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Abstract.  In the present work, structural joints have been modeled as a pair of translational and rotational 
springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is 
shown that using first few natural frequencies of the system, one can obtain a set of over-determined system 
of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied 
to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been 
developed first for a two parameter joint model and then for a three parameter model, in which cross 
coupling terms are also included. Two cases of structural connections have been considered, first with a 
cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of 
the proposed method is demonstrated through numerical simulation and by experimentation. 
 

Keywords:  vibration; sub-structure synthesis; joint stiffness identification; linear parameters; multi-linear 
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1. Introduction 
 

Many mechanical structures can be seen as an assembly of subsystems. These substructures or 

subsystems usually are connected to each other by joints such as bolts, welds, rivets etc. Modeling 

of composite structures has become a challenging task due to uncertainty in system parameters, 

particularly those associated with structural joints. It is widely accepted that the behavior of the 

whole structure can be significantly affected by the way joints are modeled. To conduct an 

accurate dynamic analysis, it is first necessary to model the joints accurately and then identify their 

structural parameters. Much work has been done to extract joint properties from measurement 

data. 

In an effort to model joints in a structure, various methods are suggested by the researchers. 

Most of the methods are based on FRF (Frequency Response Function) measurements and modal 

parameters. The most popular method of identifying joint structural parameters is to use modal 

parameters which have been obtained experimentally. Joints have significant effects on the 

dynamic response of the assembled structures due to existence of two non-linear mechanisms in 
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their interface, namely slipping and slapping. These mechanisms affect the structural response by 
adding considerable damping into the structure and lowering the natural frequencies due to the 
stiffness softening (Ahmadian et al. 2007). Tsai and Chou (1988) proposed a formulation based on 
receptance method to calculate the properties of a single bolt joint directly from the measured 
FRFs of a structure. Yang and Park (1993) demonstrated a method of identifying joint structural 
parameters using subset FRF measurements. Mottershed et al. (1996) applied updating of 
geometric parameters in a cantilever plate. However parameterization of joints and boundary 
conditions was not carried out. Hwang (1998) derived the identification method for stiffness 
parameters of connections between structures from measured FRF data. The estimation is carried 
out for continuous beam with only translational stiffness as the joint parameter. The linearised 
joint structural parameters are then identified by minimizing the loss function derived from 
measured and estimated FRFs. A method for joint stiffness determination has been developed by 
Patricia et al. (1999), based upon rigid-body dynamics and FRF measurements. Stiffness 
components in six coordinate directions were estimated. 

A T-shaped structure was considered by Kim and Park (1997), for joint stiffness identification 
from selected degrees of freedom. The natural frequencies estimated with identified joint 
parameters were compared with exact values. The updated natural frequencies using identified 
joint stiffness were close to the measured natural frequencies. Ratcliff and Lieven (2000) examine 
a technique that calculates the properties of structural joints by minimizing the difference between 
substructure FRFs and assembly FRFs. A technique which relies on the comparison of the overall 
dynamics of the bolted structure to that of a similar but unbolted one was presented by Ma et al. 
(2001). 

 A non parametric model for the joint dynamics was proposed by Wu and Li (2006), assuming 
that the difference in the dynamics of the two systems is attributed to the joint. An 
eigensensitivity-based FE (Finite Element) model updating was developed for identification of the 
structural parameters, in which connection stiffness of semi-rigid joints was estimated through FE 
model updating and in FE updating procedure it was assumed that the measured natural 
frequencies are more reliable than measured mode shapes. Celic et al. (2008) presented a method 
for establishing a theoretical model of a joint from the substructures and assembly FRF data. A 
non parametric model was used in the joint identification. Sjovall and Thomas (2008) presented a 
procedure for substructure identification using test data from larger system. The procedure was 
applied to real test data. An accurate non-parametric model was identified. A Finite element based 
analytical model has the advantage of being complete and precise. On the other hand, the 
experimental data are generally considered to be more accurate given the availability of reliable 
data acquisition and measuring equipment (Modak et al. 2002, Wang et al.2012). Domínguez and 
Pérez-Mota (2014) studied how the quantity and distribution of the steel reinforcement array 
inside the RC beam-column connection affects its structural response when a strong cyclic loading 
is applied. Asgarian et al. (2014) derived the equations which can be used in global analyses of 
offshore structures to account for the Local Joint Flexibility (LJF) effects on overall behavior of 
the structure. 

In the present work, a simple and efficient method based on sub structure synthesis for 
identification of boundary condition parameters is proposed, in which only first few measured 
natural frequencies are used in the identification procedure. The method is demonstrated for a 
cantilever beam with two parameter (2-P) and three parameter (3-P) joint model and then for a 
single lap jointed (SLJ) beam, in which the joint is modeled with spring stiffness only. The 
numerical simulation has been carried out with non-dimensional stiffness parameters so that the 
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results are applicable for any size or dimension of the actual test specimen. An experimental 
identification for real test structure is also presented using measured natural frequencies; the 
estimated joint parameters are then incorporated in the FE model. The FE model updated with the 
joint parameters gave natural frequencies in close agreement with the measured frequencies. 
 
 
2. Sub-structure synthesis of assembled systems  
  

Structural and machine systems are often assembled from several sub-systems. Although the 
sub-structure dynamics may be well known, dynamics of the assembled system cannot be 
predicted accurately unless the interface conditions are properly modeled and identified. The 
concept of substructure synthesis (Bishop and Johnson 1960) provides a technique for obtaining 
the dynamic behavior of the assembled system from the knowledge of Frequency Response 
Functions (FRFs) of the sub-systems interfaced through one or more degrees of freedom. As 
shown in Fig. 1(a), a composite system Z is assembled from two sub systems P and R connected 
by two joint co-ordinates X and θ at the interface. The forcing functions corresponding to these 
two co-ordinates are F and M respectively. 

 
 

 
Fig. 1(a) A composite system Z, with sub-systems P and R 

 

Fig. 1(b) Force and displacements acting on the sub-systems P and R 

 
P 

 
R 

Fδ, Xδ 

Mδ ,δ

Fη , Xη 
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Fig. 1(b) shows the sub-systems separated with corresponding displacements and forcing 
functions at the interface. 

Let the direct receptance functions δii and ηii and cross receptance functions δii and ηii for the 
two sub-systems be defined as 

δ

δ
11 F

X
=δ    ; 

δ

δ
22 M

θ
=δ ;   

δ

δ

M

X
=δ ;    

δ

δ
21 F

θ
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Then, considering the dynamic equilibrium of the sub-systems P and R separately, one can 
obtain 

     δ12δ11δ MδFδX   ;  η12η11η MηFηX                      (2a) 

δ22δ21δ MδFδθ    ;   η22η21η MηFηθ                     (2b)  

Eqs. (2a)-(2b) can be written in a matrix form as 
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For the assembled system Z, the direct and cross receptance functions can similarly be defined 
as 
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Now, compatibility requirement of forces and displacements at the joint co-ordinates gives 

ηδ XXX          and         ηδ θθθ                   (7a) 
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Simplifying Eq. (9) with Eq. (3) and Eq. (4), FRF matrix [v] is obtained as 
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The frequency equation for the assembled system is obtained by setting the denominator of the 
receptance functions as zero, which gives 

0)())(( 2  121222221111 ηδηδηδ                       (10) 

Thus if the FRFs at the interface co-ordinates are known for the individual sub-systems, then 
the natural frequencies of the assembled system can be obtained by solving the frequency Eq. (10). 
If sub-system P is a joint sub-system and sub-system R is a structural component, then Eq. (10) 
provides a basis to study the effect of joint parameters on the system natural frequencies. However, 
Eq. (10) is exploited for an inverse analysis, where one can estimate the joint parameters from the 
over determined set of measured frequency data, using multi-linear regression technique (Draper 
and Smith 1998). 

In the following sections, two types of structural joint systems are demonstrated with numerical 
simulation and experimentation. First, a cantilever beam with two models of the boundary 
condition so called, 2-parameter and 3-parameter model, 

Model 1:   












rK
tK

P  , 2-parameter model. 

                        Model 2:   









rKrtK
trKtK

P , 3-parameter model. 

and then a single lap jointed structural system has been demonstrated.  
 
2.1 Two parameter joint model of cantilever beam 
 
In a two parameter joint system, a cantilever beam is modeled with elastic constraint at the 

fixed end represented by a translational spring (stiffness Kt) and a rotational spring (stiffness Kr) as 
shown in Fig. 2, the beam is considered as a composite system consisting of elastic springs as sub-
system P and a free-free beam as sub-system R. 

The FRF matrix for P is represented by a diagonal matrix 
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and the FRF matrix for R can be obtained as (Bishop 1960) 
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Which can written, using brief notation, as 

 iyixi V.KU.KT                           (17) 

Above equation is generated for each combination of (j, k), which gives total nC2 equations and 
thus a set of over determined system of linear equations is generated for estimation which can be 
used for a least square error based estimation. Taking r=nC2, Eq. (17) can be written as 
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There can be different sources of error in the measured natural frequency values, mainly 
spectral resolution error in the measuring FFT analyzer. Besides there would be harmonic 
distortion error in case the stiffness is nonlinear and random noise. For weakly nonlinear stiffness 
values, harmonic distortion in the measurement of first harmonic frequency will not be 
significantly high. However random background noise and spectral resolution problem still 
remain. Spectral resolution can be enhanced by selecting larger data block size and the same has 
been discussed in later section 3.3. Random error is minimized using least square error estimation 
method (Norman and Smith 1998). Eq. (18) including the error term can be written as 

      VεKTU ˆ  

Minimum error estimation gives  

        .V)TU(pinvK̂                               (19) 

where, pinv (Gilot 2003) is the generalized inverse of a matrix. 
 

2.2 Three-parameter joint model of cantilever beam 
 
A cantilever beam with boundary condition (fixed end) modeled as an elastic support consisting 

of a translational, rotational and cross coupled terms, thus designated as 3-parameter model is 
shown in Fig. 3. The concept of substructure synthesis, discussed in previous section is used to 
derive the frequency equation of the composite system consisting of a free-free beam interfaced 
with a joint at one end. A 3-parameter model i.e., Model 2 of joint is represented by a (2×2) matrix 
which include cross coupled terms Ktr and Krt 
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Table 1a Simulation results with sample values of non-dimensional stiffness parameters (model 1) 

Sample values of 
Kx and Ky 

Non dimensional 
natural frequency 

Estimated Kx and Ky 

with 2-P 
Estimated Kx , Ky and Kz 

with 3-P 

Kx = 100 
Ky = 50 

fr1 =1.8066 
fr2 = 3.7678 
fr3 = 5.8097 
fr4 = 8.6564 
fr5 = 11.7153 

Kx = 99.95 
Ky = 50.03 

Kx = 100 
Ky = 50.07 

Kz = -8.11.105 

Kx = 500 
Ky = 100 

fr1 =1.8500 
fr2 = 4.4368 
fr3 = 6.8022 
fr4 = 9.0929 
fr5 = 11.915 

Kx = 500.154 
Ky = 100.270 

Kx = 499.99 
Ky = 100.24 

Kz= -5.67.106 

Kx = 1000 
Ky = 500 

fr1 = 1.8679 
fr2 = 4.5755 
fr3 = 7.2837 
fr4 = 9.5658 
fr5 = 12.146 

Kx= 1018.64 
Ky = 517.310 

Kx = 1000.82 
Ky = 510.06 

Kz = -2.22.105 

 
Table 1b Simulation results with sample values of non-dimensional stiffness parameters (model 2) 

Sample values 
of Kx, Ky & Kz 

Non dimensional 
natural freq. 

Estimated Kx & Ky 

with 2-P 
Estimated Kx , Ky & Kz 

with 3-P 

Kx = 1000 
Ky = 500 

Kz = 10000 
(α=0.02) 

fr1 = 1.8684 
fr2 = 4.5798 
fr3 = 7.2930 
fr4 = 9.5680 
fr5 = 12.141 

Kx = 408.75 
Ky = 223.47 

Kx = 999.85 
Ky = 506.28 

Kz = 10038.73 

Kx = 500 
Ky = 100 
Kz = 5000 
(α=0.1) 

fr1 = 1.8510 
fr2 = 4.4443 
fr3 = 6.8100 
fr4 = 9.0876 
fr5 = 11.9082 

Kx= 380.27 
Ky = 77.73 

Kx = 500.034 
Ky = 100.363 
Kz = 5021.04 

Kx  = 1000 
Ky  = 500 

Kz = 500000 
(α=1) 

fr1 = 1.8669 
fr2 = 4.5751 
fr3 = 7.2832 
fr4 = 9.5658 

fr5 = 12.1463 

Kx= 987.51 
Ky= 500.61 

Kx = 1000.28 
Ky = 506.96 

Kz= 3.423.106 

Kx  = 1000 
Ky  = 500 

Kz=1000000 
(α=2) 

fr1 = 1.8679 
fr2 = 4.5755 
fr3 = 7.2838 
fr4 = 9.5658 

fr5 = 12.1463 

Kx = 975.9 
Ky= 500.47 

Kx = 1000.4 
Ky = 512.32 

Kz = 1.22.106 

 
 

gives good estimates of Kx and Ky ; however estimated Kz gives unrealistic values which may 
confirms non presence of cross coupled parameter in the system 

It can be concluded from simulation results presented in Table 1b, that as α increases, cross-
coupling stiffness value also increases and the natural frequencies of 3-parameter model shifts 
towards the values of 2-parameter model, which means that the 3-parameter model with large α is 
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Table 3 Comparison of natural frequency of beam under free-free condition 

Natural frequencies fr1 fr2 fr3 fr4 

Measured 105 290.25 571.25 944 
FEM 105.57 291.01 571.49 944.1 

 
Table 4 Measured natural frequencies of cantilever beam clamped with bolt 

Mode Measured natural frequency (Hz) Non-dimensional natural frequency 

fr1 17 1.6067 
fr2 118 4.2335 
fr3 335.625 7.1398 
fr4 628.75 9.7724 
fr5 994.5 12.2904 

 
 

The values of the material parameters are obtained by testing a beam under free-free condition 
and updating the corresponding Finite Element model for measured natural frequencies. Two 
dimensional beam elements were used in the FE modeling, a program was developed in MATLAB 
to compute natural frequencies of free-free beam, density of the beam was obtained by measuring 
its mass and modulus of elasticity was obtained by updating its value in FE model to validate the 
measured natural frequencies. 

Table 3 shows the measured and computed (FEM) natural frequencies of the beam with 
updated material properties, under unconstrained (free-free) condition. The vibration response of 
cantilever beam clamped with bolts is measured using FFT analyzer; to improve the accuracy in 
measurement, different frequency bands were selected in FFT analyzer e.g., for measurement of 
first two natural frequencies, a frequency band of 0-200 Hz and for higher frequencies a frequency 
band of 0-1000 Hz was selected. 

The measured natural frequencies at the resonance peaks of frequency spectrum are given in 
Table 4. These measured natural frequencies are less by more than 5% as compared to ideal natural 
frequencies of cantilever beam; so, one may predict the joint stiffness to fall in sensitive region 
(i.e., non-stiff region). 
 

3.1 Joint stiffness identification: 2-P model 
 
The linear parameters of the joint, i.e., translational stiffness Kt and rotational stiffness Kr are 

identified using first four measured frequencies only. The support parameters are most important 
in lower modes and are less significant in higher modes (Ahmadian et al. 2001), for these reason 
first four modes were chosen in the identification procedure. Linear equation in two unknowns Kx 
and Ky is obtained from Eq. (13); Eq. (19) was then used for best estimate of non dimensional 
stiffness parameters. The estimated non dimensional stiffness parameters and corresponding linear 
joint parameters are given in Table 5. Next, the identified joint parameters are incorporated in FE 
model and natural frequencies are computed; these frequencies are compared with experimentally 
measured natural frequencies, Table 6 shows the comparison. 

Considerable error in measured and computed natural frequencies is observed, the reasons for 
error in natural frequencies, may be due to insufficient finite elements in FE modeling & over 
simplification of joint model (Model 1, 2-P model) where cross coupling terms are neglected. The 
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Table 5 The identified joint parameters (2-p) 

Non-dimensional joint stiffness parameters Joint stiffness parameters 

Kx = 969.8064 Kt = 1.381×106 (N.m-1) 

Ky = 1.2723 Kr = 324.28 (N.m.rad-1) 

 
Table 6 Comparison of natural frequencies measured experimentally and computed with updated FE model 

Mode Experimentally Measured (Hz) Computed from FE Model (Hz) Percentage Error 

fr1 17 11.276 33.67 
fr2 118 106.03 10.14 
fr3 335.625 315.44 6.01 
fr4 628.75 599.07 4.72 
fr5 994.5 941.52 5.32 

 
Table 7 The identified joint parameters (3-p) 

Non-dimensional joint stiffness parameters Joint stiffness parameters 

Kx = 1928.972 Kt = 2.75×106 (N.m-1) 

Ky = 4.6964 Kr = 1196.99 (N.m.rad-1) 

Kz = 876.731 Krt = 5.283×105 (N.rad-1) 

 
Table 8 Comparison of natural frequencies measured experimentally and computed with updated FE model 

Mode Experimentally Measured (Hz) Computed from FE Model (Hz) Percentage Error 

fr1 17 16.96 0.23 

fr2 118 117.56 0.37 

fr3 335.625 337.7 -0.618 

fr4 628.75 635.77 -1.11 

fr5 994.5 1011.3 -1.68 

 
 
first reason could be excluded easily by increasing number of finite elements; the second reason 
was studied by using joint Model 2 i.e., 3-P model. 

 
3.2 Joint stiffness identification: 3-P model  
 
The measured natural frequencies given in Table 4, are now used in Eqs. (20)-(21) to estimate 

three parameters of the joint. The identified joint parameters are presented in Table 7. 
These identified joint parameters are again incorporated in FE model and computed natural 

frequencies are compared with experimentally measured natural frequencies (see Table 8).The FE 
model updated with identified joint parameters using 3-parameter model gives better estimate of 
natural frequencies than 2-parameter model, the ratio α defined in previous section has the value 
<1 for the joint demonstrated in this paper. Since α<1, 3-P gives better estimates of joint 
parameters than 2-P, it is evident from simulation and experimentation results. Although only first 
four measured natural frequencies are considered in regression analysis, the fifth measured natural 
frequency is also close to natural frequency computed with FE model. 
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Table 9a Estimation error in the identified joint parameters with ±0.05% frequency perturbation 

Non-dimensional Joint Parameters Kx Ky Kz 

Identified Values 1928.972 4.6964 876.7310 

Estimated with +0.05% frequency perturbation 1875.211 4.7024 840.7858 

Estimated with -0.05%  frequency perturbation 1940.823 4.6772 909.1771 

Average percentage (%) error 1.7 0.268 3.9 

 
Table 9b Estimation error in the identified joint parameters with ±0.1% frequency perturbation 

Non-dimensional Joint Parameters Kx Ky Kz 

Identified Values 1928.972 4.6964 876.7310 

Estimated with +0.1% frequency perturbation 1844.136 4.7152 822.3736 

Estimated with -0.1% frequency perturbation 1983.690 4.6651 923.1977 

Average percentage (%) error 3.6 0.53 5.75 

 
 

3.3 Error sensitivity analysis 
 
The estimates of Kx Ky and Kz presented in Table 7 are obtained with data without any 

measurement error. However, for practical measurement of natural frequencies, effect of 
measurement noise also needs to be considered. Natural frequencies are generally measured using 
FFT analyzers. The major source of error with these instruments is spectral resolution error, which 
depends on data block size for FFT processing. For a typical 2048 data block size, 800 spectral 
lines are displayed in the given frequency range fr, which means two adjacent frequency data will 
be separated by fr /800. The error in the measurement then becomes fr /(2*800)=0.0625%. With a 
data block size of 4096, there will be 1600 spectral lines in the frequency range and measurement 
error will be fr /(2*1600)=0.03125%. Over and above this resolution error, there may be random 
noise also. Hence the frequency values measured experimentally are perturbed by ±0.05% and 
±0.1% to test the effect of measurement error on the joint stiffness estimation. The estimation with 
perturbed natural frequencies is presented for experimental case in Tables 9(a)-(b). 

The estimated error in the identified joint stiffness parameter is within 6%. As the cross 
coupling stiffness Kz is more sensitive to the natural frequencies of the joint system the error is 
relatively more compared to that of translational and rotational stiffness.    
 
 
4. A Single Lap Jointed (SLJ) beam 

 
In a SLJ beam demonstrated in this section, a joint is modeled as an elastic support consisting 

of translational and a rotational spring. The concept of substructure synthesis, discussed in the 
previous section, is used to derive the frequency equation of the composite system consisting of 
two free-free beams; one embedded with springs K1 and K2. An over determined system of linear 
equations involving the unknown joint parameters are formulated from the frequency equation 
using a set of measured natural frequency data. The equations are solved for best estimation of the 
support parameters using multi-linear regression procedure.  
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The joint stiffness parameters can be represented as non-dimensional parameters as, 

)L/EI(

K
Kx 

     and     
)L/EI(

K
K y

  

Eq. (22) then becomes 















FF

F
λ

F

F
.λ.K

F

F
.λ.KK.K yxyx                   (23) 

The joint parameters Kx and Ky can be estimated from measured natural frequencies using the 
similar procedure discussed in previous section. 
 

4.2 Finite dlement modeling of SLJ beam 
 
A single lap jointed free-free beam comprises of two beams jointed in between, a joint matrix 

with two unknowns K1 & K2 representing a joint element is given in Eq. (24). 

[K]joint = 

































KK

KK

KK

KK

                         (24) 

where, K11=K33=-K13=-K31=K1 and K22=K44=-K24=-K42=K2. Cross coupling terms are neglected in 
joint modeling. A program is developed in MATLAB to model single lap joint using FEM. The 
dimensions of the beams are: L=1 m, A=2×10-4 m2, ρ=7800 Kg/m3, E=2.07×1011 N/m2 and I=3×10-9 
m4. The natural frequencies were computed (see Table 10a) for three sets of assumed values of non 
dimensional stiffness Kx and Ky; the frequencies thus obtained are used in Eq. (23) to estimate Kx 
and Ky. The estimated Kx and Ky values are given in Table 10(b). These values obtained using sub 
structure synthesis & multi linear regres sion are very close to assumed values.  
 

4.3 Numerical simulation and discussion 
 
For numerical simulation, Eq. (23) is considered here again. When Kx and Ky values are zero, 

 
 
Table 10a Non-dimensional frequencies λi of a SLJ beam for different joint parameters using FEM 

Joint Parameters λ1 λ2 λ3 λ4 λ5 

Kx=1000  Ky=100 4.7007 7.5928 10.9430 12.5820 16.9299 
Kx=500  Ky=50 4.6722 7.3354 10.8937 11.5757 16.2911 
Kx=50  Ky=20 4.5912 5.1595 9.7041 10.7630 15.7590 

 
Table 10b Estimates of joint stiffness parameters using sub-structure synthesis 

Exact joint parameters Estimate of Kx Estimate of Ky 
Kx=1000  Ky=100 1002.63 100.4 

Kx=500  Ky=50 500.270 50.11 
Kx=50  Ky=20 50.0500 20.00 
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Table 11 Measured natural frequencies of SLJ Beam 

Mode Measured natural frequency (Hz) Non-dimensional natural frequency 

fr1 72 4.3929 

fr2 197.25 7.271 

fr3 397.25 10.3185 

fr4 528.75 11.9045 

fr5 945.7 15.9207 

 
Table 12 The identified joint parameters 

Non-dimensional joint stiffness parameters Linear joint stiffness parameters 

Kx = 824.3349 K1 = 5.348x105    (N.m-1) 

Ky = 15.4084 K2 = 3599.46 (N.m.rad-1) 

 
Table 13 Comparison of natural frequencies measured experimentally and computed with FEM 

Mode Experimentally Measured (Hz) Computed from FE Model (Hz) 

fr1 72 72.61 

fr2 197.25 199.42 

fr3 397.25 398.8 

fr4 528.75 526.7 

fr5 945.7 951.49 

 
Table 14 The identified joint parameters using perturbed natural frequencies 

Non-dimensional joint parameters Linear joint parameters Percentage (%) error in  -

Kx Ky K1 K2 K1 K2 

823.79 15.39 5.34x105 3594.89 0.05 0.12 

 
 

Now, the estimated joint parameters are incorporated in FE model to validate the sub-structure 
synthesis model by comparing experimentally measured natural frequencies with those computed 
from FE model. Table 13 shows the comparison. The result of FE model agrees well with the 
proposed model of SLJ beam. Although only first four measured natural frequencies are 
considered in regression analysis, the fifth measured natural frequency is also close to that 
computed with FE model. This shows that the higher natural frequencies, those not considered in 
regression analysis, also validate the proposed algorithm. 

Considering FFT resolution error (as discussed in section 3.3) corresponding to measured 
natural frequencies and frequency band selected in measurement; all four natural frequencies are 
perturbed, first on higher side and then on lower side to study the robustness of the model. The 
identified joint parameters with perturbed natural frequencies are given in Table 14.  

With perturbed natural frequencies, the estimated error in joint stiffness parameter is very less; 
thus the model is robust for error in frequency measurement. 
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6. Conclusions 
 

A new procedure for joint stiffness identification has been proposed in this work. The 
procedure is based on natural frequency measurement and hence is very much convenient in 
practical applications. Using method of sub-structure synthesis, a frequency equation in terms of 
the joint stiffness parameters is developed. With the measured natural frequencies, one can obtain 
an over determined set of equations, which is then processed through multi-linear regression to 
obtain the best estimates of the joint parameters. It is shown that the procedure gives accurate 
estimates for a wide range of stiffness values. Unknown joint stiffness parameters are identified for 
physical structure using both 2-parameter and 3-parameter model in case of cantilever beam. It 
was observed for the demonstrated structure that the 3-parameter model gives better estimate than 
2-parameter model.  

Similar identification technique has also been developed for single lap joint. It is seen that the 
experimentation results agree well with the updated FE model and the method is robust against 
measurement error. The procedure can be used for stiffness identification of various other joints in 
structures. 
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CC 
 
 
Nomenclature 
 
A cross sectional area of each beam 
E Young’s modulus 
F force, corresponds to coordinate X. 
FRF    Frequency Response Function 
F1 –F6 functions defined in reference (Bishop 1960) 
I moment of inertia 
K1 translational stiffness of single lap joint 
K2 rotational stiffness of single lap joint 
Kr rotational stiffness of cantilever joint 
Kt translational stiffness of cantilever joint  
Kx non dimensional translational stiffness of joint 
Ky non dimensional rotational stiffness of joint 
Kz non dimensional cross coupled stiffness of joint 
L length of beam 
M moment, corresponds to coordinate θ 
P sub structure (sub system) I 
R sub structure (sub system) II 
X joint coordinate, translational. 
Z composite system (sub system I+II) 
pinv generalised inverse of matrix. 
θ joint coordinate, rotational. 
δ receptance function for sub system P of cantilever. 
δ* receptance function for sub system P of SLJ. 
η receptance function for sub system R. 
ν receptance function for composite system Z. 
[δ] FRF matrix for P.  
[η] FRF matrix for R. 
[ν] FRF matrix for Z. 
 K̂  non dimensional joint parameter vector. 
λ non dimensional natural frequency of Z 
ρ mass density 
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ω  radian frequency. 
fr natural frequency, Hz 
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