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Abstract.  The purpose of this work is to analyze the effect of structure parameter disturbance on the 
dynamic characteristics of a hydropower station powerhouse. A vibration model with a head-cover system is 
established, and then the general disturbance problem analysis methods are discussed. Two new formulae 
based on two types of disturbances are developed from existing methods. The correctness and feasibility of 
these two formulae are validated by analyzing the hydropower station powerhouse vibration model. The 
appropriate calculation method for disturbance of the hydropower station powerhouse vibration dynamic 
characteristics is derived. 
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1. Introduction 
 

Field and model tests reveal three main paths of vibration transfer from the water turbine to the 

powerhouse (Ma and Dong 2003): (1) runner→shafting→bearing→fixed components (machine 

frame, head cover) →powerhouse; (2) flow pressure→spiral case→powerhouse; and (3) 

runner→runner negative pressure region→head cover→powerhouse.Ma conducted vertical 

vibration analyses of the low machine pier, the high machine pier, and the mutual coupling 

between the powerhouse and the units of the circle beam column hydropower station from the 

perspective of the dynamic balance equation. The scope of these studies included the effect of path 

(1), whereas paths (2) and (3) were ignored. However, the continually increasing scale and 

capacity of hydropower stations corresponds to an increase in the flow passage area, which 

comprises the head-cover system and the bearing control components. This process, in turn, leads 

to an increase in head-cover vibration. Therefore, the effect of the head-cover system has become 

more important in the process of hydraulic vibration transfer, such that ignoring path (3) will result 

in significant error. Here, a head-cover system is introduced to augment Ma's research (Ma and 
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Dong 2003). With this amendment, the vibration source is the same as that in path (1), the elastic 

foundation restraint is then selected, and the new vibration model is established. Next, our study 

introduces the treatment of additive disturbance, which is provided by Zhang, and the treatment of 

multiplicative disturbance, which is probed by Gao. Combining the mathematical traits of these 

two disturbance types, the above two treatments are extended in this work. Two new solution 

formulae are proposed to represent dual disturbances using the variation algebra synthesis method 

(Gao et al. 2009), Kronecker algebra (Vetter 1973) and Hadamard product (Benjamin 1979). 

Finally, the study employs computational research and model experiments to verify the two new 

treatments and attempts to explore and analyze the hydropower station stochastic parameter 

structure. 

 

 

2. Literature review 
 

In analyses of engineering structures, structural parameters are disturbed due to materials, 

manufacturing and other reasons. When these types of disturbances occur within structural 

calculations, it is termed a multiplicative disturbance. In addition, some parameters will change 

due to various noises caused by measurement. This type of disturbance is an additive disturbance. 

Prior research has indicated that structural parameter disturbance may cause large changes in the 

structural dynamic characteristics and dynamic response. This lends itself to mechanical 

parameters becoming a dominant factor under certain conditions. Li (1993) suggested that the C.V. 

(coefficient of variation) of the structure maximum response is 2-4 times that of the C.V. of 

structure parameters. This ratio has been reported to be as high as 7 times in some publications. 

Zhang (2001) demonstrated that the contribution of the structure parameters’ randomness is more 

than the contribution of the external excitation with regard to the dynamic response. Therefore, it 

is necessary to clearly and accurately elucidate the contribution of each vibration path to the 

structure vibration when considering the parameters’ randomness. This is not a simple problem. 

The analysis of the vibration transfer characteristics with disturbance should be assigned to 

stochastic structure system fields. At present, the main methods used to quantify additive 

disturbances include the Monte-Carlo simulation method (MCSM) (Singh et al. 2001, Popescu 

2011) and the perturbation method (Kaplunov et al. 2005, Kamiński 2011, Madani et al. 2011). 

MCSM is limited to small structure analysis and verification analysis; consequently, the 

perturbation method is widely used. Colliins and Thompson (1969) initially explored using the 

perturbation method to analyze the stochastic dynamic systematic characteristic values, and then 

subsequent studies mainly focused on how to employ the perturbation method in static (Hisada and 

Nakagiri 1982) and dynamic analyses (Liu et al. 1988). Vetter (1973) introduced Kronecker 

algebra to expand the perturbation method. Perturbation theory was widely used and experienced 

multiple developments over the next several decades. Major developments include the L-P method 

(Poincare 1960), the multiple scale method (Friemann 1963), the average method (Krylov and 

Bogoliubov 1947), the KBM (Krylov-Bogoliubov Mitropolsky) method (Krylov and Bogoliubov 

1947, Bogoliubov and Mitropolsky 1961) and the singular perturbation method (Kaplun 1967, 

Tsien 1956). The homotopy perturbation method (Abbasbandy 2006) is a recent development. 

Zhang built a theoretical model describing the vibration transfer path by employing the 

perturbation method with Kronecker algebra into the static (Zhang et al. 1996), dynamic (Zhang 

2007) and reliability analyses (Zhang et al. 2003). This method is used for mechanical component 

analysis and design. The results are used for isolation vibration analysis. In the multiplicative  
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Fig. 1 Simplified model of the coupling system between umbrella unit and powerhouse 

 

 

disturbance analysis area, Gao analyzed dynamic characteristics of truss structures using the 

interval factor method (Gao 2006a), the random factor method (Gao 2006b) and the non-stationary 

random excitation method (Gao et al. 2004). Ma J. performed a dynamic characteristics analysis 

on linear (Ma et al. 2006a) and non-linear (Ma et al. 2006b) truss structures using fuzzy variables. 

In 2010, the two-factor method was proposed considering two multiplicative disturbances by Ma 

et al. (2010). 

The above analyses mainly focus on singular disturbances, which illustrate the shortage of 

research on stochastic structure that accounts for two types of disturbances. It is therefore 

imperative to analyze this type of contribution (3).  

 

 

2. Analysis model with introduction of the head-cover system 
 

For both suspension and umbrella hydroelectric generating units, the weight of the rotating 

parts is transferred into the reinforced concrete machine foundation successively through thrust 

bearing, the frame (suspension units contain the stator frame), and the sole screw (Ueda 1981). 

The head-cover system is always fixed on the base ring strengthening plate, and it becomes one 

entity with the strengthening plate. For example, the model for the umbrella vertical vibration 

characteristics’ contains the shafting system, thrust bearing and lower bracket (see Fig. 1). The 

heave shaft can be simplified as a massless elastic continuous beam, and its mass can be regarded 

as an attached mass added to three nodes: m1, m2 and m3. m1 can be defined as the mass of the 

exciter rotor zone axis, with half of the shafting mass as measured from the heavy shaft top to the 

rotor frame and the other half of the mass added on top of the heavy shaft; m2 can be defined as 

the mass of the central body of the rotor frame, with half the mass of the whole gate arm and half 

the mass of the whole shaft; and m3 can be defined as the mass of the water turbine runner, the 

additional water mass, and the half shafting mass as measured from the rotor frame to the 

hydraulic turbine. The rotor gate arm can be simplified as a massless elastic continuous rod, with 
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its mass assigned to the runner margin and the central body of the rotor frame. k4 can be defined as 

the sum of the vertical stiffness of the whole gate arm; m4 can be defined as the lumped mass of 

the runner margin. The outer end of the lower bracket is fixed on the concrete foundation. Then, 

the lower bracket gate arm can be simplified as a gravity-free beam, ignoring the coupling effect of 

the foundation. k52 can be defined as the vertical stiffness of the lower bracket gate arm. m5 can 

be defined as the lumped mass of one end of the lower bracket that is close to the heavy shaft and 

half the mass of the gate arm; meanwhile, m5 can be connected with m2 by the thrust bearing, 

which is simplified as an equivalent stiffness, k51.  

Introducing the head-cover system establishes the vibration transfer path as follows: the 

hydraulic vertical vibration is transferred to the head cover by the heavy shaft seal and the guide 

bearing in the water turbine runner chamber; next, the vibration is transferred to the spiral case 

base ring strengthening plate, which is connected to the outer end of the head cover by the head 

cover; finally, the vibration is transferred to the machine foundation by the wrapped concrete 

outside the spiral case. By temporarily ignoring the coupling effect on the foundation and 

assuming the foundation is a rigid body, the control parts and other additional parts on the head 

cover can be regarded as the attached mass of the head cover system. Consequently, m6, as the 

lumped mass close to the heavy shaft, can be defined as the mass of the central body and half the 

mass of the whole head-cover system. The head cover system can be simplified as a gravity free 

beam, so k62 can be defined as the vertical stiffness. m6 can be connected with m3 via the sealing 

spring, which lies between the head-cover structure and the water turbine runner. The vertical 

stiffness of the connection can be simplified as an equivalent stiffness k61. The head-cover is 

simplified as a singular free degree node. 

k51 and k61 are the parallel stiffnesses of the elastic oil tank and oil film. However, the elastic 

oil tank stiffness is unstable because the unit’s axial water thrust varies with the unit’s conditions; 

thus, k51 and k61 are simplified as one stochastic variable in this study. 

Assuming the system is linear, the vibration differential equation can be defined as 

0Mu Ku                                  (1) 

Next, transforming the frequency domain yields 

2( ) 0M K U                                 (2) 

By merging the stiffness matrix of the shafting, rotor, lower bracket, head-cover system and 

machine foundation pier, an equation with 7 degrees of freedom and 21 parameters is obtained 

such that the total stiffness matrix can be expressed as 

1 1

1 1 3 4 51 3 4 51

3 3 61 61

4 4

51 51 52 52

61 61 62 62

52 62 52 62 7

0 0 0 0 0

0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k k

k k k k k k k k

k k k k

K k k

k k k k

k k k k

k k k k k

 
 
      
 
   
 

  
   
 

   
       

   (3) 

The dampness matrix is similar to the stiffness matrix. The total mass matrix is obtained via the 
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lumped mass 

1 2 3 4 5 6 7{ , , , , , , }M diag m m m m m m m                      (4) 

The structure dynamic characteristics can thus be determined from Eqs. (2)-(4). 

 

 

4. The treatments of disturbances 
 

4.1 Additive random factor 
 

Zhang proposed applying the stochastic perturbation theory (Zhang et al.1996)
 
to decompose 

the stochastic variables containing additive disturbance into deterministic and perturbation 

portions, that is 

 ;     ( ) ( )d p d p

i i ix x x x x x                          (5) 

In Eq. (5), assume that x is the stochastic parameter vector x=(x1,x2,...,xm)
T
 and follows the 

normal distribution; ωi(x)
 
represents the natural frequency obtained by using general structural 

dynamic characteristic analysis. According to the central limit theorem, ωi(a) can also be assumed 

to fit the normal distribution. ɛ is a small parameter; superscript d denotes its deterministic portion 

and is defined as the mean value after multi-sampling in practical applications; superscript p 

denotes its stochastic portion, which has the zero mean characteristics. The mathematical 

expectation in terms of Eq. (5) can then be expressed as 

( ) ( )

( ) ( ) ( ) ( ) ( )
i

d p d p d

d p d p d

i i i i i

E E E E

E E x x E x E x x

 

     

        


               

x x x x x x
          (6) 

According to the Taylor expansion, ωi 
is expanded in the first-order on ωi

d
, yielding 

( ) ( ) ( )
d d

d d d d p pi i
i i ix x O x x x O x

x x

 
    

 
       

 
          (7) 

d

i

x




is the derivative of the deterministic term ωi over the vector x. Ignoring the higher order 

terms, the stochastic components of ωi 
can be expressed as 

1

dm
p pi

i k

k k

x
x


 







                               (8) 

According to the Kronecker algebra method and the stochastic perturbation theorem (Tsien 

1956), the variance of the stochastic vector and natural frequency can be expressed as 

        

   

[2] [2][2]2 2

2 [2]
2

2 ( )
i i

p p

x x

d dn
p Ti i

i i j

j j

Var x E x E E x x

Var E E E x Var x
x x

 

  

 
   

      
   


    
                


      (9) 
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Superscript [2] denotes the Krnoecker power, that is, x
[2]

=x x. Herein, x contains m stochastic 

variables, that is: x is of the m×order; x
[2] 

is of the m
2
×1order; Var(x) is of the m

2
×1 order; Var(x) 

contains the variance and covariance of each vector of x; and Var(ωi) is the overall variance 

including the partial derivative of each vector and the covariance among vectors, which is of the 

1×1 order. 

Zhang conducted these transfer path analysis and reliability computations via the above-

described method in 1996 (Zhang et al.1996)
 
and 2003 (Zhang et al. 2003). The results indicate 

that the system function disturbance could have been calculated based on calculations of the first 

order partial derivative. 

 

4.2 Multiplicative random factor 
 
Gao (2006b) introduced the random factor method for multiplicative disturbance. By using the 

finite element method, the element stiffness is defined as 

  p d

e e eK K K   
                              (10) 

In Eq. (10), [Ke] is the stiffness matrix of element e; Ke
p 

is the perturbation factor of the 

stiffness matrix for element e; Ke
d 
is the deterministic portion of the stiffness matrix for element e. 

Assuming there are n elements in the structure, the overall stiffness matrix [K] can be expressed as 

              #

1 1 1

n n n
T Tp d p

e e e e e e e e e

e e e

K G K G K G K G K K
  

          
       

(11) 

In Eq. (11), [Ge] is the coordinate transformation matrix for element e, and [Ke
#
] is the 

deterministic portion of the overall stiffness matrix for element e. 

Similarly, the overall mass matrix of the structure of the lumped mass matrix can be 

represented as 

   #

1

n
p

e e

e

M M M


                                (12) 

In Eq. (12), Me
p 
is the mass matrix disturbance factor for element e; [Me

#
] is the deterministic 

portion of the overall mass matrix for element e. Analysis of the structural dynamic characteristics 

primarily focuses on each order natural frequencies and on the structural vibration mode. Due to 

the mutual correspondence between the natural frequency and the modal vibration shape, that is, 

once the natural frequency of a given order is identified, the corresponding modal vibration shape 

can be determined. Therefore, the structural vibration perturbation can be determined based on 

analyzing the structural natural frequency perturbation. The natural frequency can be computed via 

the Rayleigh quotient, as follows 

    

    

    

    

    

    

# #

2 1 1

# #

1 1

n n
T Tp p

T
e e e ei i i i

i i e e
i T n n

T Tp p
i i

e e e ei i i i
e e

K K K K
K

M M M M M

   
 


     

 

 

      
  

      

 

 
     (13) 

If the stochastic variable probability characteristic is consistent for every element parameter, 

thus following the hypotheses of Gao (2006a, b), Gao et al. (2004), Ma et al. (2006a, b, 2010), 
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then 

    

    
 

#

2
2 1

#

1

n
Tp

dpei i
p de i

i in p d
Tp i

ei i
e

K K
KK

M M
M M

 

  

 





  
  

  




               

(14) 

In Eqs. (13) and (14), ωi is the natural frequency of the structure in the i
th
 order; ωi

d

 
is the 

deterministic portion of the natural frequency in the i
th
 order; ω

p
 is the disturbance portion of 

(ωi
d
)

2
; {ϕ}i is the correspondent modal vibration mode; Ki

d 
is the deterministic portion of the main 

stiffness matrix of the i
th
 order modal matrix structure; and Mi

d 
is the deterministic portion of the 

main mass matrix of the i
th
 order modal matrix structure. If the parameters are mutually 

independent in accordance with Eq. (14), probability characteristics of the natural frequency can 

be calculated via the stochastic variable algebra synthetic method 

2( ) (1 )
i

d

i M iE                                 (15) 

 
2

2 2( ) ( )
i i

d

i K M iVar v v                            (16) 

V is the coefficient of variation; CKiMi is the covariance function for Ki and Mi, 
( )

( )

d i
i

i

E K

E M
  . 

To treat the multiplicative noise, Gao (2006a) used the internal factor method, and Ma et al. 

(2006a, b) used the fuzzy factor method. Their research results illustrate that the natural frequency 

disturbance may be calculated out in the case of parameter consistency. 

 
 

5. The dynamic characteristic analysis of the hydropower station regarding the 
effect of dual disturbances 

 

In the two, above-mentioned classical models for treatment disturbances with time-invariable 

parameters, the methods are completely independent, which requires different methods for 

different disturbance analysis. In fact, these two disturbances always co-exist, yet no methods exist 

for conjoint analysis or study. This research seeks to deduce the dynamic characteristic formula via 

expansion of the above two treatments in view of dual disturbances. 

 
5.1 Dual disturbances form 

 

The time-invariable parameters, including multiplicative and additive disturbances, can be 

expressed as below 

1 2dx x x x                                (17) 

In Eq. (17), x is obtained by direct measurement and represents basic parameters such as 

materials, loads, and geometric dimensions. The time-invariable x
d 

is the mean value of x. x 

incorporates two types of disturbances vectors: x
1
 is the multiplicative disturbance factor. Direct 

measurement of x
1
 is difficult due to limitations in techniques and practical conditions that would 

significantly influence the structural analysis. x
2
 is the additive disturbance factor and mainly 

represents phenomena such as environmental noise, etc. When the SNR (Signal Noise Ratio) is 
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small, the noise outweighs the effective signals. The additive noise can be obtained by 

measurement. 

The normal distribution is the most common stochastic variable distribution. Assuming the 

disturbance is stochastic then, the multiplicative factor x
1 
and the additive factor x

2 
represent the 

stochastic variables, which respectively obey N(1, 2

1 ) and N(0, 2

2 ) normal distributions. The result 

of adding or subtracting two normal distribution stochastic variables also obeys the normal 

distribution. Therefore, x would also obey the normal distribution. Thus, x is represented by 

N(x
d
, 2

1 , 2

2 ). 

 

5.2 Perturbation method 
 

The treatment for dual disturbance is represented below as an expansion of Zhang’s method. 

The numerical characteristics of Eq. (17) are 

1 2 1 2( ) ( ) ( ) ( )d d dE x E x x x E x x E x x                        (18) 

E(x)
 
is the mathematical expectation for x. If the multiplicative factor and the additive factor are 

independent and irrelevant, then according to the Krnoecker algebra, Hadamard product and 

perturbation theory 

      
       1 2

[2][2] 1 2

[2]
1 2

( 1)

           2

d

x

d d

x x

Var x E x E E x x x

Var x x Var x x 

      

     
 

           (19) 

According to Eq. (9), the natural frequency variance would be 

    

        1 2

2

2 1 2

[2]
[2]

1 2

( 1)

            2

dn
d

k k k

j j

d
d d

x x

Var E E E x x x
x

Var x x Var x x
x




 


 

               


     
 


       (20) 

The symbol  denotes the Hadamard product (Benjamin 1979). According to Eqs. (18) and 

(20), the dynamic analysis of dual disturbances may be performed based on the perturbation 

theory. Comparing Eq. (9) and Eq. (20), the nature of the algorithm is shown not to change after 

introducing the dual disturbances. Consequently, this treatment obtains the probabilistic 

characteristic of natural frequency via the first order sensitivity of random parameters and the 

probabilistic characteristic of random variables. This simplifies the calculations because the 

sample itself does not participate in the calculations; this treatment is also suitable for other 

function forms (e.g. transmissibility solution). 

 
5.3 Random factor method 
 
The analyses of Gao and Ma have illustrated that the random factor method requires unification 

between parameter disturbances: that is, the k1, k2..., k62’s disturbances are consistent when 
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1 2 1 2;d dK K K K M M M M                          (21) 

Substituting Eq. (10) yields 

2 2
1 1;p p

d d

K M
K K M M

K M
                           (22) 

Substituting Eq. (14) yields 

 
 

 
1 2

2
2

1 2

dp
di

i ip d

i

KKK

M M

K

M M










                        (23) 

In Eq. (23), α=1/K
d
, β=1/M

d
. In Eq. (22), the disturbance includes item K

d
. Only when the 

stiffness of each element is consistent can the total stiffness matrix disturbance be represented by a 

singular value, and then Eq. (23) will be tenable. When the stiffness is independent of the mass, 

the probabilistic characteristic of the natural frequency can be obtained by the C.V. algebra 

comprehensive method 

 

1 2 1 2

1 2
1 2

2 2 2

2
( ) 1 dM M K K

i i

M M
M M

E
    

 
  

  
  
  
 

                   (24) 

   
 
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1 2
1 2 1 2

2
2 2 2 2 2 2

2

2 2
( ) dK K M M K K

i i

M M
K K M M

Var
       

 
    

     
    

       

         (25) 

In the above two Eqs., μ denotes the mathematical expectation, and σ denotes the standard 

deviation. The structure dynamic characteristic problem considers dual disturbances in accordance 

with Eqs. (24) and (25) and can be solved by the random factor method. It should be noted that the 

random factor method, fuzzy factor method and interval factor method all require that the 

parameter disturbances be consistent. Furthermore, in view of dual disturbances, the requirement 

may be improved by insistence that the mean value of each element is consistent. Thus, objects for 

this analysis are limited. The method is only used for regular structures, and it is not suitable for a 

complicated hydropower station powerhouse structure. However, it should not be overlooked that 

the random factor method avoids solving the first order partial derivative. This superior method 

should not be neglected for a structure with plenty of elements when compared with other 

methods. 

 
 
6. Numerical simulation 
 

Due to the complexity of the hydropower station structure, the multiplicative treatment could 

not satisfy the usage condition of the stochastic method. This stochastic method requires that the 

parameters are consistent and that the parameters’ mean values are consistent when considering 

dual disturbances. Therefore, only the feasible analysis of the hydropower station structure was 

conducted by the dual perturbation method in this algorithm. Fig. 1 shows the structure 

simplification schematic diagram for this instance of modeling the coupling vertical vibration  
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Table 1 Frequency orders and their probability characteristic values in umbrella units, simplified by the 

model structure 

Theory(rad/s) 
w1 w2 w3 w4 w5 w6 w7 

41.31 134.90 264.30 394.94 501.93 936.39 4531.03 

Exp. 

Direct 40.87 133.85 263.15 387.54 498.16 924.45 4419.69 

Sole 41.31 134.90 264.30 394.51 501.93 936.38 4515.90 

Dual 41.31 134.90 264.30 394.51 501.93 936.38 4515.90 

S.D. 

Direct 6.02 16.85 24.69 76.10 61.69 149.01 998.26 

Sole 0.066 0.015 0.064 18.42 0.065 0.015 369.89 

Dual 0.063 0.011 0.025 17.89 0.13 1.79 364.47 

C.V. 

Direct 0.15 0.13 0.094 0.20 0.12 0.16 0.23 

Sole 1.59e-3 1.11e-4 2.42e-4 0.047 1.29e-4 1.59e-5 0.082 

Dual 1.52e-3 8.36e-5 9.61e-5 0.045 2.64e-4 1.91e-3 0.081 

Exp.: Expectation 

S.D.: Standard deviation 

C.V.: Coefficient of variation 

Direct: values are calculated according to the statistical characteristics of every disturbance. 

Sole: to solve based on the singular form, see Chapter 4.1. 

Dual: to solve based on the dual form, see Chapter 5.1. 

 

 

between the axis system and powerhouse in the background of one giant hydropower station 

umbrella units' hydraulic vibration source. Ignoring the impact from the spiral case and its inferior 

structure, the mean value for the stochastic parameters are as follows: m1=8.28×10
4
, 

m2=1.042×10
6
, m3=3.29×10

5
, m4=9×10

5
, m5=1.2×10

5
, m6=1.15×10

5
, and m7=4.79×10

6
, where 

the unit of mass m is kg, and k1=7.26×10
10

, k3=5.72×10
10

, k4=2.32×10
10

, k51=2.20×10
12

, 

k52=9.41×10
9
, k61=1.73×10

8
, and k62=1.73×10

10
, where the unit of stiffness k is N/m. Stochastic 

parameters obey the normal distribution. It is difficult to obtain the stiffness for the oil film and 

water seal. In addition, because the stiffness changes with time, the error will increase. Therefore, 

the multiplicative stochastic quantities’ variances coefficients are all set to 0.15 about the vertical 

stiffness k51, which includes the thrust bearing and the seal equivalent vertical stiffness k61 

between the head cover and the runner. The control parts and other additional parts, which are 

carried on the head cover, are too heavy. This trend leads to stiffness and dampness, with more 

uncertainty. The multiplicative stochastic quantity's variance coefficient is set to 0.1 about the 

equivalent bending stiffness k62. For the other parameters, the multiplicative stochastic quantity’s 

variances coefficients are set to 0.05. Additive stochastic quantities include environmental noise 

and measurement noise. Additionally, the range of the stochastic quantity amplitude is relevant to 

the measurement size. Thus, according to each parameter's mean value, the additive stochastic 

variables variances of mass and stiffness are separately set to 10
4 
and 10

8
, respectively.  

Table 1 displays the theoretical solutions. The expectation (Exp.), standard deviation (S.D.) and 

coefficient of variation (C.V.) are listed for each characteristic frequency as obtained by the Direct, 

Sole and Dual methods, respectively. Theoretical solutions are calculated using the general 

method, by which the structure dynamics are used to compute the characteristics under the 

assumption of a disturbance-free system. With the often-employed Direct method, the 

characteristics are computed using sample values. The characteristic frequency vector is 

represented by w1,, with the (1×n) order, where n is the number of sampling points; this vector is 
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the result of statistical analysis when neglecting the covariance between parameters. The Sole 

method calculates characteristics according to Eq. (9), treating the two noise types as additive 

noises and not distinguishing between them. The Dual method calculates characteristics according 

to Eq. (20), strictly distinguishing these two disturbance types based on the disturbance-parameter 

relationship. 

Table 1 indicates that (1) the mathematical expectations calculated via the Sole and Dual 

methods are very close to theoretical solutions. This difference is because in the theoretical 

solution process, the natural frequency is a directly extracted root, whereas in the process of the 

comprehensive algebra method, the resulting value can be adjusted in accordance with the 

stochastic variables’ probabilistic characteristics. The difference between the Sole method and the 

Dual methods is small because there is no coefficient correlation between these two disturbance 

types in the process of calculating the disturbance variance. (2) The statistical values of Exp, S.D. 

and C.V. show that the results obtained via the Direct method are inferior to the other methods. (3) 

Comparing the results of the Sole and Dual methods, the Dual method is superior; the difference 

between the two is not evident due to the lack of coefficient correlation. 

The vertical vibration model for coupling between hydropower station units and powerhouses 

verifies that using a dual method to address the dual disturbances problem in a linear stochastic 

structure is feasible and that this method is accurate. 

 

 

7. Conclusions 
 

In practice, the disturbance factor is complicated, and the disturbance source is almost always 

uncertain. Analyses that only consider the sole disturbance are therefore limited. The dual 

disturbance treatment provided in this study completely describes the practical parameter 

disturbance. 

• This study builds on the research of Zhang and Gao; by considering two types of 

disturbances, it elucidates two new formulae for the stochastic structure dynamic characteristics. 

Moreover, the work includes computations of multiple noises and a sensitivity analysis of Eqs. 

(20) and (25) for each disturbance. This inclusion widens the potential applications of this 

approach. 

• The stochastic factor method was used for the simple stochastic structure problem with dual 

disturbances; however, the complicated structure does not satisfy the computation conditions. The 

perturbation method can be used for calculating the hydropower station structure dynamic 

characteristics, and it ensures the computations’ accuracy when the first order sensitivity is 

considered. The method does not strictly limit the structure and function forms of Eq. (20), which 

suggests it has wide applicability. 

• As shown in Table 1, some individual items did not perform better than the results of sole 

disturbance forms. The computation of the dynamic characteristic disturbance is merely one step 

in this treatment. Thus, future efforts should focus on improving this approach. 
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