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Abstract.  This paper presents a study based on the damage due to the fatigue life of thrust ball bearings 
using vibratory analysis. The main contribution of this work lies in establishing a relation between modal 
damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and 
frequency spectra are extracted from both static and dynamic experiments. The first part of this research 
consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization 
tests. In a second part, indented components representing spalled bearings are studied to determine the 
evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic 
results, in good agreement with static tests, show that damping varies depending on the component’s damage 
state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball 
bearing fatigue damage variation in presence of spalling. 
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1. Introduction 
 

Evolutions of modal parameters of a mechanical structure subjected to a fatigue load are known 

and used in various applications. Over the last decades, research has been done in the area of 

global vibration-based damage detection (Mazurek 1990, Salawu 1997, Yan et al. 2007, Česnik et 

al. 2012), which studies failure by monitoring the changes in the modal parameters of the structure 

(natural frequencies, damping and mode shapes). The change in the modal parameters can also be 

utilized for fatigue prediction during the operating life of the structure. 

Doebling et al. (1996) made a review of damage prediction methods based on the variation of 

modal parameters. Bedewi et al. (1997) proposed an application of failure prediction based on 

modal parameters which predicted the residual life of composite structures by monitoring the 

decreasing trend in natural frequency and the increasing trend in damping loss factor as a function 

of the load cycles during a fatigue test. 
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Fig. 5 Comparison of frequency spectra from the first test campaign (Test 1) 
 

 

(a) Test 2 - Ring sample 
 

(b) Test 2 - Ring sample 

Fig. 6 Comparison of frequency spectra from the second test campaign 
 
 

31.1 M cycles and 37.5 M cycles respectively corresponding to 18, 24 and 29 operating hours. 
These results were compared to those of an undamaged component. Free vibration structural 
responses are presented in Fig. 5. It displays a slight attenuation of natural frequency curves 
depending on the sample fatigue life. 
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Fig. 8 Damping ratio variations for four ring samples (1st test campaign and ring samples (a) and (b) 
(2nd test campaign) 
 
 

precision in damping measurement. Fig. 8 displays the average damping ratio of four different 
rings as a function of cycles, and clearly highlights growing damping values as the components 
fatigue level increases. They are consistent to steel damping ratios (commonly below 0.05). Up to 
25 M cycles, linear curve remain almost constant. Damping factor varies between 0.02 and 0.025. 
From 25 M cycles on, the curve greatly increases to reach damping factor of 0.05. 

The same figure presents damping ratio variations for two different thrust ball bearings as 
described above. It is noticed that values are very similar to those obtained in the first case. Some 
differences may occur due to experimental imprecision. It is also noticed that the shape of curves 
is almost the same. For case (a), the curve remains constant up to 10 M cycles. After that, it 
increases quickly. For case (b), curve increases from 14 M cycles. Damping ratio reaches 0.04 for 
23 M cycles in the first case and 0.05 for 40 M cycles in the second case. The samples behavior 
may may partially be related to manufacturing process and experimentation uncertainties, which 
could explain these differences.  

 
 
4. Dynamic experimentations 

 
In dynamic mode, many techniques were developed over the last years to determine modal 

parameters such as damping ratio. They are based mainly on time domain as it is considered more 
suitable for operational modal analysis. Thus, such methods use complex mathematical models 
based on the fitting of response correlation functions or the parametric models. Vu et al. (2011) 
proposed a multivariable autoregressive (AR) model using the least squares method to estimate 
modal parameters which seems to be suitable for this kind of work. However, such precision is not 
required as the focus is on evolution trends of damping ratio. Therefore, the same method as in 
static mode will be implemented.  

In this section, an algorithm to extract thrust ball bearings normal modes and damping ratios 
will be presented. The key function in this algorithm is the Random-Decrement (RD) technique. 
The RD will be presented in the next paragraph. The experimental test and the algorithm 
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schematic will be presented in paragraph 4.2 before analyzing the results in paragraph 4.3. 
 

4.1 Random-Decrement 
 
Random-Decrement is a signal processing technique which transforms the response of a 

resonant system to random excitation, into its impulse response. It was developed by H.A Coles at 
NASA during the late 60s and early 70s (Cole 1968) in order to detect space structure damage 
from the measured response. Since then, it has been applied to a wide variety of structures 
subjected to immeasurable ambient excitations, in order to extract the modal parameters and 
eventually to detect failures. 

The technique was later given a mathematical basis (Asmussen 1997). Let X(t) be a stochastic 
process, the RD function is defined as the mean value of a stochastic process on condition, T, of 
the process itself 

          
(1)

The condition T is the triggering condition. 
In order to accurately estimate the conditional mean value from a single observation, it is 

necessary to assume that the stochastic process is not only stationary but also ergodic. In this case 
the RD function can be estimated as the empirical conditional mean value from a single realization 

          
(2)

Where N is the number of points in the process which fulfills the triggering condition and x(t) is a 
realization of X(t). The triggering condition used in this work is 

       (3)

i.e., a positive going zero crossing.  
In damage failure detection the basic idea is that an incipient failure will change the stiffness 

and the damping characteristics of the structure (Ait Sghir 2007). The RD function can be used to 
estimate the FRF (Asmussen 1996) of the whole system and through a filtering process, the ring 
FRF can be extracted. The last step of the process is the damping calculation.  

 
4.2 Experiments 
 
In this section, the damping ratios of several thrust ball bearings will be estimated in dynamic 

mode in situ using real-time analysis. A DJB accelerometer (sensitivity 1.025 mV/m/s²) was set in 
the axial direction. All boundary conditions used in the previous experiments were maintained on 
the dynamic test campaign so that test conditions are identical. In this part of our work, only pre-
spalled (indented) components will be tested. This technique was successfully implemented in 
many previous studies to investigate components spalling evolution in situ (da Mota et al. 2008, 
Christophe 2001, Rosado et al. 2010, Branch et al. 2010). 

In fact, ball bearings raceways undergo contact surface hardening over the first cycles. Natural 
spalling is difficult to obtain and the experimentation can take a long time. Mainly, for time cost 
reasons, indents were created on bearing raceways to accelerate the crack propagation 
phenomenon. They must be initiated in sub-layer according to Hertz theory (Rosado et al. 2010).   
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        Damping ratio 
 

Fig. 11 Damping ratio extraction algorithm 

 

Fig. 12 Impulse response envelope in dynamic mode 
 
 

4.3 Results  
 
Fig. 12 shows the envelope curves of the studied thrust ball bearings in situ. Hilbert Transform 

was applied to filtered FFT spectra. It is noticed that signals are damped proportionally to fatigue 
level. 

Damping ratios determined using the half power bandwidth method are shown on Fig. 13. 
These results are in good agreement with those determined in static mode. It is worth noting 

that the vibrations propagation path is not the same as in static test, since it will excite the whole 
structure that supports the bearing. This explains why values are different from those previously 
estimated. However, the evolution trend is very similar. As a consequence, this procedure is 
considered suitable to estimate damping ratios in both static and dynamic modes. Damping factor 
can also be considered as an indicator for thrust ball bearings fatigue damage. 
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Fig. 13 Damping ratio of four rings versus operating cycles in dynamic mode 
 
 

5. Conclusions 
 

In this paper, a technique using the modal damping ratios was developed to estimate thrust ball 
bearings damage variation. Test campaigns were carried out in both static and dynamic mode. In 
static mode, impact hammer tests were used to characterize normal modes, then to extract damping 
values from normalised frequency spectra. Two test campaigns corresponding to two different 
kinds of experimentations were made. Both are clearly similar and show that damping ratios vary 
greatly due to components damage level.  

In dynamic mode, indented components were studied in situ. Real-time vibration spectra were 
extracted and treated using the Random Decrement method. Estimated damping ratios evolution 
was quite similar to that highlighted in static mode. In this kind of work, it seems clear that 
damping is a suitable indicator to estimate structural damage level.  

For both static and dynamic mode, it is shown that damping ratio increases with the fatigue 
damage level of tested thrust ball bearings. Thus, the damping ratio determined from the measured 
vibrations seems to be a good indicator of the damage level of mechanical components subjected 
to rolling contact fatigue such as thrust ball bearings.  

Further test campaigns are planned to study the effects of load, velocity and indent size on 
damping ratios evolution in order to determine a fatigue damage time domain indicator. This one 
is going to be used later to readjust a numerical model of thrust ball bearing fatigue damage.   
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