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Abstract.  In this paper, we propose a new method for taking into account uncertainties based on the 
projection on polynomial chaos. The new approach is used to determine the dynamic response of a spur gear 
system with uncertainty associated to gear system parameters and this uncertainty must be considered in the 
analysis of the dynamic behavior of this system. The simulation results are obtained by the polynomial chaos 
approach for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for 
uncertainty propagation. It was found to be an interesting alternative to the parametric studies. The 
polynomial chaos results are compared with Monte Carlo simulations. 
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1. Introduction 
 

The gearing is the best solution to transmit rotational motions and couple which has been 

offered numerous advantages (Dalpiaz et al. 1996): it ensures a mechanical reliability. 

Furthermore, its mechanical efficiency is of the order of 0.96 to 0.99. But today, several 

applications inquire for the gearing transmissions to be more and more reliable, light and having 

long useful life that requires the control of the acoustic broadcast and the vibratory behavior of 

these gearings (Begg et al. 2000).  

Several parametric studies have shown the great sensitivity of the dynamic behavior of gear 

systems. However, these parameters admit strong dispersions. Therefore, it becomes necessary to 

take into account these uncertainties to ensure the robustness of the analysis. Also there are several 

studies in reliability for vibration structures taking into account the uncertainties (Abo Al-kheer et 

al. 2011, Mohsine and El Hami 2010, El Hami et al. 2009, Radi and El Hami 2007, El Hami and 

Radi 1996, El Hami et al. 1993). 

Several methods are proposed in the literature. Monte Carlo (MC) simulation is a well-known 

technique in this field (Fishman 1996). It can give the entire probability density function of any 

system variable, but it is often too costly since a great number of samples are required for 
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reasonable accuracy. Parallel simulation (Papadrakakis and Papadopoulos 1999) and proper 

orthogonal decomposition (Lindsley and Beran 2005) are some solutions proposed to circumvent 

the computational difficulties of the MC method. 

Polynomial chaos expansion (PCE) is presented in the literature as a more efficient 

probabilistic tool for uncertainty propagation. It was first introduced by Wiener and pioneered by 

Ghanem and Spanos who used Hermite orthogonal polynomials to model stochastic processes with 

Gaussian random variables (Wiener 1938, Ghanem and Spanos 1991). The exponential 

convergence of such expansion has been shown (Cameron and Martin 1947) and generalized to 

various continuous and discrete distributions using orthogonal polynomials from the so called 

Askey-scheme (Askey and Wilson 1985, Xiu and Karniadakis 2003). 

Polynomial chaos (PC) gives a mathematical framework to separate the stochastic components 

of a system response from the deterministic ones. The stochastic Galerkin method (Babuska et al. 

2004, Le Maître et al. 2001), collocation and regression methods (Babuska et al. 2007, Crestaux et 

al. 2009) are used to compute the deterministic components called stochastic modes in an intrusive 

and non-intrusive manner while random components are concentrated in the polynomial basis 

used. Non-intrusive procedures prove to be more advantageous for stochastic dynamic systems 

since they need no modifications of the system model, contrary to the intrusive method. In the 

latter, Galerkin techniques are used to generate a set of deterministic coupled equations from the 

stochastic system model, and then a suitable algorithm is adapted to obtain stochastic modes. 

The capabilities of polynomial chaos have been tested in numerous applications, such as 

treating uncertainties in environmental and biological problems (Isukapalli et al. 1998a, Isukapalli 

et al. 1998b), in multibody dynamic systems (Sandu et al. 2006a, Sandu et al. 2006b), solving 

ordinary and partial differential equations (Williams 2006, Xiu and Karniadakis 2002), in 

component mode synthesis techniques (El Hami and Radi 1996, Sarsri et al. 2011) and parameter 

estimation (Saad et al. 2007, Blanchard et al. 2009, Smith et al. 2007).   

The main originality of the present paper is that the uncertainty of the gear system parameters 

in the dynamic behavior study of the one stage gear system is taken into account. The main 

objective is to investigate of the capabilities of the new method to determine the dynamic response 

of a spur gear system subject to uncertain gear parameter. So, an eight degree of freedom system 

modelling the dynamic behavior of a spur gear system is considered. The modelling of a one stage 

spur gear system is presented in Section 2. In the next section, the theoretical basis of the 

polynomial chaos is presented. In Section 4, the equations of motion for the eight degrees of 

freedom are presented. Numerical results are presented in Section 5. Finally in Section 6, to 

conclude, some comments are made based on the study carried out in this paper.   

 

 

2. Modelling of a one stage gear system 
 

The global dynamic model of the one stage gear system in 3D is shown in Fig. 1. This model is 

composed of two blocks (j=1 to 2). Every block (j) is supported by flexible bearing which the  

bending stiffness is 
x

j
k  and the traction-compression stiffness is

y

j
k . 

The wheels (11) and (22) characterize respectively the motor side and the receiving side. The  

shafts (j) admit some torsional stiffness


j
k . 

Angular displacements of every wheel are noticed by θ(i,j) with the indices j=1 to 2 designates 

the number of the block, and i=1 to 2 designate the two wheels of each block. Moreover, the linear 

displacements of the bearing noted by xj and yj are measured in the plan which is orthogonal to the  
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Fig. 1 Global dynamic model of the one stage gear system in 3D 

 

 
Fig. 2 Modelling of the mesh stiffness variation 

 

 

wheels axis of rotation. 

In this study, we modelled the gear mesh stiffness variation k(t) by a square wave form (Fig. 2). 

The gear mesh stiffness variation can be decomposed in two components: an average component 

noted by kc, and a time variant one noted by kv(t) (Walha et al. 2009). 
The extreme values of the mesh stiffness variation are defined by 


min

kc
k

2 
and 





max min

2
k k

1








                        (1) 

 and Te represent respectively the contact ratio and mesh period corresponding to the two 

gear meshes contacts.  

The global dynamic model of the one stage gear system in 2D is presented on Fig. 3. 
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Fig. 3 Global dynamic model of the one stage gear system in 2D 

 

 

3. Polynomial chaos method 
 

In this section, we propose a new methodological method based on the projection on 

polynomial chaos. This method consists in projecting the stochastic desired solutions on a basis of 

orthogonal polynomials in which the variables are Gaussian orthonormal. The properties of the 

base polynomial are used to generate a linear system of equations by means of projection. The 

resolution of this system led to an expansion of the solution on the polynomial basis, which can be 

used to calculate the moments of the random solution. With this method, we can easily calculate 

the dynamic response of a mechanical system. 

Let us consider a multi-degrees of freedom linear system with mass and stiffness matrices [MT] 

and [KT] respectively. The equations of motion describing the forced vibration of a linear system 

are 

          
T TT T T

M Ku u f                                  (2) 

Where {uT} is the nodal displacement vector and {fT}is the external excitation. 

The chaotic polynomials ψm corresponding to the multidimensional Hermite polynomials 

obtained by the Eq. (3) 

   
  

   

 

  
 

 
 

   
 
 


 

 

T

T

1

1 P 2
P 2

m 1 P

1 P

e
,..., 1 e

...
                      (3) 

Where {α}
 
is the vector grouping the random variables 

  T

1 P
...                                  (4) 
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Where P is the number of random variables. 

The random matrices mass and stiffness [MT] and [KT] of the mechanical system can be written 

as 

        T T T0
M M M                                (5) 

        T T T0
K K K                                 (6) 

The matrices [MT]0 and [KT]0 are deterministic matrices, the matrices ]
~

[ TM  and ]
~

[ TK  

correspond to the random part of the mass and stiffness matrices. 

]
~

[ TM  and ]
~

[ TK  are rewritten from an expression of type Karhunen-Loeve (Ghanem and Spanos 

1991) in the following form 

  


    
P

T T pp

p 1

M M                                (7) 

  


    
P

T T pp

p 1

K K                                 (8) 

Where αp are independent Gaussian centered reduced which may correspond to the first 

polynomial ψp, while the matrices [MT]p and [KT]p are deterministic. 

We pose α0=1, we can write then 

    



P

T T pp

p 0

M M                                (9) 

    



P

T T pp

p 0

K K                               (10) 

In the same way, we can write for {fT} 

    



P

T T pp

p 0

f f                               (11) 

The dynamic response is obtained by solving the following equation knowing that the initial 

conditions are predefined 

        eq T eq
K u t t F                            (12) 

Where 

        T Teq 0
K K a M                             (13) 

                    
eq 0 T 1T T TT 2

F t t a u t a u t a uf tM              (14) 

Where 




0 2

1
a

A t
, 




1

B
a

A t
 and 




2

1
a

A t
                      (15) 
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A and B are the parameters of Newmark. 

  
T

u t t is decomposed on polynomials to P Gaussian random variables orthnormales 

           




   n i i 1n

N
P

n

T

0

T
u t t u t t                      (16) 

Where N is the polynomial chaos order. 

[Keq] and {Feq} are written in the following form 

     
  

          
P P

eq 0 eq2

0 0 0

P

T p T p pp p p
p p p

K MK a K                 (17)

 

                    

 

  



 



    



 



P P

eq T 0 T 1 T 2 T
0 0

p T ppp
p

0
0 p 0

P

eq2

0

p
p

p

MF f t t a u t a u t a u t

F     (18)

 

Substituting Eqs. (16), (17) and (18) into Eq. (12) and forcing the residual to be orthogonal to 

the space spanned by the polynomial chaos ψm yield the following system of linear equation 

      
 

     p n m p mnp

P N P

eq2 T eq 2

0
p

p n 0 p 0

K m 0, 1,u F . . . ,N           (19) 

Where N is the order of Polynomial Chaos. 

Where . .  denotes the inner product defined by the mathematical expectation operator 

This algebraic equation can be rewritten in a more compact matrix form as 

 
 

 
 

 
 

 
 

 
 

   

   

   

 
 

 
 

 
 







     
    
    
        

     
    
    
            

000 0 N

T
0

T

N 0 NN

ji

j

T

j

N

N

u t t fD D

u t t f ,D

D D fu t t

           (20) 

Where 

 
 

 


   
ij

p i j
p

P

q 2

p

e

0

D K                        (21) 

 
 

   



j

p j
p

p

P

eq2

0

f F                       (22) 

After resolution of the algebraic system (20), the mean values and the variances of the dynamic 

response are given by the following relationships 

         T T
0

E u u t t                         (23) 

         


      j
n

N
2

n

T T

1

2

Var u u t t                     (24) 
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4. Equations of motion 
 

The equation of motion describing the dynamic behavior of our system (Fig. 1) is obtained by 

applying Lagrange formulation and is given by 

       x

1 1 1
m x k x sin k t L Q 0                       (25) 

       y

1 1 1
m y k y cos k t L Q 0                       (26) 

       x

2 2 2
m x k x sin k t L Q 0                       (27) 

       y

2 2 2
m y k y cos k t L Q 0                       (28) 

          
11,1 1,1 1,2

I k Cm                          (29) 

                  b

11,2 1,1 1,2 1,2
I k r k t L Q 0                    (30) 

               b

22,1 2,1 2,2 2,1
I k r k t L Q 0                       (31) 

          
22,2 2,1 2,2

I k 0                          (32) 

Where I is the moment of inertia of the wheels. 

Where L
 

is defined by 

         
b b

( 1,2 ) ( 2 ,1 )
L sin( ) sin( ) cos( ) cos( ) 0 r r 0            (33) 

b

( 1,2 )
r , b

( 2,1 )
r

 
represent the base gears radius. α is the pressure angle .  

{Q(t)} is the vector of the model generalized coordinates, it is in the form 

         
T

1 1 2 2 ( 1,1 ) ( 1,2 ) ( 2,1 ) ( 2,2 )
Q t x y x y                 (34) 

 

 

5. Numerical simulation 
 

The technological and dimensional features of the one-stage gear system are summarized in the 

Table 1. 

In this section numerical results are presented for the new method formulations derived in the 

Section 3. The polynomial chaos results are compared with Monte Carlo simulations with 100000 

simulations. 

The mass and the moment of inertia of gears are defined by 

  2m . .r .l                                  (35) 

 21
I .m.r

2
                                  (36) 

825



 

 

 

 

 

 

A. Guerine, A. El Hami, T. Fakhfakh
 
and M. Haddar 

Table 1 System parameters 

Material: 42CrMo4 =7860 Kg/m
3
 

Motor torque Cm=200 N.m 

Bearing stiffness x

j
k =10

7
 N/m y

j
k =10

7
 N/m 

Torsional stiffness of the shaft 

j
k =10

5
 Nm/rad 

Number of teeth Z(12)=40 ; Z(21)=50 

Module of teeth module=4.10
-3

 m 

Contact ratio  =1.7341 

The pressure angle =20° 

 

 

Where r, ρ and l denote radius, mass density and length. 

The radius parameter is supposed random variable and defined as follow: 

  
0 r

r r                                 (37) 

Where ξ is a zero mean value Gaussian random variable, r0 is the mean value and σr is the standard 

deviation of this parameter. 

The mean value and standard deviation of the dynamic component of the linear displacement of 

the first bearing in two directions x and y have been calculated by the polynomial chaos method. 

The obtained results are compared with those given by the Monte Carlo simulations with 100000 

simulations. The results are plotted in Figs. 4 and 6 for σr=2% and in Figs. 5 and 7 for σr=5%. 

These figures show that the obtained solutions oscillate around the Monte Carlo simulations 

reference solution. It can be seen that for small standard deviation σr=2%, the polynomial chaos 

solutions in second order polynomial provides a very good accuracy as compared with the Monte 

Carlo simulations. When the standard deviation increases the error increases. 

 

 

 

 

Fig. 4.1 Mean value of x1(t) σr=2% Fig. 5.1 Mean value of x1(t) σr=5% 
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Fig. 4.2 Standard deviation of x1(t) σr=2% Fig. 5.2 Standard deviation of x1(t) σr=5% 

 

  

Fig. 6.1 Mean value of y1(t) σr=2% Fig. 7.1 Mean value of y1(t) σr=5% 

 

 

The mean value of the dynamic component of the angular displacement θ(1,1) and θ(2,1) are 

presented in Figs. 8 and 9 for σr=5%.The PC results are compared with Monte Carlo simulations 

with 100000 simulations. The dynamic response of the angular displacement as predicted by 

polynomial chaos calculations matches exactly with that of the Monte Carlo analysis. A N=8 has 

been used for the PC model and is seen to be enough to capture the dynamic response of the 

angular displacement of our system. 

The mean value and standard deviation of the dynamic component of the linear displacement of 

the second bearing in two directions x and y obtained with different orders of polynomial chaos 

N=2, N=4 and N=8 are presented in Figs. 10 and 11 for σr=10% in order to check the capabilities 

of the polynomial chaos approach in the analysis of the dynamic behavior of spur gear system. 
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Fig. 6.2 Standard deviation of y1(t) σr=2% Fig. 7.2 Standard deviation of y1(t) σr=5% 

 

  

Fig. 8 Mean value of θ(1,1)(t) σr=5% Fig. 9 Mean value of θ(2,1)(t) σr=5% 

 

  
Fig. 10.1 Mean value of x2(t) σr=10% Fig. 10.2 Standard deviation of x2(t) σr=10% 
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Fig. 11.1 Mean value of y2(t) σr=10% Fig. 11.2 Standard deviation of y2(t) σr=10% 

 

 

The polynomial chaos results are compared with Monte Carlo simulation with 100000 

simulations. It is evident from these figures that N=2 case clearly does not have enough chaos 

terms to represent the output. As N increases, the results seem to become better, and with N=8, the 

dynamic response of the linear displacement of the second bearing with polynomial chaos values 

almost exactly match with the Monte Carlo simulation results. The uncertainty of the radius 

parameter affects the amplitude of the system responses. It can be noted that the amplitudes of the 

mean values and the standard deviation are approximated more accurately with N=8 than the 

fourth and the second order polynomial.  

  

 

6. Conclusions 
 

An approach based on the polynomial chaos method has been proposed to study the dynamic 

behavior of a spur gear system which is highly sensitive to dispersions of the gear parameters. A 

complete study of the dynamic behavior including dynamic response analyses has been carried out 

for an eight degree of freedom model describing a spur gear system characterised by an uncertain 

gear parameter. The polynomial chaos method has been used to determine the dynamic response of 

a one stage gear system. The efficiency of the proposed method compared with the Monte Carlo 

simulation. The main results of the present study show that the polynomial chaos may be an 

efficient tool to take into account the dispersions of the gear parameter in the dynamic behavior 

study of a spur gear system. An interesting perspective is to apply this method to a system with 

higher degree of freedom like epicyclic gear system. Further work in this context is in progress.  
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