of the ith member is determined by 

2

i

iiE

i
L

EAK
                                (3) 

where E is the modulus of elasticity, and ki is a constant which is determined considering the shape 

of the section. 

Finally, the merit function which should be minimized in the optimization process has the form 

 

Mer(A) = C(A) × fpenalty(A) 

= C(A)× 
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where A is the vector of design variables, gi is the ith constraint from ni inequality constraints 

(gi(X)0, i=1,2,…,ni) ; fpenalty(X) is the penalty function which results from the violations of the 

constraints corresponding to the response of the structure. The parameters ε1 and ε2 are selected 

considering the exploration and the exploitation rate of the search space. In this study ε1 is taken as 

unity and ε2 starts from 0.5 and linearly increases to 1.5. 

 

2.2 Topology optimization method 
 

As can be seen from Eq. (1) the topology optimization problem may also be described as an 

optimization model for cross-sectional areas. The only difference is that the cross-sectional areas 

of the members and the cost of nodes can reach zero (Xu et al. 2003).  

When members and nodes are removed, the finite element model needs to be revised and 

modified. This modification brings on a large amount of unnecessary computational effort. Wang 

and Sun (Wang and Sun 1995) have proposed a method in which a tiny value is assigned to the 

members to be removed. In other words, when the cross-sectional area of a member is supposed to 

be zero in the optimization process, a tiny value ε is assigned to it. This tiny value will carry out a 
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negligible effect on the stiffness matrix and thus the use of it seems to be rational. This keeps the 

finite element model unchanged and lessens the computational effort. 

In practice the stress constraints at a zero cross-sectional area can still be violated and the 

evaluating process of other members is affected (Xu et al. 2003). In other words, the imaginary bar 

with a tiny cross-sectional area should undergo displacements as large as its neighboring elements 

and it may fail under such displacements. This is irrational because the member does not really 

exist. To avoid this, we make use of a constraint deletion technique, i.e., when a tiny cross-

sectional area is reached, the corresponding stress and local stability constraints are ignored (Xu et 

al. 2003). 

Some other methods for topology optimization can be found in Kaveh (2014), Kaveh and 

Ahmadi (2014), Kutylowski and Rasiak (2014). 

 

 

3. The formulation of CBO algorithm 
 

As stated previously, the CBO is a recently developed meta-heuristic algorithm which its 

formulation driven from the one-dimension collision laws between two bodies; in which one 

object collides with other object and after collision, objects move in concordance with the 

principle of conservation of energy. Beside, in this algorithm the mass of each object is related to 

the inverse of its fitness. According to the conservation of energy, after collision the heavier object 

moves less than the lighter one and the change of its mass is smaller. 

In the CBO each solution candidate Xi containing a number of variables (i.e., Xi={Xi,j}) is 

considered as a colliding body (CB). The massed objects are composed of two main equal groups; 

i.e., stationary and moving objects, where the moving objects move to follow stationary objects 

and a collision occurs between pairs of objects. This is done for two purposes: (i) to improve the 

positions of moving objects; (ii) to push stationary objects towards better positions. After the 

collision, the new positions of the colliding bodies are updated based on the new velocity by using 

the collision laws. 

The CBO procedure can briefly be outlined as follows: 

1) The initial positions of CBs are determined with random initialization of a population of 

individuals in the search space 

      
,,...,2,1,)( minmaxmin

0 nixxrandxxi   (5) 

Where, 
0

ix
 

determines the initial value vector of the i th CB. xmin and xmax are the minimum and 

the maximum allowable values vectors of variables; rand is a random number in the interval [0,1]; 

and n is the number of CBs. 

2) The magnitude of the body mass for each CB is defined as 

    

nk
kfit

mk ,...,2,1,
)(

1
  (6) 

where fit(i) represents the objective function value of the agent i; n is the population size. 

Obviously a CB with good values exerts a larger mass than the bad ones. Also, for maximizing the 

objective function, the term 
)(

1

kfit
 is replaced by fit(k). 
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Fig. 1 (a) The sorted CBs in an increasing order, (b) The pairs of objects for the collision 

 

 

3) The arrangement of the CBs objective function values is performed in ascending order (Fig. 

1(a)). The sorted CBs are equally divided into two groups:   

• The lower half of CBs (stationary CBs); These CBs are good agents which are stationary and 

the velocity of these bodies before collision is zero. Thus 

     2
,...,1,0

n
ivi   (7)

 

• The upper half of CBs (moving CBs): These CBs move toward the lower half. Then, 

according to Fig. 1(b), the better and worse CBs, i.e., agents with upper fitness value of each 

group will collide together. The change of the body position represents the velocity of these bodies 

before collision as 
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Where, vi 
and xi are the velocity and position vector of the i th CB in this group, respectively; 

2

n
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x


 is the i th CB pair position of xi in the previous group. 

4) After the collision, the velocity of bodies in each group is evaluated using the collision laws 

and the velocities before collision. The velocity of each moving CB after the collision is 
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Where, vi and v
′
i 
are the velocity of the i th moving CB before and after the collision, respectively; 

mi is the mass of the i th CB; 
2

n
i

m


 is mass of the i th CB pair. Also, the velocity of each 

stationary CB after the collision is 
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Where, 
2

n
i

v
  and v

′
i are the velocity of the i th moving CB pair before and the i th stationary CB 

after the collision, respectively; mi is mass of the i th CB; 
2

n
i

m


 is mass of the i th moving CB 

pair. ε is the coefficient of restitution (COR) and for most of the real objects, its value is between 0 

and 1. It defined as the ratio of the separation velocity of two agents after collision to the approach 

velocity of two agents before collision. In the present algorithm, this index is used to control of the 

exploration and exploitation rate. For this goal, the COR is decreases linearly from unit to zero. 

Thus, ε is defined as 

   max

1
iter

iter


 
(11) 

where iter is the actual iteration number and itermax is the maximum number of iterations, with 

COR being equal to unit and zero representing the global and local search, respectively (Kaveh 

and Mahdavi 2014a, b). 

5) New positions of CBs are obtained using the generated velocities after the collision in 

position of stationary CBs.  

The new positions of each moving CB is 

      

n
n

ivrandxx in
i

new

i ,...,1
2

,'

2




  (12) 

Where, 
new

ix and 
'

iv  are the new position and the velocity after the collision of the i th moving 

CB, respectively; 
2

n
i

x
  is the old position of the i th stationary CB pair. Also, the new positions of 

stationary CBs are obtained by 

     2
,...,1,' n

ivrandxx ii

new

i    (13) 

Where, 
new

ix , ix and 
'

iv  are the new position, old position  and the velocity after the collision 

of the i th stationary CB, respectively. rand is a random vector uniformly distributed in the range 

(−1,1) and the sign “  ” denotes an element-by-element multiplication. 

(6) The optimization is repeated from Step 2 until a termination criterion, specified as the 

maximum number of iteration, is satisfied. It should be noted that, a body’s status (stationary or 

moving body) and its numbering are changed in two subsequent iterations. 

Apart from the efficiency of the CBO algorithm, which is illustrated in the subsequent section 

through numerical examples, the proposed algorithm does not include internal parameters besides 

the coefficient of restitution (COR). The linear variation law adopted for COR makes the proposed 

algorithm a parameter independent optimization technique. This is a distinct strength of the CBO. 
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Fig. 2 The initial topology of a 24-bar planar truss 

 
Table 1 Loading conditions for the 24-bar truss 

 F1 (N) F2 (N) 

Loading condition 1 5×10
4
 0 

Loading condition 2 0 5×10
4
 

 

 

4. Numerical examples 
 

In this section, four size and topology optimum design of truss structures are studied utilizing 

the proposed method. Here, the size variables are considered as continuous. The final results are 

compared to the solutions of other methods to demonstrate the efficiency of the present algorithm. 

For all of these examples, a number of 20 bodies are utilized and the maximum number of 

iterations is considered as 200. These examples are independently optimized 20 times. The 

algorithm is coded in Matlab and structures are analyzed using the direct stiffness method. In all of 

these examples the cross-sections are assumed to be tubular with a ratio of mean diameter to wall 

thickness of approximately 10.0, which results in a buckling coefficient of k=4.0 in Eq. (3). The 

cost of a node is assumed to be constant and equal to 5 kg and zero in the first three examples and 

last example, respectively. 

 

4.1 A 24-bar planar truss 
 

A simply supported 24-bar planar truss, as depicted in Fig. 2, is examined as the first example. 

The material density is 2740 kg/m
3
 and the modulus of elasticity is 69,000 MPa. A non-structural 

mass of 50 kg is attached to the node 3. The lower bound of cross sectional area is equal to 1 cm
2
. 

The members are subjected to the stress limits of ±172.43 MPa. The nodes 5 and 6 are subjected to 

the displacement limits of ±1 cm in y directions. The first natural frequency of the structure also is 

considered as the constraint (ω1≥3HZ). This example has been studied by Xu et al. (2003) using a 

one-dimensional search and Kaveh and Zolghadr (2013) used the standard CSS and PSO to 

optimize this structure. Table 1 shows the two different loading conditions. Table 2 shows the  
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Table 2 Optimal sectional area for the 24-bar planar truss (cm
2
) 

Bar No. 7 9 10 11 14 15 16 17 22 23 24 

Xu et al. 36.5 9.51 15.0 11.0 17.6 13.8 - 16 11.02 - 14.5 

PSO 2.4 14.8 - 20.1 1.2 6.5 14.9 23.9 - 4.7 22.1 

CSS 4.0 3.0 1.4 19.2 - 3.3 14.13 23.9 - 1.04 1.4 

Present work 3.58 2.92 1.61 19.05 - 3.75 13.24 23.88 1.00 - 1.38 

 
Table 3 Characteristics of the optimized structure (the 24-bar planar truss) 

 ω1(Hz) δ5y (mm) δ6y (mm) cost (kg) 

Xu et al. 30 3.2 3.0 167.0 

PSO 30 1.2 5.6 151.63 

CSS 30 8.6 8.9 119.75 

Present work 30 8.8 8.1 118.23 

 
Table 4 Statistical results of 20 independent runs of the CBO (the 24-bar truss) 

 Mean weight (kg) Standard deviation Number of analyses 

CSS 130.5 5.44 400 

PSO 190.8 22.16 400 

Present work 127.6 8.70 400 

 

 
Fig. 3 Optimal topology of the 24-bar planar truss obtained by Xu et al. 

 

 

comparison of the optimal sectional area using CBO algorithm with those previously reported in 

the literature. Table 3 compares the first natural frequency, displacements and the cost of the 

optimized structure obtained by several methods in the literature and those of the present work. 

Table 4 provides also the statistical results of 20 independent runs using different methods.  

As can be seen from Tables 3 and 4, the best cost of this work is 118.23 kg, while it is 167.0, 

151.63 and 119.75 kg for the 1-D search, PSO and CSS, respectively. The standard deviation of 

this work is 8.70 kg which is better than of the PSO, being 22.16 kg. Here, the number of required  
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Fig. 4 Optimal topology of the 24-bar planar truss obtained by PSO 

 

 
Fig. 5 Optimal topology of the 24-bar planar truss obtained by CSS 

 

 

analyses for reaching a convergence for this work is 4,000 which is equal to that of the CSS and 

PSO. Figs. 3-6 show the optimized topology founded by different methods for this example. Fig. 7 

illustrates the convergence rate for the best result. 

 

2.4 A 20-bar planar truss 
 

Fig. 8 shows the initial topology and element numbering of a 20-bar planar truss for this 

example. The truss is subject to two load conditions according to Table 5. For this example, the 

material density is 2740 kg/m
3
 and the modulus of elasticity is 69,000 MPa. The lower bound of 

variables is equal to 1 cm
2
. The members are subjected to the stress limits of ±172.43 MPa. The 

node 4 is subjected to the displacement limits of ±1 cm in y directions. The first two natural 

frequencies of the structure also are considered as the constraints (ω1≥60HZ, ω2≥100HZ). This  
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Fig. 6 Optimal topology of the 24-bar planar truss obtained by CBO 

 

 
Fig. 7 The convergence history of the CBO for the 24-bar truss 

 

 
Fig. 8 The initial topology of 20-plannar truss 
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Table 5 Loading conditions for the 20-bar truss 

 F1 (N) F2 (N) 

Loading condition 1 5 ×10
4
 0 

Loading condition 2 0 5 ×10
4
 

Fig. 9 The optimal topology of 20-plannar truss 
 

Table 6 Optimal sectional area for the 20-bar planar truss 

Bar No. 1 2 5 6 12 15 16 20 

PSO 44.05 63.61 59.54 42.18 71.51 46.75 53.46 42.08 

CSS 39.92 59.03 63.15 46.41 58.40 41.20 64.97 49.28 

Present work 43.91 57.80 63.58 47.08 59.06 46.24 62.35 42.18 

 
Table 7 Characteristics of the optimized structure (the 20-bar planar truss) 

 ω1 (Hz) ω2 (Hz) δ4y (mm) cost (kg) 

PSO 115.1 186.9 10 318.23 

CSS 120.0 192.1 10 317.19 

Present work 118.9 190.6 10 316.52 

 

 

example has been solved by Kaveh and Zolghadr (2013) where the problem is studied using the 

standard CSS and PSO.  

The optimal topology of a 20-bar planar truss obtained using different method is given in Fig. 

9. Table 6 presents the optimal sectional area founded using different method. Table 7 contains the 

first two natural frequencies and the displacement of node 4 in y direction, along with the cost of 

optimized structure obtained by various methods for this example. Table 8 represents the statistical 

results of 20 independent runs using different methods. According to these tables, the best optimal  
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Fig. 10 Convergence history of optimum result for the 20-plannar truss using CBO 

 

 
Fig. 11 Seventy-two bar spatial truss 
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Table 8 Statistical results of 20 independent runs (the 20-bar truss) 

 Mean weight (kg) Standard deviation Number of analyses 

PSO 330.58 12.16 400 

CSS 319.69 1.90 400 

Present work 317.77 6.57 400 

 
Table 9 Loading conditions for the 72-bar space truss 

node 
Case 1 Case 2 

Px (kN) Py (kN) Pz (kN) Px (kN) Py (kN) Pz (kN) 

1 22.5 22.5 -22.5 - - -22.5 

2 - - - - - -22.5 

3 - - - - - -22.5 

4 - - - - - -22.5 

 
Table 10 Optimal cross-sectional areas obtained using different methods for the 72 bar space truss (cm

2
) 

Group no. 
Cross-sectional area 

Group no. 
Cross-sectional area 

CSS PSO Present work CSS PSO Present work 

1 5.54 5.3 4.54 9 10.01 22.58 13.81 

2 8.06 6.98 10.29 10 8.15 6.98 7.52 

3 Removed 5.60 Removed 11 Removed Removed Removed 

4 9.04 13.56 Removed 12 Removed 5.11 Removed 

5 8.07 5.16 8.35 13 20.32 21.17 15.65 

6 8.04 9.48 8.42 14 7.96 9.56 6.79 

7 3.13 Removed 2.56 15 Removed Removed Removed 

8 Removed Removed 5.09 16 Removed Removed Removed 

 
Table 11 Some characteristics of the optimized structure for the 72-bar spatial truss 

 ω1 (Hz) ω3 (Hz) 
δ1x 

(mm) 

δ2x 

(mm) 

δ3x 

(mm) 

δ4x 

(mm) 
δ1y (mm) 

δ2y 

(mm) 
δ3y (mm) 

δ4y 

(mm) 
cost (kg) 

PSO 4.00 6.00 2.9 2.3 2.5 2.3 2.9 2.3 2.5 2.3 504.06 

CSS 4.00 6.00 3.9 2.1 3.3 2.1 3.9 2.1 3.3 2.1 449.34 

Present 

work 
4.00 6.00 5.0 2.6 2.0 1.7 5.0 1.7 2.0 2.6 441.44 

 
Table 12 Statistical results of 20 independent runs for the 72-bar spatial truss 

 Mean weight (kg) Standard deviation Number of analyses 

PSO 559.11 27.15 1000 

CSS 456.95 3.16 1000 

Present work 453.57 7.55 400 

 

 

design results reported in the literature is 317.19 kg. While, the CBO found the best cost as 316.52 

kg after 4,000 analyses without violation of the constraints, with the standard deviation and 

average being 6.57 kg and 317.77 kg. In this example, the standard deviation of the CBO is more 

than that of the CSS method. Fig. 10 shows the convergence rates for the obtained 20 best results.  
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Fig. 12 The convergence history of the CBO for the 72-bar spatial truss 

 

 
Fig. 13 The initial topology of a 39-bar planar truss 

 

 

3.4 A 72-bar space truss 
 

A 72-bar space truss, shown in Fig. 11, was first analyzed by Kaveh and Zolghadr (2013) to 

obtain the optimal sizing and topology variables with stress, displacement and frequency 

constraints. The 72 structural members of this spatial truss are categorized as 16 groups using 

symmetry as follows: (1) A1–A4, (2)A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) 

A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53– 

860



 

 

 

 

 

 

Colliding bodies optimization for size and topology optimization of truss structures 

 

Fig. 14 The optimal topology of a 39-bar planar truss by the Firefly algorithm 

 

 

Fig. 15 The optimal topology of a 39-bar planar truss by the GA 

 

 

Fig. 16 The optimal topology of a 39-bar planar truss by the CBO algorithm 
 

861



 

 

 

 

 

 

A. Kaveh and V.R. Mahdavi 

 

Fig. 17 The convergence history of the CBO for the 39-bar planar truss 

 
Table 13 Optimal cross-sectional areas (in

2
) for the 39-bar planar truss 

Member number 
Cross-sectional area 

GA Firefly Present work 

1 0.0500 Removed Removed 

2 0.7500 0.751 0.7503 

3 Removed 0.051 Removed 

5 1.5001 1.502 1.5003 

7 Removed 0.052 Removed 

8 0.2504 0.251 0.2504 

9 Removed 0.051 Removed 

10 1.0647 1.061 1.0607 

11 1.0612 1.063 1.0654 

14 0.5604 0.559 0.5600 

21 1.0016 1.005 1.0005 

22 0.0500 Removed Removed 

23 0.7524 0.751 0.7503 

24 Removed 0.051 Removed 

26 1.5001 1.502 1.5003 

28 Removed 0.052 Removed 

29 0.2504 0.251 0.2504 

30 Removed 0.051 Removed 

31 1.0647 1.061 1.0607 

32 1.0612 1.063 1.0654 

35 0.5604 0.559 0.5600 

cost (Ib) 193.5472 196.546 192.2563 
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A54, (13) A55–A58, (14) A59–A66, (15) A67–A70, and (16) A71–A72. Table 9 shows the two 

different loading conditions. Non-structural masses of 2270 kg are attached to nodes 1-4. The 

material density is taken as 2767.99 kg/m
3
 and the modulus of elasticity is 95068, MPa. The range 

of cross-sectional areas varies from 1 to 30 cm
2
. The members are subjected to the stress limits of 

±172.375 MPa. The topper nodes are subjected to the displacement limits of ±6.35 cm in x and y 

directions. For the frequency constraints, ω1≥4Hz and ω1≥6Hz are considered. 

Table 10 compares the results obtained in this research with the outcome of other researches. 

Table 11 represents characteristics of the optimized truss. Moreover Table 12 shows the statistical 

results of 20 individual runs by the different methods. It can be seen from Tables, the best cost, 

mean cost and number of iterations of this work as 441.44 kg, 453.57 kg and 400, which these 

values are better than other researches. In this example, the standard deviation of the CBO is more 

than that of the CSS method. The evolution processes of best fitness value obtained by this 

algorithm are shown in Fig. 12.  

 

4.4 A 39-bar planar truss 
 

The 39-bar plane truss, shown in Fig. 13, was analyzed with static condition by Miguel et al. 

The overlapping members are shown laterally dislocated in the figure for visual clarity. Miguel et 

al. (2013), Deb et al. (2001) used the Firefly and GA algorithms as for topology optimization of 

this structure, respectively. The material density and modulus of elasticity of members are 0.1 

lb.in
3
 and 10,000ksi, respectively. The members are subjected to the stress limits of ±20 ksi. The 

nodes are subjected to the displacement limits of ±2 in. In this example, the frequency and 

buckling stress constraints are ignored. Due to the lateral symmetry the number of variables is 

reduced to 21. The lower bound of variables is equal to 0.05 in
2
. 

Figs. 14-16 indicate the optimized topology founded by different methods for this example. 

Table 13 provides the element grouping and the results obtained by the present algorithm and 

those of the other researchers.  

According to Table 13, the result obtained by the CBO is lighter than that of the GA and Firefly 

algorithms. The average weight and the standard deviation of the 20 individual runs achieved by 

the CBO are 230.94 lb and 32.97 lb, respectively. The maximum stress in the members and the 

maximum displacement in nodes are 19.99 ksi and 1.438 in, respectively. Fig. 17 shows the 

convergence curve obtained using the CBO algorithm for this problem.  

 

 

5. Conclusions 
 

In the present study, we apply the meta-heuristic algorithm, known as the Colliding Bodies 

Optimization, for size and topology optimization of truss structures. From the result obtained from 

our analyses, we draw the following conclusions: 

(i) Most of the meta-heuristic algorithms have some parameters that should be carefully tuned 

for different types of problems. In fact the algorithms are often sensitive with respect to these 

parameters and for successful application of an algorithm it should be run with different values of 

these parameters until the best values are identified. However, the present algorithm is easy to 

implement and it is independent of parameters. The latter is the distinct characteristic of the CBO 

algorithm. 

(ii) In this algorithm, an index is introduced in terms of the coefficient of restitution (COR) to 
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control of the exploration and exploitation rates. 

(iii) The proposed approach performs well considering the comparison of the numerical results 

of the four considered examples. The results are compared to those generated with other 

techniques reported in the literature. Complete discussion in terms of cost, number of analyses and 

standard deviation corresponding to each optimized structure is provided at the end of each 

example (see Tables 3,4,7,8,11,12,13), and these are not repeated in here for brevity. 
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