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Abstract.  Finite element method (FEM) is an effective quantitative method to solve complex engineering 
problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the 
problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, 
FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large 
number of simple, small and interconnected sub-regions called finite elements. FEM has been used 
commonly for linear and nonlinear analyses of different types of structures to give us accurate results of 
plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate 
stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress 
analysis of the shear wall are presented by using matrix displacement method in this paper. This study is 
consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite 
elements and stiffness matrix and load vector which is attained from external effects are calculated for each 
of finite elements using matrix displacement method. As to second part of the study, finite element analysis 
of the shear wall is made by ANSYS software program. Results obtained in the second part are presented 
with tables and graphics, also results of each part is compared with each other, so the performance of the 
matrix displacement method is demonstrated. The solutions obtained by using the proposed method show 
excellent agreements with the results of ANSYS. The results show that this method is effective and 
preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove 
the efficiency of the matrix displacement method on the solution of plane stress problems using different 
types of structures. 
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1. Introduction 
 

When the effects of massive earthquakes on buildings are investigated, the resistance of shear 

wall buildings against earthquake forces is much better than framed systems have been identified. 

Shear walls are consider as the most suitable structural member in terms of displacement 

constraints when horizontal direction rigidity is taken into considered. In seismic zones, shear 

walls are used together with frame structures to provide resistance and ductility. Vecchio (1998) 

performed a three-dimensional static nonlinear finite element analysis of shear walls. Also, shear 
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walls are the most convenient and inexpensive constriction element to repair of earthquake-

damaged buildings. Shear walls are effective elements to carry lateral loads and these elements 

service as vertical structural elements. Bozdogan (2013) proposed modified finite element – 

transfer matrix for free vibration analysis of asymmetric structures. The bearing systems of 

structures consist of shear-wall frames. The purpose of this paper is to analyze a shear wall as 

plane stress problem using matrix displacement method. The matrix displacement method is a 

structural analysis method used in many applications in civil engineering Martin (1966). In the 

past, the studies on the behaviors of the shear walls with openings were carried out using shell and 

brick elements. Solid 65 element was used by Musmar (2013) for analysis of shear walls. Also, he 

investigated the effects of the size of the openings on the behaviors of the reinforced concrete 

shear walls. Masood et al. (2012) studied on behavior of shear wall with base opening. Analytical 

methods were used to perform studies of shell structures over a century ago; however studies 

about behavior of shell structures have majorly increased since the developments of finite element 

methods. Finite element methods have been used commonly for linear and nonlinear analyses of 

different types of engineering structures Ed Akin (1984), Hutton (2004) and Zienkiewicz and 

Taylor (2005). The analysis of shear walls was considered as an example by (Ghorbani et al. 2009) 

to show the effect of nonlinearity. They obtained nonlinear behavior of shear walls using a finite 

element code developed by using Galerkin weighted residual formulation. Studies have been 

conducted by researchers for years to develop new finite elements presenting properly behaviors of 

shell structures. Rebiai and Belounar (2014) developed a new simple and efficient four-node 

quadrilateral membrane finite element with drilling rotation. A new three-node triangular shell 

element was developed using discrete Kirchhoff theory and mixed method by Yagawa and 

Miyamura (2005). The goal of this study is to make stress analyses of shell structures using the 

free mesh method. Lee and Bathe (2004) developed a simple method to design isotropic triangular 

shell finite elements based on the Mixed Interpolation of Tensorial Components (MITC) approach. 

The proposed method is mechanically clear as well as simple and effective. Numerical tests are 

carried out by using selected MITC elements. Proposed elements show good performance for test 

elements having different thickness. Saritas and Filippou (2013) struck a balance between the 

computational efficiency of frame type models and the accuracy of solid finite element models by 

proposing a frame finite element. This element explains interaction between shear and normal 

stress at material level. 

Complicated problems are divided into sub-problems to make them more understable and 

easily solvable problems. Main problem can be solved by combining the solutions of created sub-

problems. An approximate solution is preferred in an acceptable level rather than full solution due 

to the complexity of the solution of problems in engineering applications. There are some 

problems that their complete solutions are considered impossible, so approximate solutions are 

adopted as the only way. Finite element method used to solve sensitively complex engineering 

problems is an effective quantitive method. In 1950s, this method was used commonly for stress 

analysis of aircraft bodies, within the next ten years finite element method could be used 

accomplishedly in the solution of problems in applied sciences and engineering area. In later years, 

finite element method has been one of the best methods for solving practical problems. Finite 

element method has been used commonly in various engineering fields for years. One of the main 

reasons of this popularity is that this method can be used to solve any particular problem by 

changing input data of a general computer program. Also, this method is very appropriate to create 

computer software; so many studies have been conducted for years to develop computer software 

for analyses of shear walls. For example, an alternate formulation was developed using optimal 
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membrane triangle elements by (Paknahad et al. 2007). This formulation was employed to 

implement a computational algorithm. The implemented code is applied to the analyses of shear 

wall structures with and without openings. (Oztorun et al. 1998) created a finite element computer 

program named TUNAL to carry out elastic analysis of shear wall building structures based on 

finite element technical. This program automatically evaluates the statically equivalent earthquake 

loads and when necessary modifies these loads together with the boundary conditions. Also, a 

semi- automatic algorithm for finite element analysis was presented by Alyavuz (2007) to obtain 

the stress and strain distribution in shear wall-frame structures. The proposed algorithm was 

developed in MATLAB using a constant strain triangle with six degrees of freedom and mesh 

refinement-coarsening algorithms. The basic idea of finite element method for a complex problem 

is to be able to find a solution by reducing the problem made simple. If mathematical tools are 

inadequate to obtain precise result, even approximate result, finite element method is the only 

method that can be used. In finite element method, the domain is divided into a large number of 

simple, small and interconnected sub-regions called finite elements such as triangular and 

rectangular elements. Mousa and Tayeh (2004) developed a new triangular finite element named 

SBTREIR for the general plane elasticity. This element has three degrees of freedom at each of the 

three corner nodes. The performance of the new element was compared with well-known constant 

strain triangle CST element. The new finite element shows good behavior in the elasticity theory. 

Also, it has fewer discontinuities in the corner stresses than the CST. 

Components of a building such as columns and beams can be individually called finite 

elements. The overall property of the structure depends on properties of individual finite elements. 

Behavior of the structure in the global coordinates can be specified by assembling the properties of 

the individual finite elements in this own local coordinates. In finite element method, individual 

properties of elements are presented by the help of numerical equations. The numerical equations 

of the individual finite elements are gathered together to specify behavior of the entire structure. 

Using of finite elements to obtain more accurate solutions leads to complex calculations. However, 

finite element method has been used commonly for analysis of different types of domain with 

advances in computer technology. 

Some different methods for analyses of shear walls are enhanced by researchers based on finite 

element method. For example, Clough (1960) used finite element method in stress analysis. 

Corradi and Panzeri (2004) proposed a method based on sequential limit analyses. This method is 

regarded as an effective tool to estimate the behavior of the past-collapse response of some shell 

structures. Also, an analytical method used to carry out analyses of reinforced shear walls using 

discrete element method was presented by Xinzheng and Jianjing (2001). More than 13000 

combination elements are used for analyzing of a two-limb shear wall in this method, so powerful 

computer software should be developed to use this method. Apart from above studies, Lashgari 

(2009) carried out finite element analysis of low yield point of thin steel plate shear walls. Severn 

(1966) solved foundation mat problems by using finite-element methods. In his study, he was 

interested in plate bending problems in which the plate was resting on an elastic foundation. Also, 

fundamentally considerations are presented by Chapelle and Bathe (1997) for the finite element 

analyses of shell structures. Minaine et al. (2014) developed nonlinear finite element model of 

reinforced masonry shear walls for bidirectional loading response. The objective of their study is 

to analytically establish the effects of bidirectional loading on the response of reinforced masonry 

shear walls. 

This study is consisting of two parts. The first part of the paper is concerned with the plane 

stress elasticity problem of a shear wall. Fundamental principles of stress analysis of the shear wall  
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Fig. 1 Triangle element and its coordinates displacement and force vectors 

 

 

Holand and Bell (1969) are applied by using matrix method in this paper. The matrix analysis of 

this structure is carried out in three phases; idealization of the system with constant strain 

triangular finite elements, developing of the structural and loading characteristics of the structure 

in matrix form and the matrix algebra analysis for displacements and stresses of the structure. Each 

of these topics is discussed in numerical example in the following section of this paper. In the 

second part, finite element analysis of the shear wall is made by ANSYS software program. 

Results obtained from both the first and the second parts of the paper are compared with each 

other, so the performance of the matrix displacement method is demonstrated. 
 

 

2. Finite element formulation 
 

2.1 Constant strain triangle 
 

2.1.1 Discretization of the domain into finite elements 
In this study, Constant strain triangle (CST) element is used to create finite element model of a 

plane stress problem. Firstly, domain has to be discretized into finite elements. Triangular are 

connected at the nodes and each element has three straight sides and three nodes. Smaller elements 

should be used on the regions that are under the influence of high stress and strain gradients. After 

discretization of the domain, total number of nodes, total number of elements, coordinates of each 

node, equivalent nodal forces and boundary conditions are specified along with material properties 

of the domain such as modulus of elasticity and poisson’s ratio. Elements and nodes are usually 

listed in an element counterclockwise for consistency.  For plane strain problem, thickness is taken 

as equal to 1 and thickness is taken as equal to t for plane stress problem. 

 
2.2 Solution of a shell structure with Matrix Displacement Method 

 
Development of the stiffness matrixes for each element using finite element methodology is the 

most important task in the matrix displacement method. Essential steps for the developments of 

the element stiffness matrix using matrix displacement method are explained as below. 

 
2.2.1 Choosing convenient coordinate system and numbering  
There are two displacement parameters at both x and y directions of each node of the CST 

element as shown in Fig. 1, so the degree of freedom is equal to two for CST element.  In brief, 
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three nodes for a triangle and two displacement parameters at each node, so six degrees of 

foredoom in total. 

 

iX

iY

i

jX

j

jY

k

kX

kY

U

U
U

U
U = U =

U
U

U

U
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 
  
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   
   
   

 
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F

F

F
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F = F =

F

F

F

F

 
 
 
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   
   
   
   
   
   
   

 
 
 
 

                                      (1) 

Relation between force and displacement is known as below 

    F = K U
                                                                

(2) 

where [K]
 
denotes the stiffness matrix of triangle element. 

 

2.2.2 Choosing displacement function {N(X,Y)} which defines displacements          
{U(X,Y)} at every point of element 

Pascal Triangle 

1 

XY                             X 1 2 3U =α +α X+α Y                                          (3a) 

X
2
XYY

2                                       
Y 4 5 6U =α +α X+α Y                                     (3b) 

X
3
X

2
YY

2
XY

3
 

where 1, 2, 3, 4, 5 and 6 are adjustable parameters. It is considered that displacements of the 

element change linearly. A state of constant strain within the element is achieved by the selection 

of the displacement function. 

Displacement functions can be written in matrix form as below 

 

1

2

X 3

Y 4

5

6

α

α

U 1 X Y 0 0 0 α

U(X,Y) = =

U 0 0 0 1 X Y α

α

α

 
 
 
 
 
    

       
       

 
 
 
 
 
 

                                        (4) 

or briefly 
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    
X

Y

U

U(X,Y) = = N(X,Y) α

U

 
 
 
  

                                               (5) 

 

2.2.3 Expressing displacements {U(X,Y)} at triangle element by the help of           
Displacements {U} 

From the nodal coordinates, the nodal displacement parameters can be written as 

        
i i

i i i i i

i i

1 X Y 0 0 0

U = U(X ,Y ) = N(X ,Y ) α = α

0 0 0 1 X Y

 
 
 
 

                       (6) 

       
j j

j j j j j

j j

1 X Y 0 0 0

U = U(X ,Y ) = N(X ,Y ) α = α

0 0 0 1 X Y

 
     
 

                      (7) 

           
k k

k k k k k

k k

1 X Y 0 0 0

U = U(X ,Y ) = N(X ,Y ) α = α

0 0 0 1 X Y

 
 
 
                        

(8) 

 
2.2.4 Strain

 
{ε(X,Y)}- Displacement {U(X,Y)} relations at any point of the element 

The deformed shape of a domain under the external loads and temperature distribution can be 

completely described by the three components of displacement u,v and w in the x,y and z 

directions, respectively. In general, each of these components u,v and w is a function of 

coordinates x,y and z. The strains induced in the domain can be expressed in terms of the 

displacement components. 

For plane stress problem the strain vector as 

 

X

Y

XY

ε

ε(X,Y) = ε

γ

 
 
 
 
 
 
 

                                                             (9) 

Strain and displacement relations 

X
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X





, Y

Y

U
ε

Y





 and X Y

XY

U U
γ

Y X

 
 

 
 ; 

 X
X 1 2 3 2

U
ε = α +α X+α Y =α

X X

 


 
                                             (10) 

 Y 4 5 6 6ε = α +α X+α =α
y

YU
Y

Y

 


 
                                            

 (11) 

   X Y
XY 1 2 3 4 5 6 3 5

U U
γ = + = α +α X+α Y + α +α X+α Y =α +α

Y X Y X

   

   
                   (12) 
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If Eqs. (10)-(12) are written in their own places at Eq. (9), we obtain Eq. (13) as below 

 

X 2

Y 6

XY 3 5

ε α

ε(X,Y) = ε = α

γ α +α

   
      
   
   
                           

                              (13) 

In matrix form 

 

1

2

X

3

Y

4

XY

5

6

α

α
ε 0 1 0 0 0 0

α
ε(X,Y) = ε = 0 0 0 0 0 1

α
γ 0 0 1 0 1 0

α

α

 
 
 
    
       

    
    
       

 
 
  

                            (14) 

briefly 

    ε(X,Y) = C α                                                                 (15) 

     
-1

α = A U                                                              (16) 

where 

 

i i

i i

j j

j j

k k

k k

1 X Y 0 0 0

0 0 0 1 X Y

1 X Y 0 0 0
A =

0 0 0 1 X Y

1 X Y 0 0 0

0 0 0 1 X Y

 
 
 
 
 
 
 
  
 

 
If Eq. (16) is put in its own place at Eq. (15), we obtain Eq. (17) as below 

       
-1

ε X,Y = C A U                                                     (17) 

When [C][A]
-1

 at Eq. (17) is described as [B]=[C][A]
-1

, Eq. (18) can be written as below 

                                                               
     ε X,Y = B U                                                         (18) 

where 

 

j k k i i j

k j i k j i

k j j k i k k i j i i j

Y -Y 0 Y -Y 0 Y -Y 0

1
B = 0 X -X 0 X -X 0 X -X

2Δ

X -X Y -Y X -X Y -Y X -X Y -Y

 
 
 
 
 
 

                            (19) 
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where Δ is area of triangle element and given by 

j k i j i k k j k i i j2Δ=X Y -YX -X Y -X Y+X Y+X Y
 
                                        (20) 

 
2.2.5 Stress {σ(X,Y)}- Strain {ε(X,Y)}- Displacement {U(X,Y)} relations 
In general, equations in continuum mechanics involve 81 independent material constants. If 

material is considered as homogeneous, isotropic and linearly elastic material, only two 

independent material constants are required to specify the relations. These constants are modulus 

of elasticity (E) and poisson’s ratio (ν). For plane stress problem the stress vector as below 

 

X

Y

XY

σ

σ(X,Y) = σ

τ

 
  
 
 
                                                            

 (21) 

The general stress-strain relations for a homogeneous, isotropic, linearly elastic material 

subjected to a general two dimensional deformation are as follows 

X Y
X

σ σ
ε = -ν

E E
                                                               (22) 

X Y
Y

σ σ
ε =-ν +

E E
                                                              (23) 

XY
XY XY

τ 2(1+ν)
γ = = τ

G E
                                                       (24) 

where shear modulus or modulus of rigidity, defined by 

 

E
G=

2 1+ν
                                                                (25) 

Strains in terms of stresses 

 

X X

Y Y

XY XY

ε 1 -ν 0 σ

1
ε(X,Y) = ε = -ν 1 0 σ

E

γ 0 0 2(1+ν) τ

     
        

    
    
         

                            (26) 

Stresses in terms of strains 

 

X X

Y Y2

XY XY

σ 1 ν 0 ε

E
σ(X,Y) = σ = ν 1 0 ε

1-ν

τ 1-ν γ
0 0

2

 
    
           
    
        
 

                                     (27) 
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or briefly 

    σ(X,Y) = D ε(X,Y)
                                                    

 (28) 

When Eq. (18) is written in its place at Eq. (28), we obtain Eq. (29) as below 

     σ(X,Y) = D B U
                                                       

(29) 

where [D] is material property matrix. For plane strain problem, constitutive equations 

 X X Y Z

1
ε = σ -ν(σ +σ )

E                                                       
 (30) 

 Y Y X Z

1
ε = σ -ν(σ +σ )

E
                                                       (31) 

XY
XY XY

τ 2(1+ν)
γ = = τ

G E
                                                     (32) 

X X

Y Y

XY XY

ν
1 0

1-νσ ε

E(1-ν) ν
σ = 1 0 ε

(1+ν)(1-2ν) 1-ν

τ γ
1-2ν

0 0
2(1-ν)

 
 
    
       
    
    
       
 
  

                            (33) 

For plane elasticity 

 

11 12 1 1 2

21 22 1 2 1

33 12

d d 0 C C C 0

D = d d 0 = C C C 0

0 0 d 0 0 C

 
   
   
   
   
     

                         (34) 

where  C1, C2 and C12 are constants used to create element stiffness matrixes and their values are 

given in Table 1 for plane stress and plane strain problems. 

 

 
Table 1 C1, C2 and C12 constants for plane stress and plane strain problems 

Variable Plane stress Plane strain 

C1 
2

E

1-ν  

E(1-ν)

(1+ν)(1-2ν)
 

C2 ν  
ν

1-ν  

C12 1 2C (1-C )

2  

1 2C (1-C )

2  
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2.2.6 Displacement-force relations 
According to virtual work principle; strain work done by internal forces equal to strain work 

done by external forces. If triangular element is subjected to virtual displacement, work done by 

external forces that affect nodes equals to work done by stresses. 

{F}: force at nodes and {U} displacement at nodes. Work which was done by external point 

forces 

   
T*

extW = U F
                                                            

(35) 

An arbitrary virtual displacement causes strains {ε(X,Y)} at any point in element. {σ(X,Y)} are 

real stresses in triangular element. Strains done by internal forces 

   *

0

( , ) ( , )

V

T

i?W ε X Y σ X Y dv                                                 (36) 

If Eqs. (18) and (29) are written in their own places at Eq. (36), we obtain Eq. (37) as below 

      int

T
*

V

W = B U D B U dv 
                                                (37) 

where {U} is displacement vector. If (AB)
T
=B

T
A

T
 is applied to Eq. (37) 

       
T T*

V

W = U B D B U dvint                                                (38) 

is obtained.  If strain work done by internal forces at Eq. (38) is equalized to work done by 

external forces given at Eq. (35), Eq. (39) can be written as below 

           
T T T* *

V

U F = U B D B U dv                                          (39) 

Providing that both sides of Eq. (39) are divided with {U
*
}

T
 

       
T

V

F B D B U dv                                                      (40) 

is attained. When (40) and (2) Eqs. are compared with each other, stiffness of triangular element is 

calculated as below 

      
T

V

K B D B dv 
                                                      

 (41) 

dv=tdxdy, In this case, stiffness of triangular element can be written again as below 

           
T T

dA

K =t B D B dxdy=2Δt B D B                                       (42) 
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The stress analysis of a shear wall with matrix displacement method 

where t is thickness of element. 

Finally, providing Eqs. (19) and (34) are written in their own places at Eq. (42) and integral is 

calculated, stiffness matrix (43) is obtained as below 

 

2 2

1 i 12 i

2 2

1 2 i i 12 i i 1 i 12 i

2 2

1 i j 12 i j 1 2 j j 12 i j 1 j 12 j

2 2

1 2 i j 12 j i 1 i j 1 i j 1 2 j j 12 j j 1 j 12 j

1 i k 12 i k 1 2 k i 12 i k 1 j k 12 j k 1 2 k j 12

C b +C c

C C b c +C b c C c +C b

C b b +C c c C C b c +C b c C b +C c
t

K =
4Δ C C b c +C b c C c c +C b b C C b c +C b c C c +C b

C b b +C c c C C b c +C b c C b b +C c c C C b c +C 2 2

j k 1 k 12 k

2 2

1 2 i k 12 k i 1 i k 12 i k 1 2 j k 12 k j 1 j k 12 j k 1 2 k k 12 k k 1 k 12 k

b c C b +C c

C C b c +C b c C c c +C b b C C b c +C b c C c c +C b b C C b c +C b c C c +C b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(43) 

where 

i j k k j

i j k jk

i k j kj

a =X Y -X Y

b =Y -Y =Y

c =X -X =X
     

j k i i k

j k i ki

j i k ik

a =X Y -X Y

b =Y -Y =Y

c =X -X =X
     

k i j j i

k i j ij

k j i ji

a =X Y -X Y

b =Y -Y =Y

c =X -X =X

 

i j

j j j k i j i k k j k i i j

k k

1 X Y

2Δ= 1 X Y = 2(area of ijk triangle) 2Δ=X Y -Y X -X Y -X Y +X Y +X Y

1 X Y



 
 
 

 

 
 
 
 

 
 

3. Numerical example 
 

In this example, stresses at shear wall under external loads are calculated by the help of matrix 

displacement method. Mechanic and material properties of the structure are given as below; 

 

3.1 Creating stiffness matrix of element-1 
 

The area of triangle element-1 (Δ) is equal to 2 m
2 
 

C1, C2, C12 and bijk, cijk parameters are calculated by depending on problem type and coordinates 

of nodes respectively as shown below 

i 

j 

k 

t= thickness of triangular element 
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Fig. 2 Shear wall 

 

 

7
7

1 2 2

E 2.1x10
C = = =2.1875x10

1-ν 1-0.2  

2C =0.2  
7

71 2
12

C (1-C ) 2.1875x10 (1-0.2)
C = = =0.875x10

2 2  

1 2 3

2 3 1

3 1 2

b =Y -Y =0-2=-2

b =Y -Y =2-0=2

b =Y -Y =0-0=0
              

1 2 3

2 3 1

3 1 2

c =X -X =0-2=-2

c =X -X =0-0=0

c =X -X =2-0=2
 

Stiffness matrix of element-1 shown below is obtained by using these parameters 

 

1X 1Y 2X 2Y 4X 4Y

1X

1Y

2X1

2Y

4X

4Y

U U U U U U

1225 525 -875 -350 -350 -175 U

525 1225 -175 -875 -350 -875 U

-875 -175 875 0 0 175 UK =2500

-350 -875 0 350 350 0 U

-350 -350 0 350 350 0 U

-175 -875 175 0 0 875 U

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2 

1 

2 1 

3 4 

2
m

 

2m 

1000kN 1000kN 

500kN 500kN E=2.1×10
7
 KN/m

2
 

 v=0.2 

 t=20 cm 
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3.2 Creating stiffness matrix of element-2 
 

The area of triangle element-2 (Δ) is equal to 2 m
2
 

C1, C2, C12 and bijk, cijk parameters are calculated by depending on problem type and coordinates 

of nodes respectively as shown below; 

7
7

1 2 2

E 2.1x10
C = = =2.1875x10

1-ν 1-0.2  

2C =0.2
 

7
71 2

12

C (1-C ) 2.1875x10 (1-0.2)
C = = =0.875x10

2 2
 

2 4 3

4 3 2

3 2 4

b =Y -Y =2-2=0

b =Y -Y =2-0=2

b =Y -Y =0-2=-2

         

2 3 4

4 2 3

3 4 2

c =X -X =0-2=-2

c =X -X =2-0=2

c =X -X =2-2=0
 

Stiffness matrix of element-2 shown below is obtained by using these parameters; 

 

2X 2Y 3X 3Y 4X 4Y

2X

2Y

3X2

3Y

4X

4Y

U U U U U U

350 0 -350 -350 0 350 U

0 875 -175 -875 175 0 U

-350 -175 1225 525 -875 -350 UK =2500

-350 -875 525 1225 -175 -350 U

0 175 -875 -175 875 0 U

350 0 -350 -350 0 350 U

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3.3 Creating system stiffness matrix 
 

 
*

1225 525 -875 -350 1225 525 -875 -350

525 1225 -175 -350 525 1225 -175 -350

K =2500 =2500

-875 -175 875+350 0+0 -875 -175 1225 0

-350 -350 0+0 350+875 -350 -350 0 1225

   
   
   
   
   
   
   
   
      
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3.4 Creating system displacement and force vectors 
 

   

1X

1Y

2X 3X

2Y 3Y
*

3X 4X

3Y 4Y

4X

4Y

U

U

U U

U U

U = U =

U U

U U

U

U

 
 
 
 
 
   
   
   
      

   
   
   
   

    
 
 
 
 
  

                        

   

1X

1Y

2X 3X

2Y 3Y
*

3X 4X

3Y 4Y

4X

4Y

F

F

F F 1000

F F -500

F = F = =

F F 1000

F F -500

F

F

 
 
 
 
 
     
     
     
          

     
     
     
     

        
 
 
 
 
  

 
 

3.5 Solution 
 

     
** *

F = K U
 

-3
3X 3X

3Y 3Y

4X 4X

4Y 4Y

1000 1225 525 -875 -350 U U 1.63x10

-500 525 1225 -175 -350 U U -6

=2500 =

1000 -875 -175 1225 0 U U

-500 -350 -350 0 1225 U U

       
       
       
            

      
      
      
      
             

-4

-3

-4

.27x10

m

1.40x10

1.24x10

 
 
 
  
 
 
 
 
  

 
 

3.6 Calculation of stresses 
 

    

 

 

 

σ = D ε

σ Stress vector

D Material matrix

ε Strain vector






                      

X 1 1 2 X

Y 1 2 1 Y

XY 12 XY

σ C C C 0 ε

σ = C C C 0 ε

τ 0 0 C γ

 
    
    
    
   

 
   

 
   

    
  
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3.7 Calculating stresses of element-1 (i=1, j=2, k=4) 

1X

1Y

X i j k

2X

Y i j k

2Y

XY i i j j k k

4X

4Y

U

U

ε b 0 b 0 b 0

U
1

ε = 0 c 0 c 0 c
2Δ U

γ c b c b c b

U

U

 
 
 
 

    
    
    

    
    
    
     

 
 
 
 

 

X X

-5

Y Y

-4

XY XY
-3

-4

0

0

ε 0.5 0 0.5 0 0 0 ε 0

0

ε = 0 -0.5 0 0 0 0.5 ε = 6.221x10

0

γ -0.5 -0.5 0 0.5 0.5 0 γ 7.019x10

1.40x10

1.24x10

 
 
 
 

        
        
        

        
        
                

 
 
 
 

X 1 1 2 X X

3 -5

Y 1 2 1 Y Y

-4

XY 12 XY XY

σ C C C 0 ε 21875 4375 0 0 σ 272

σ = C C C 0 ε =10 4375 21875 0 6.221x10 σ = 1359

τ 0 0 C γ 0 0 8750 7.019x10 τ 6141

 
           
           
                     
          
                    

  

2kN/m









  

 

3.8 Calculating stresses of element-2 (i=2, j=3, k=4) 

2X

2Y

X i j k

3X

Y i j k

3Y

XY i i j j k k

4X

4Y

U

U

ε b 0 b 0 b 0

U
1

ε = 0 c 0 c 0 c
2Δ U

γ c b c b c b

U

U

 
 
 
 

    
    
    

    
    
    
     

 
 
 
 
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-4

X X
-3

-4

Y Y
-4

-4

XY XY
-3

-4

0

0

ε 0 0.5 0.5 0 -0.5 0 ε 1.149x10

1.63x10

ε = 0 -0.5 0 0.5 0 0 ε = -3.137x10

-6.27x10

γ -0.5 0 0.5 0.5 0 -0.5 γ 4.410x10

1.40x10

1.24x10

 
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 
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      
      
            

 
 
 
 


 
 
 
 
 
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X 1 1 2 X X

3 -4

Y 1 2 1 Y Y

-4

XY 12 XY XY

σ C C C 0 ε 21875 4375 0 1.149x10 σ 1141

σ = C C C 0 ε =10 4375 21875 0 -3.137x10 σ = -635

τ 0 0 C γ 0 0 8750 4.410x10 τ

 
         
         
                  

         
                 

  

29 kN/m

3859

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig. 3 Deformed shape and nodal displacements                    Fig. 4 Stress distribution of shear wall 

 

 

4. Stress analysis of shear wall with ANSYS software program 
 

ANSYS is used commonly for numerically solving a wide variety of mechanical problems. 

These problems are static/dynamic structural analysis (both linear and non-linear), heat transfer 

and fluid problems, as well as acoustic and electro-magnetic problems. Analyses of structures are 

carried out by ANSYS with the following three stages; preprocessing (defining the problem), 

solution (assigning loads, constraints and solving) and post processing (further processing and 

viewing of the results). In this part of the paper, finite element model shown in Fig. 5 is created 

and stress analysis of the shear wall is carried out by ANSYS software. 

2 1 

3 4 

U4X U4Y 

1.400mm 0.124mm 
 

U3X U3Y 

1.630mm 0.0627mm 

 

2 1 

3 4 

272 1359 

 6141 

 

1141 -6359 

 3859 

 

sx sY 

 tXY 
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The stress analysis of a shear wall with matrix displacement method 

 

Fig. 5 Solid model of the shear wall under concentrated loads 

 

4.1 Nodal displacements of the shear wall 
 

Table 2 Nodal displacements values of the shear wall under concentrated loads 

Node UX (m) UY (m) UZ (m) USUM (m) 

1 0.14037E-02 0.12422E-03 0.0000 0.14092E-02 

2 0.0000 0.0000 0.0000 0.0000 

3 0.0000 0.0000 0.0000 0.0000 

4 0.16335E-02 0.62733E-03 0.0000 0.17499E-02 

 

 

Fig. 6 Deformed shape and maximum nodal displacement of the shear wall 

 

 
4.2 Elastic strain components of the shear wall 

 
After static analysis of the shear wall with ANSYS, elastic strain components of the each 

element are obtained as Tables 3-4. The following X, Y, Z values are in global coordinates. 
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Table 3 Elastic strain values of the Element-1 under concentrated loads 

Node εX εY εZ γXY γYZ γXZ 

2 0.0000 0.62112E-04 0.15528E-04 0.70186E-03 0.0000 0.0000 

3 0.0000 0.62112E-04 0.15528E-04 0.70186E-03 0.0000 0.0000 

1 0.0000 0.62112E-04 0.15528E-04 0.70186E-03 0.0000 0.0000 

1 0.0000 0.62112E-04 0.15528E-04 0.70186E-03 0.0000 0.0000 

 
Table 4 Elastic strain values of the Element-2 under concentrated loads 

Node εX εY εZ γXY γYZ γXZ 

4 0.11491E-03 0.31366E-03 0.49689E-04 0.44099E-03 0.0000 0.0000 

1 0.11491E-03 0.31366E-03 0.49689E-04 0.44099E-03 0.0000 0.0000 

3 0.11491E-03 0.31366E-03 0.49689E-04 0.44099E-03 0.0000 0.0000 

3 0.11491E-03 0.31366E-03 0.49689E-04 0.44099E-03 0.0000 0.0000 

 

 

Fig. 7 Deformed shape and X-component of elastic strain of the shear wall 

 

 

Fig. 8 Deformed shape and Y-components of elastic strain of the shear wall 
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4.3 Stress components of the shear wall 
 
After static analysis of the shear wall with ANSYS, stress components of the each element are 

obtained as Tables 5-6. The following X, Y, Z values are in global coordinates. 

 

 

 

Fig. 9 Deformed shape and XY-components of elastic strain of the shear wall 

 
Table 5 Stress values of the Element-1 under concentrated loads 

Node σX σY σZ τXY τYZ τXZ 

2 271.74 1358.7 0.0000 6141.3 0.0000 0.0000 

3 271.74 1358.7 0.0000 6141.3 0.0000 0.0000 

1 271.74 1358.7 0.0000 6141.3 0.0000 0.0000 

1 271.74 1358.7 0.0000 6141.3 0.0000 0.0000 

 
Table 6 Stress values of the Element-2 under concentrated loads 

Node σX σY σZ τXY τYZ τXZ 

4 1141.3 -6358.7 0.0000 3858.7 0.0000 0.0000 

1 1141.3 -6358.7 0.0000 3858.7 0.0000 0.0000 

3 1141.3 -6358.7 0.0000 3858.7 0.0000 0.0000 

3 1141.3 -6358.7 0.0000 3858.7 0.0000 0.0000 

 

 

Fig. 10 Deformed shape and X normal stresses of the shear wall 
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Fig. 11 Deformed shape and Y normal stresses of the shear wall 

 

 

Fig. 12 Deformed shape and XY shear stresses of the shear wall 

 
 
5. Conclusions 
 

In this paper, the efficiency of matrix displacement method on the solution of plane stress 

problems is investigated by using a shear wall as an example. Proposed shear wall is discretized 

into constant strain triangle finite elements. The stress values of the shear wall are obtained by 

using matrix displacement method. Then, the stress analysis of the structure is carried out by 

ANSYS software. 

From the results of this study, the following observations can be made: 

• Elastic strain values of the element-1 and element-2 under concentrated loads obtained by 

using proposed method show excellent agreements with the results of ANSYS. 

• Nodal displacement values of the shear wall obtained from both proposed method and 

ANSYS are almost the same. 

• Stress values of element-1 and element-2 obtained from proposed method overlap ones 

obtained from ANSYS. 

The solutions obtained by using the proposed method show excellent agreements with the 

results of ANSYS software. According to results obtained from this study, the matrix displacement 
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The stress analysis of a shear wall with matrix displacement method 

method can be used effectively for stress analyses of shear wall structures. Further studies should 

be carried out to be able to prove the efficiency of the matrix displacement method on the solution 

of plane stress problems using different types of structures.  
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