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Abstract.  Structural damage and moving load identification are the two aspects of structural system 
identification. However, they universally coexist in the damaged structures subject to unknown moving load. 
This paper proposed a dynamic response sensitivity-based model updating method to simultaneously 
identify the structural damage and moving force. The moving force which is equivalent as the nodal force of 
the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters 
by the state space method, the dynamic response and the dynamic response derivatives with respect to the 
force parameters and elemental variations are analytically derived. Afterwards, the damage and force 
parameters are obtained by minimizing the difference between measured and analytical response in the 
sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving 
load is employed to verify the accuracy of the proposed method. 
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1. Introduction 
 

Structural damage identification under the moving load has been widely used in structural 

health monitoring and damage assessment of the bridge structures, such as the damage 

identification for the bridge structure under the vehicle load. Many researchers have studied the 

approaches of structural damage identification under the known moving load based on the 

structural dynamic responses. 

Gonzalez and Hester (2013) used the acceleration response of a beam-type structure which is 

composed of static, damage and dynamic responses to identify the location and severity of the 

damage when the structure is traversed by a moving load. This method first established the nature 

of the damage singularity in an acceleration response and discussed how the singularity changes 

with damage location and severity and with the properties of the beam and moving force. Zhan et 
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al. (2011) proposed a damage identification approach using train-induced responses and sensitivity 

analysis for the nondestructive evaluation of railway bridges. In this method, the forward problem 

for train-induced bridge response is calculated considering the interaction between the train 

subsystem and bridge subsystem. Afterwards, the damage is located and quantified with the finite 

element model updating technique based on the response sensitivity analysis. Lu and Liu (2011) 

also used a dynamic response sensitivity-based finite element model updating approach to identify 

the damages in the bridge. Furthermore, the vehicular parameters are identified from the structural 

dynamic responses simultaneously. Sieniawska et al. (2009) proposed a structural identification 

approach under a moving load to transform the dynamical problem into a static one by integrating 

the input and output signals. Furthermore, the stochastic disturbances following the movement of 

vehicles through the pavement roughness are taken into account in this method. Hester and 

Gonzalez (2012) proposed a novel wavelet-based approach using wavelet coefficient versus scale 

plots at different points in time to identify the damage from the bridge acceleration signal. 

Khorram et al. (2013) combined Continuous Wavelet Transform (CWT) and factorial design 

method to detect the multiple cracks in a simply supported beam subjected to a moving load. All 

the above approaches are based on the assumption that the information of the moving loads or 

input signals is known. 

However, the moving load applied on the structure is usually unknown or difficult to be 

precisely measured in practice. Therefore, structural damage and moving load identification 

universally coexist in the damaged structures subject to unknown moving load.  

In the field of the moving load identification, Yu and Chan (2007) comprehensively introduced 

four methods (interpretive method I, interpretive method II, time domain method, and 

frequency-time domain method) in determining the dynamic axle loads from bridge responses. The 

moving force identification is an inverse problem, which is based on simulating the structural 

response caused by a set of time-varying forces running across a bridge. Law et al. (2007) studied 

the problems of moving loads identification with a three-dimensional bridge deck. In this method, 

the equation of motion is formulated in state space and the resulting damped least-square 

identification problem is solved using the dynamic programming method with regularization on 

the solution. Zhu and Law (2006) presented a time domain method based on regularization 

technique and modal superposition to identify moving loads more accurately. The relationship 

between the response and the moving loads on an Euler-Bernoulli beam is formulated in this 

method. Jiang et al (2004) proposed the parameter identification of vehicles moving on the 

multi-span continuous bridges based on the genetic algorithms, taking into account the random 

road surface roughness. The above moving loads identification approaches assume that the 

structure is known initially.  

As far as the combination of the structural damage and moving force identification, some 

researchers further developed the structural damage identification methods under moving loads 

without knowledge of the time-histories of the moving forces. Zhu and Law (2007) proposed a 

time-domain method based on the measured displacement response to identify the moving load 

and damage in the bridge without prior knowledge of the loads. The unknown moving loads and 

local damages are indentified by using two-step approach that separately adjusts the loads and the 

damage factors in each iteration of the optimization procedure, when the number of measurements 

is equal to the number of beam elements minus one. Li et al. (2013) presented a dynamic response 

sensitivity-based identification procedure with the unknown moving loads based on the dynamic 

response reconstruction technique in wavelet domain. In this damage identification process, the 

sensitivity matrix is obtained using numerical finite difference method which may be 
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computational time-consuming. Zhang et al. (2010) proposed a technique for simultaneous 

identification of moving masses and damages based on virtual distortion method, which treats the 

masses and damage extents as the optimization variables. The numerical cost in this study is 

significantly reduced by introducing the moving dynamic influence matrix and the smaller number 

of optimization variables. However, the location of the damage has to be known a priori. Zhu et al. 

(2013) proposed a substructural method in state space domain to indentify the local damages of the 

large systems. In this method, the external moving forces combining with the interface forces of 

adjacent substructures are considered as the unknown parameters to be identified. 

In this paper, a structural damage identification method with unknown moving force is 

proposed to simultaneously identify the structural damage and moving force. The moving force is 

represented as a sum of a series of orthogonal polynomial, and the dynamic response derivatives 

with respect to the force orthogonal parameters and elemental variations are derived based on the 

system Markov parameters in state space domain. Different from the intelligent optimization 

algorithms to tackle the damage identification problems (Tang et al. 2013, Hakim and Razak 

2013), the damage and moving force identification is performed using sensitivity-based model 

updating method, by minimizing the difference between the measured and calculated dynamic 

response. Dynamic response sensitivities are calculated to indicate a search direction in the 

optimization process of model updating. Comparing the conventional method which calculates the 

sensitivity matrix by the numerical finite difference method, the proposed method derives 

sensitivity matrix of the dynamic response explicitly in state space domain, which accelerates the 

process of the damage identification. A numerical example for a simply supported beam under the 

moving load is employed to verify the accuracy of the proposed method.  

 

 

2. Motion equations under moving load in state space domain 
 

2.1 State space method for Markov parameters Hk 
 

The motion equation of a linear structure subjected to a moving force at the speed of v can be 

written as 

( )l vt Mx + Cx + Kx Fδ                            (1) 

where M, C, K represent the mass, damping and stiffness matrices, respectively. The structure is 

assumed to exhibit Rayleigh damping as C=aM+bK, where a and b are the Rayleigh damping 

coefficients. ẍ, ẋ and x are respectively the dynamic acceleration, velocity and displacement of the 

structure, and Fδ(l−vt) is the external moving force. In Eq. (1), F is the time-varying force at a 

constant speed of v, l is the location point of the structure, vt donates the location of moving force 

at time t, and δ(∙) is Dirac delta function. 

The moving force can be decomposed by Chebyshev polynomial (Rivlin 1990) as follows 

1

( ) ( )
M

k k

k

l vt c l vt


  Fδ T δ                            (2) 

In Eq. (2), c and T are respectively the orthogonal factors and orthogonal items of the moving 

force. The subscript k indicates the number of orthogonal items, and the Chebyshev orthogonal 

items can be expressed as 
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1
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  

 
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D
 

 
   

 
T T T              (3) 

where Dt is the duration time of the moving force. ck is considered as the unknown parameter to be 

identified together with the structural damage in the identification process in the following 

sections. 

Combining Eqs. (1) and (2), the motion equation of the structure can be rewritten by using state 

space formulation as following 

1

( )
M

k k

k

c l vt


  * *
X K X B T δ                           (4) 

1

( )
M

k k

k

c l vt


  Y RX D T δ                            (5) 

where 
 

  
 

x
X

x
, 

 
 
 

*

-1 -1

0 I
K =

-M K -M C
, 

 
 
 

*

-1

0
B =

M
. *

K is the system matrix, *
B is the input 

matrix, and the column vector X is the state vector of the system. In Eq. (5), R=[Rd−RaM
-1

K 

Rv−RaM
-1

C] and D=RaM
-1

. Y represents the output matrix. Ra, Rv, Rd are respectively the 

mapping matrices associated with the measured acceleration, velocity and displacement. 

Eqs. (4)-(5) can be discretized as the following equations by using the exponential matrix 

algorithm 

         
1

( 1 ) ( ) ( ) ( )
M

k k

k

j j c j l vt


   X AX B T δ                       (6) 

  
1

( ) ( ) ( ) ( )
M

k k

k

j j c j l vt


  Y RX D T δ      (j=1, 2,…,N)                 (7) 

where exp( )h *
A K  and 1 * *

B K (A- I)B . N is total number of the sampling points, and h is 

the time step between the state vectors X(j) and X(j+1). 

From Eqs. (6)-(7), the output Y(j) can be calculated with zero initial conditions, and it can be 

written as 

1 0

( ) ( ) ( )
jM

k m k

k m

j c j m l vt
 

  Y H T δ    (m=0,1,…,j)                 (8) 

where 0 H D  and 1m

m

 ( )
H RA B . The matrices Hm are called the system Markov parameters 

which represent the response of the discrete system to unit impulses. The Markov parameters 

represent the inherent system response characteristics and are unique for a given linear system. Eq. 

(8) can be expressed as the Toeplitz matrix forms 

0

1 0

1

1 2 0

(0)(0)

(1)(1)
( )

( 1)( 1)

k

M
k

k

k

N N k

c l vt

NN



 

    
    

        
    
         



H 0 0 TY

H H 0 TY
δ

H H H TY

             (9) 
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F
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( ) ( 1)l t i Le 
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Fig. 1 The equivalent nodal loads of the moving force for the ith beam element 

 

 

In consequence, Eq. (9) can be rewritten as the simple form 

1

( )
M

k k

k

c l vt


  LY H T δ                            (10) 

 

2.2 Equivalence of moving load 
 

In this paper, the continuous moving force is equivalent as the nodal force at any time step by 

the shape function of the element (Zhu and Law 2007). The equivalent nodal loads by a moving 

force F for the ith element is shown in Fig. 1. Based on the shape function of the beam element, 

the equivalent nodal loads (FL, ML, FR and MR) of the ith element can be expressed as 

2 3

2

2 3

2

( ) ( 1) ( ) ( 1)
1 3 2

( ) ( 1)
( ( ) ( 1) ) 1

( ) ( 1) ( ) ( 1)
3 2

( ) ( 1) (
( ( ) ( 1) )

L

L

R

R

l t i Le l t i Le

Le Le

l t i LeF l t i Le
LeM

F l t i Le l t i Le

M Le Le

l t i Le l t
l t i Le

Le

      
    

   

        
  

 
       

         

  
   

 

, (( 1) ( ) )

) ( 1)

i Le l t i Le

i Le

Le

 
 
 
 
 
 
 

     
 
 
 
       
     

F  

(11) 

where ( )l t vt  is the location of the moving force, and Le is the length of the element. 

 

 

3. Sensitivity analysis for structural damage and force identification  
 

3.1 Dynamic response sensitivity of the structure   
 

The local damage in the structure is assumed as a change in the elemental stiffness factors ∆α, 
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and the perturbation of the structural stiffness matrix is described as 
1

Ncal
e

i i

i

K k


    (0<∆α<1). 

The dynamic response sensitivity of the damaged structure with respect to the structural 

parameters and the orthogonal factors of the moving force are calculated by differentiating Eq. 

(10) as 

1

1

( ( ))

( )

M

k k M
k

k k

ki i i

c l vt

c l vt
  





 


  
  




L

L

H T δ
HY

T δ                 (12) 

1

( ( ))

( )

M

k k

k
k

k k

c l vt

l vt
c c



 


  
 

 L

L

H T δ
Y

H T δ                    (13) 

In Eq. (12) 

0

01

1 2 0

i

i i

i

N N

i i i



 


  
 

 
 
 
 

  
   

 
 
   
    

L

H
0 0

HH
0H

H H H

                       (14) 

Differentiating 0 H D  and ( 1)m

m

H RA B  with respect to αi, the derivative matrices m

i





H
 

(k=0,…, N-1) can be written as 

 

0

( 1) ( 1)
( 1) ( 1)

0 ( 0)

( ) ( )
1,2, , 1

i

m m
m mm

i i i i i

m

m N



    

 
 


  


          

     

H

H RA B R A B
A B R B RA

  (15) 

where 

1 1 1 1

i i i i i

b
    

          
    

       
a a a a

R K C K K
R M R M R M R M            (16) 

In the second equation of Eq. (15), 
1( )m

i





A
 is calculated by 

2( )

i i i  

  
 

  

A A A
A A  
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3 2
2 2 2( ) ( )

i i i i i i     

     
    

     

A A A A A A
A A A A A A  

4 3
3 2 2 3 3( ) ( )

i i i i i i i      

      
     

      

A A A A A A A
A A A A A A A A  

…
1 2

2( ) ( )m m
m

i i i  

 
  

 
  

A A A
A A                       (17) 

Differentiating exp( )h *
A K  and 1( ) * *

B K A I B  with respect to αi, 
i





A
 and 

i





B
 

are calculated as 

i i

h
 

 


 

*
A K

A                                (18) 

          

1
1 1

1 1 1

[ ( ) ] ( )

( )( )

i i i i

i i

h

   

 


 

  

   
    

   

 
   

 

*
* * * * *

* *
* * * * *

B K A
K A I B A I B K B

K K
K K A I B K A B

             (19) 

where 

1 1 1 1

i

i i i i

b
   

   

   
        

      
         

*
0 0 0 0

K
K C K K

M M M M
            (20) 

Finally, the dynamic response derivatives with respect to the elemental stiffness variation and 

orthogonal force parameters 
i





Y
and 

kc





Y
can be calculated from Eqs. (12)-(13). 

 

3.2 Structural damage and force identification based on sensitivity analysis 
 

The sensitivity-based model updating method (Brownjohn et al. 2001) is employed for 

structural damage and moving force identification. In the sensitivity-based updating procedure, the 

unknown parameters are repeatedly adjusted to minimize the discrepancy between the analytical 

responses from FE model and the practical measurement counterparts in an optimal way. The 

sensitivities of dynamic responses with respect to unknown parameters are used to indicating the 

search direction of the optimization process. As a result, based on the sensitivities of dynamic 

response with respect to the stiffness and force parameters, the unknown damage and force are 

identified using the sensitivity-based updating method. The objective function of the dynamic 

response is expressed as 

2
( ) ( ( ) )A M  J Y Y                            (21) 
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where Y
M

 represents the measured response, and Y
A
 represents the dynamic response from the 

analytical FE model which is expressed as the function of the uncertain physical parameters {β}. 

The objective function is minimized by adjusting continuously the parameters {β} of the analytical 

model through a sensitivity-based iterative procedure. The sensitivity matrix of the dynamic 

response with respect to the parameter β is expressed as 

 



    

Y
S                                 (22) 

Given that β={α c}
T
, Eq. (22) can be rewritten as 

   [ ( ) ] ( ) ( )c
c

 


  
     

K F

Y Y
S S S                       (23) 

where SK(α) and SF(c) are the sensitivity matrices of the dynamic response with respect to the 

damage parameters α and the orthogonal factors of the moving force c, respectively. During the 

updating process, the dynamic sensitivity matrices are recalculated based on the iteratively updated 

structural matrices and the force vector.  

Thus the dynamic response sensitivity-based identification equation by a first-order Taylor 

series is donated as 

   [ ]
c cc

 




      
              

K F

Y Y
Y S S S                (24) 

where ∆Y is the difference between the measured response and the response from the finite 

element model. In consequence, the unknown elemental stiffness parameters and orthogonal 

factors of the equivalent external force are obtained through an optimization process. 

 

 

4. Numerical example 
 

A simply supported beam is taken as the example to demonstrate the proposed method in 

identifying the structural damages and the moving load simultaneously. The finite element model 

of the simply supported beam is shown in Fig. 2. The beam is numerically modeled by 12 elements 

with each 1m long. The beam has 13 nodes and 36 DOFs in total. The Young’s modulus of each  

 

 

X

Y

1 2 3 4 5 6 7 8 9 10 11 12 13

F

v

12m

1 3 42 5 6 7 8 9 10 11 12

 

Fig. 2 Finite element model of a simply supported beam 
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Table 1 The comparison of the first eight frequencies between intact and damaged state 

No. Intact state f (Hz) Damaged state f (Hz) Relative difference e (%) 

1 8.142 8.028 1.400 

2 32.572 32.531 0.126 

3 73.301 72.455 1.154 

4 107.817 106.929 0.824 

5 130.385 129.846 0.413 

6 203.957 202.272 0.826 

7 294.285 292.262 0.687 

8 325.301 323.834 0.451 

 

 

element is 210 GPa and the mass density is 7800 kg/m
3
. The Poisson's ratio is 0.3. The 

cross-section area of all members is 0.5 m×0.5 m. The Rayleigh damping coefficients a and b are 

0.8180 and 7.823×10
-5

, which give about 1% damping ratio for the first two modes. The force 

F=−12000(sin(24t)+0.5sin(12t))N moves from Node 1 to Node 13 at the speed of v=12 m/s. 

The procedure of identifying structural damages with the unknown moving force consists of the 

following steps:  

(1) Select the initial damage parameter α0 and Chebysheve orthogonal polynomial coefficients 

c0 as zeros in this study.  

(2) Afterwards, the parameter for elemental stiffness variation   and orthogonal polynomial 

coefficients c  are identified through an iterative scheme. In the r
th
 iteration, the matrix HL, which 

consists of the system Markov parameters Hm in state space domain, is calculated from Eq. (9). 

(3) The first derivative of the system Markov parameters with respect to elemental stiffness 

factors m

i





H
 is computed from Eq. (15). Then, 

i





LH
 can be obtained after substituting 

i





mH
 

into Eq. (14).  

(4) The dynamic response sensitivity with respect to the elemental stiffness variation and the 

orthogonal coefficients of the moving force (
i





Y
,

kc





Y
) are calculated from Eqs. (12)-(13) to form 

the dynamic response sensitivity matrix S. 

(5) The parameters for elemental stiffness variation   and orthogonal coefficients of the 

moving force c  in the r
th
 iteration are identified from Eq. (24) by the sensitivity-based model 

updating technique. 

(6) The vector of identified parameters   and c  in the r
th
 iteration is used as the initial value 

in the (r+1)
th
 iteration. Repeat steps 2-5 until the convergence criterion is satisfied. The tolerance 

is taken as 121 10  in this study. 

It is assumed that the bending rigidity of Element 6 is reduced by 15%, and Table 1 shows the 

first eight frequencies of the simply supported beam before and after the damage occurred. It is 

shown in Fig. 3 the simulated measured dynamic acceleration, velocity and displacement 

responses on Node 6 of the damaged beam. In this study, the dynamic acceleration response and 

acceleration response sensitivities are employed to identify the damage and moving force.  

 

4.1 Dynamic acceleration response sensitivity results 
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In order to validate the accuracy of the dynamic acceleration response sensitivities calculated 

by the system Markov parameters in state space domain, Newmark method (Lu and Law 2007) is 

taken as a reference. Fig. 4 shows that the sensitivity of the acceleration responses (UY(6) and UY 
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(a) The measured dynamic acceleration response on Node 6 
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(b) The measured dynamic velocity response on Node 6 
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(c) The measured dynamic displacement response on Node 6 

Fig. 3 The measured dynamic responses on Node 6 of the simply supported beam 
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Fig. 4 The first derivative of acceleration response with respect to α6 
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Fig. 5 The first derivative of acceleration response with respect to c1 

 

 

(10)) with respect to the sixth elemental parameter α6. It is seen from Fig. 4(a) that the first 

derivative of UY(6) with respect to α6 obtained from Newmark method and the proposed method 

are matched closely each other, and the similar observation for the sensitivities of UY(10) is 

shown in Fig. 4(b). It shows that the calculation of the dynamic acceleration response sensitivity 

by the proposed method is accurate.  

Fig. 5 and Fig. 6 show the sensitivities of the acceleration responses (UY(6) and UY(10)) with 

respect to the first two force orthogonal factors c1 and c2, respectively. From Figs. 5-6, the first 

derivatives of acceleration response with respect to the force orthogonal factors by the proposed 

method are consistent with the results from Newmark method, which shows the accuracy of the 

acceleration response sensitivity with respect to the force orthogonal factors. 
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Fig. 6 The first derivative of acceleration response with respect to c2 

 
Table 2 Four different cases for damage and force identification 

No. Measurement response Sampling frequency (Hz) Noise level 

Case 1 UY(6), UY(10) 120 No noise 

Case 2 UY(2), UY(3) 120 No noise 

Case 3 UY(6), UY(10) 480 No noise 

Case 4 UY(6), UY(10) 120 5% noise 

 

 

4.2 Structural damage identification results  
 

In order to study the factors for affecting the accuracy of the proposed method, Table 2 shows 

the four different cases for the damage and force identification. The number of orthogonal items of 

the Chebyshev polynomials is determined by the complexity of the moving force (Qin. 2007). The 

orthogonal items are chosen to be 15 in all four cases of this study, which is sufficient for the 

numerically simulated sine-wave moving force. If a real moving vehicle force with surface 

roughness considered, a larger number of orthogonal items are definitely required. The selection of 

polynomials items undoubtedly influences the accuracy and efficiency in the damage and force 

identification process. In Case1, the beam is measured at UY(6) and UY(10) , which represent 

acceleration measurements in Y direction on Node 6 and Node 10, respectively. The sampling 

frequency is 120 Hz in Case 1. Case 2 has the same sampling frequency with Case 1, but UY(2) 

and UY(3) which are located far from the damaged element are selected as the measurement 

responses in Case 2. In Case 3, the sampling frequency is selected as 240 Hz, and the measurement 

responses are located UY(6) and UY(10). In Case1, Case 2 and Case 3, the measurement 

responses with no noise are considered, and 5% measurement noise is considered in Case 4. 

Fig. 7 shows the identified damage results in different four cases. It is shown that the identified 

damage is consistent with the real damage in four cases From Fig. 7(a)-(d). It is shown in Fig. 7(a) 

that the measurement responses near the damaged element give better accuracy damage 

identification result with relative difference 1.64% in Case 1. In Case 2 (Fig. 7(b)), the  
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(a) Case 1 (b) Case 2 
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(c) Case 3 (d) Case 4 

Fig. 7 The identified structural damage results under different cases 

 

 

measurement responses (UY(2), UY(3)) which are far from the damaged element can also 

identified the location and extent of the damage with the relative difference 4.47%. The sampling 

frequency of 480Hz employed in Case 3 gives better identification result for the exact damage 

location and extent than the sampling frequency of 120Hz employed in Case 1. The reason is that 

the lower sampling frequency 120Hz only covers fewer low modes of the structure. Fig. 7(d) 

shows that the stiffness of Element 6 is reduced by 11.80% with 5% measurement noise 

considered in Case 4. In Case 4, when the measurement noise is considered, the relative 

differences are larger than those without measurement noise. The identified damage result is 

sensitive to the measurement noise. 

 

4.3 Moving force identification results 

 

Fig. 8 shows the time history of the identified moving force in different four cases. It is shown 

in Fig. 8 that the moving load is identified accurately with the real force in four cases. The relative 

difference of the identified moving force in different cases is listed in Table 3, which is estimated 

by 
 

 
100%

id real

real

norm F F
e

norm F


  . From Table 3, the relative differences of the identified force are  
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(c) Case 3 (d) Case 4 

Fig. 8 The identified force results under different cases 

 
Table 3 The relative difference of the identified moving force in different cases 

 Case 1 Case 2 Case 3 Case 4 

Relative difference e (%) 8.33 8.76 8.27 10.97 

 

 

about 8% in Case 1, Case 2 and Case 3, and the relative difference of the identified force is 

increased to 10.97% in Case 4 when 5% measurement noise considered. As usual, the error is 

introduced by a large number of sources, for example, the order of Chebyshev polynomial, the 

sampling time, sampling rate and so on. 

 

 

5. Conclusions 
 

This paper presents a structural damage identification method under the unknown moving load. 

Combining the finite element method and the shape functions of the element, the unknown moving 

force is equivalent as the nodal force of the structure which is expressed as a series of orthogonal 

polynomial. Afterward, the sensitivities of the dynamic response with respect to elemental stiffness 
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factors and the orthogonal parameters of the moving force are derived analytically using the 

system Markov parameters in state space domain. A sensitivity-based model updating approach is 

employed to identify the local damages and the moving force simultaneously by minimizing the 

difference between the measured response and the analytical response.  

A numerical simply supported beam subjected to the unknown moving force is employed to 

validate the accuracy of the proposed method. It is shown that the dynamic acceleration response 

sensitivities with respect to the elemental parameters and force orthogonal parameters can be 

calculated based on the system Markov parameters in state space domain accurately. The 

numerical results have shown that the local damages and moving force can be identified 

simultaneously without the knowledge of the time-history of the moving force even with 5% 

measurement noise considered. In addition, the sampling rate, the sensor location and the noise 

level affect the accuracy of the identified results. Furthermore, the moving force which is 

expressed as the equivalent nodal force can be also identified accurately by the proposed method 

when 5% noise is included in the measured responses.  
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