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Abstract.  In Current paper, the voltages of patches optimization are carried out for minimizing the power 
consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels 
using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of 
patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as 
design variables. The classical laminated plate theory (CLPT) is considered to model the transient response 
of the panel, and numerical results are obtained by the finite element method. The performance of the E-
ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To 
check the validity, the transient responses of isotropic and orthotropic panels are compared with those 
available in the literature and show a good agreement. 
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1. Introduction 
 

Lightweight composite materials are extensively used in various branches of engineering, in 

particular in the aerospace industry due to its superior performance. FMLs consist of alternating 

layers of reinforced polymeric composites and metal sheets (aluminium, magnesium and/or 

titanium) in a way that metal sheets are outer layers protecting the inner composite layers without 

taking the poor fatigue strength of metal sheets and the poor impact strength of composite layers. 

Several researchers have reported different studies on vibration reduction and active vibration 

control of plates using piezoelectric sensors and actuators. Lee (1990) described theory of 

laminated piezoelectric plates with governing equations and reciprocal relations for the design of 

distributed sensors/actuators. Onoda and Hanawa (1993) used the genetic and simulating annealing 

methods to choose the optimal locations of the actuators in static shape control. Koconis et al. 

(1994) developed a solution scheme to find the optimal control voltages by minimizing an error 

function between the deformed shape and the desired shape. Lam et al. (1997) and Moita et al. 

(2005) developed finite element models, respectively based on the classical and higher order 

theories, for the active control of composite plates containing piezoelectric sensors and actuators, 
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using the Newmark method, to calculate the dynamic response of laminated structures. Han and 
Lee (1999) used genetic algorithms (GA) to find suitable locations of piezoelectric sensors and 
actuators of a cantilevered composite plate with considerations of controllability, observability and 
spillover prevention. Significant vibration reduction for the first three modes (controlled modes) 
has been achieved using the coupled positive position feedback in the vibration control 
experiment. Loja et al. (2001) applied a family of higher order B-spline finite strip models to the 
static and free vibration analysis of piezolaminated plates, with arbitrary shape and lay-ups, 
loading and boundary conditions. Garcia Lage et al. (2004) used a finite element formulation 
based on Reissner mixed variational principle for the analysis of piezolaminated plate structures. 
Robaldo et al. (2006) proposed a finite element formulation for the dynamic analysis of laminated 
plates embedding piezoelectric layers based on the principle of virtual displacements (PVD) and 
an unified formulation. Montazeri et al. (2008) utilized PSO to find the number, position and size 
of PZT sensors and actuators for active noise and vibration control of a simply supported 
laminated thin plate. They used the Hankel singular values of the state-space model of the system 
as the cost function to obtain the positions such that the closed-loop system is able to damp the 
maximum number of modes with an acceptable control effort and minimum complexity of the 
control system. Kang and Tong (2008) optimized the topologies of PZT actuators and control 
voltage simultaneously by a method of moving asymptotes. Julai and Tokhi (2010) used genetic 
algorithm and particle swarm optimization for vibration suppression of flexible plate structures 
with all edges clamped. They designed the controllers based on direct optimization of the location 
of the detector and secondary source, and the controller parameters based on minimizing the MSE 
level of the error signal. Kapuria and Yaqoob Yasin (2013) examined the efficacy of directional 
actuation and sensing using piezoelectric fiber-reinforced composite (PFRC) actuators and sensors 
in active vibration suppression for the first time for smart fiber metal laminate (FML) plates. 

In the present paper, power consumption and vertical displacement optimization of 
symmetrically smart FML panels is studied using a modified multi-objective Elitist-Artificial Bee 
Colony (E-ABC) algorithm. In order to reduce the calculation time, the elitist strategy is used in 
Artificial Bee Colony algorithm. The design variables are the voltages of patches, panel 
length/width ratios and edge conditions. The performance of the E-ABC is compared with the PSO 
algorithm and shows the good efficiency of the E-ABC algorithm. 
 
 

 
Fig. 1 A FML panel with distributed piezoelectric actuators
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2. Formulation of the optimization problem   
 
Fig. 1 shows a FML panel ( a b h  ) with distributed piezoelectric actuators that are bonded 

on the surface of the panel. The results given in this paper are those for thin symmetrically FML 
panels. They have been determined through the use of classical laminated plate theory (CLPT) 
and, thus, the effects of shear deformation through the laminate thickness are precluded in this 
study. The governing equations are obtained from the principle of virtual work and further adapted 
to finite element formulations.  

Based on the classical laminated plate theory (CLPT), the displacement fields for a FML 
composite panel are given as (Jones 1975, Vinson and Sierakowski 1986) 
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where vu ,  and w  are components of displacement at the arbitrary point, whilst u, v and w are 
corresponding ones on the middle surface (z=0). 

The Von Karman linear strain-displacement relations are expressed as 
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where   is the in-plane strain vector. 
Substituting Eq. (1) into Eq. (2), the in-plane strain vector is expressed as 
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where ε and ψ are the in-plane strain vector at the mid-plane and the curvature strain vector, 
respectively. 

The linear piezoelectric constitutive equations coupling the elastic and electric fields can be, 
respectively, expressed as the direct and converse piezoelectric equations as (Elshafei 1996) 

               T
D e E                             (4a) 

            Q e E                               (4b) 

where {D} is the electric displacement, [e] is the piezoelectric stress coefficient matrix, [∈] is the 
permittivity matrix, {E} is the electric field intensity,   is the in-plane stress vector and [Q ] is 
the plane-stress stiffness coefficients matrix.  

We assume that the electric field vector {E} can be defined by the electrical potential ϕ as  
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          { }E                                    (5) 

Since the thickness of the piezoelectric layers is very small, it is reasonable to assume that the 
electric potential functions yielding zero potential at the interface between the actuator and 
laminated substructure and provide a linear variation across the thickness of the actuator layer. 

To derive dynamic equations of motion for the FML panels with integrated piezoelectric 
actuators, we use Hamilton’s principle 

         
2

1

[ ] 0
t

t

T U W dt                                (6) 

where T is the kinetic energy, U is the strain energy, and W is the work done by the applied forces.  
To account for the actuator’s mass and stiffness, the piezoelectric layers are treated as other 

layers with different material properties in deriving the dynamic equations of motion. 
The general expression for the element kinetic energy is 

               2 2 21

2
T h u v w dxdy                              (7) 

The strain energy can be written as 

           
1

[{ } { } { } { }]
2

T TU E D dV                         (8) 

The work done by the applied forces can be expressed in the form 

           { } { }TW d f dxdy                              (9) 

where d is the column matrix of element freedoms and f being the column matrix of forces at 
reference lines, which corresponds to d. Of course, the only non-zero entries in f correspond to w 
values in d in view of the fact that the loading acts in the z direction. 

Substituting Eqs. (7)-(9) into Eq. (6) and using Eqs. (3)-(5) the dynamic matrix equation can be 
written as (Chandrashekhara and Agarwal 1993) 

       [ ]{ } [ ]{ } { } { }e e e e
vM d K d F F                      (10) 

where [Me], [Ke], {Fe} and { }e
vF  are the element mass matrix, the element elastic stiffness 

matrix, the external mechanical force vector and the electrical force vector, respectively. 
For the whole structure, assembling the element equations gives the global dynamic equation 

        [ ]{ } [ ]{ } { } { }vM d K d F F                       (11) 

where [K], and [M] are the square symmetric, positive-definite structure stiffness and consistent 
mass matrices and { }d is a vector, which includes the degrees of freedom for the whole structure. 

To obtain transient response of the plate for the total time, Newmark’s direct integration 
technique is used. This technique involves parameters γ and δ that control the accuracy and 
stability of the technique. The choice of γ=0.5 and δ=0.25corresponds to a constant average-
acceleration method, which is known to give an unconditionally stable algorithm in linear 
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problems. 
In this paper, our goal is to seek the voltage distribution of piezoelectric actuators that minimize  

the maximum vertical displacement of panel ( max imumw ) and energy consumption.  
The energy consumed by the piezoelectric actuators is abstractly defined as (Sun and Tong 

2003, Kang and Tong 2008) 

0
T

k k kE z V V   ,  k=1…4                         (12) 

where Vk is the voltage of piezoelectric patches and z0 is a weighting coefficient representing 
electric conductance for the actuators (z0=1). 

The optimal design problem can be stated as follows 

Find              V= (V1, V2, V3, V4 ) 

   Minimize      
max imumw  and 

4

1
k

k

E

                       (13) 

Subject to    −400 ≤ VP ≤ 400   ,  P=1…4 

The optimal voltages are searched with the modified E-ABC algorithm. 
In the multi-objective optimization of FML panels, the objective functions combined with each 

other through the weighted summation method. The obtained single objective function is then 
optimized using modified E-ABC algorithm. To simultaneously minimize the maximum vertical 
displacement of panel and energy consumption, the objective function is considered in the form 
f(V) as a function of voltage of piezoelectric patches which is defined as (Sadr and Ghashochi 
Bargh 2012) 

       

4

max
1

1 2 4
max

1 1 1

( )
( )

( )
( ) ( )

imum k i
i k

i s s
imum

i k i
i i k

E
w

f V W W
w E



  

 


  
                   (14) 

where W1 and W2 are the weighting coefficients summing the two objective functions to have a 
single fitness function and s is number of the best memorized solutions. In this paper, the 
optimization results are given for W1=0.5 and W2=0.5. 

As seen, the roulette wheel scheme is employed in the objective function, in which each 
solutions (

max imumw and energy consumption) is assigned a value within the range [0, 1]. 
 
 
3. Modified Elitist-Artificial bee colony algorithm 
 

The ABC algorithm is one of the most recently defined algorithms by Dervis Karaboga (2005), 
motivated by the intelligent behavior of honey bees. The artificial bee colony consists of three 
types of bees: employed bees, onlookers and scouts. Each food source corresponds to a solution to 
the optimization problem and the amount of nectar of a food source to the fitness of the solution. 
Employed bees exploit their food sources by conducting a local search in their neighbourhood. 
Onlooker bees are recruited to the food sources based on their quality values. High quality 
solutions have higher probability value for being selected. A local search is again conducted by an 
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onlooker bee in the neighbourhood of the solutions chosen depending on the probability value. If a 
solution cannot be improved through a predetermined number of cycles, it is abandoned and a new 
random solution is produced to replace it. 

In this study, ABC algorithm (Fiouz et al. 2012, Ozturk and Durmus 2013) is used as the 
optimization method and to improve the quality of the solution, the elitist strategy is used in the 
algorithm. In this strategy, the onlooker bee operator generates a more diverse set of solutions near 
the best solutions so far until the end of each cycle in the algorithm. From this modification on the 
onlooker bee, the term Elitist is added to the name of this version of the ABC. A parameter is 
defined to control the amount of generation of solutions near the best solutions. In the algorithm, 
this parameter is assumed 20% of the best solutions. Thus, the same number of solutions will 
always be generated from a solution. As the value of parameter increases, causing the ABC search 
to become more localized. Thus, using large value of parameter may prevent the ABC from 
finding the global optimum. A selection procedure based on the fitness function picks best food 
sources and replaces sources in algorithm. In addition, the E-ABC preserves only the best design 
in every cycle. 

The elitist strategy can be stated as follows (Mezura-Montes and Velez-Koeppel 2010) 

                    ( )g g g
l l ij l ljv x x x                               (15) 

where {1,2,..., }j D is random generating index, l is equal to the number of the best solutions  
depending on the value of defined parameter and D denotes the number of optimization  
parameters. g

lv , g
lx and xlj are a set of new feasible solutions near the best solutions, the best  

solutions and the feasible solutions, respectively. ϕij 
is random number between [0,1] 

Also, the search form of ABC is good at exploration but poor at exploitation. Therefore, to 
improve the performances of ABC, we also propose to make two other major changes by 
introducing the inertia weight and acceleration coefficient to modify the search process. The use of 
the inertia weight and acceleration coefficient provides a balance between global and local 
exploration and exploitation, and results in fewer iterations on average to find a sufficiently 
optimal solution. 

The operation process can be expressed as the following form (Li et al. 2012) 

         . 2( 0.5)( )ij ij ij ij kjv w x x x                           (16) 

where {1,2,..., }k SN is random generating index, but k must be different from i and SN is the  
size of food sources. vij is the new modified feasible solution that depending on its previous 
solution xij. w is the inertia weight which controls impacts of the previous solution xij. Φ is the 
acceleration coefficient that could control the maximum step size. However, if the global fitness is 
very large, bees are far away from the optimum values. So a big correction is needed to search the 
global optimum solution and then w and should be bigger values. Conversely, only a small 
modification is needed, then w and Φ must be smaller values. So in order to further improve the 
search efficiency of the bees, w and Φ are decreased linearly from 0.9 to 0.4 during a run. 

The convergence rate of objective function with the number of generations for E-ABC and PSO 
for symmetrically FML 8-layered square panel with [Al/0/0/0]S stacking sequence is shown in Fig. 
2(a) and (b). It is clear from Fig. 2(a) and (b) that, for the optimization problem considered, E-
ABC converges at a faster rate (around 6 generations) compared to that for PSO (around 8 
generations) with the same initial populations. In addition, it is concluded that using of E-ABC 
provides a much higher convergence and reduced the CPU time in comparison with the PSO. 
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Fig. 2 Comparison of the E-ABC and PSO results for CFFF edge condition for symmetrically FML 8-
layered square panel with the same generations 

 

 
Fig. 3 Response of isotropic, square, simply supported panel to uniformly distributed step load 

 
 
3. Results and discussions 
 

The maximum vertical displacement and energy consumption of hybrid laminates is minimized 
for different panel aspect ratios, ply angles, number of layers, boundary conditions and thickness 
of metal sheets using the piezoelectric patches. 

The laminates are symmetric and made of AS/3501 graphite/epoxy material (Vinson and 
Sierakowski 1986) (inner composite layers) and aluminum alloy 2024-T3 (Shooshtari and Razavi 
2010, Ghashochi-Bargh and Sadr 2013) (outer aluminum layers). The material properties of the 
laminas and piezoelectric patches (Sun and Huang 2000) are given as below:  

Composite layers: E1=138 GPa, E2=8.96 GPa, G12=7.1 GPa, υ12=0.3, ρ=1520 kg/m3  
Aluminum layers: E=72.4 GPa, υ=0.33, ρ=2700 kg/m3  
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Piezoelectric patches: E1 =E2=20 GPa, G12=0.775 GPa, υ12=0.29, ρ=1800 kg/m3,  

e31= e32=0.046 C/m2, e31=0 C/m2, 9
33 0.1062 10   F/m 

Each of the lamina is assumed to be same thickness ( / 0.01h a  ). In FML panels with the 
double-thickness of aluminum layers, the thickness of composite layers are as mentioned before.  

The transient responses of isotropic and orthotropic panels are compared with the results of 
numerical values carried out by Chen and Maleki, respectively. 

Fig. 3 shows center deflection of square isotropic panel (100 mm×100 mm×1mm) under 
uniformly distributed step load of intensity q=0.0231 MPa over the whole panel surface with all 
edges simply supported. It is seen that the present result has excellent agreement with the one 
obtained by Chen and Dawe (1996). The material properties used in this example are:  

E=205 GPa, υ=0.3, ρ=7900 kg/m3 

Fig. 4 illustrates time histories of non-dimensional center deflection of laminated square plates 
[30/-30] S under conventional blast load with the clamped edges. It is seen that there is a good 
agreement between results of present approach and the published paper (Maleki et al. 2012), for 
the transient responses of orthotropic panel. In this example, the following geometrical and 
material properties are used: 

1.27 , 0.0254a b m h m   , ρ=1610 kg/m3 

E1=131.69 GPa, E2=8.55 GPa, G12=6.67 GPa, υ12=0.3 
The conventional blast loading function and non-dimensional center deflection are defined as 

         1 2/
0

2

( , , ) 1 t tt
q x y t q e

t
 
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                         (17) 
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100
E h
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 
                             (18) 

where t2=0.004 s, α1=1.98, and q0=68.95 kPa. 
 
 

 
Fig. 4 Response of orthotropic, square, clamped panel to conventional blast load 
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Table 1 Maximum vertical displacement of the FML panels with [Al/0/0/0]S stacking sequence under 
uniformly distributed step load (q=0.0231 MPa) 

BCs /a b  Maximum vertical displacement (m) BCs /a b Maximum vertical displacement (m)

  
Non-optimized 

response 
Optimized response 
(E-ABC algorithm)

  
Non-optimized 

response 
Optimized response
(E-ABC algorithm)

CFFF 1 7.31 E -06 0.60 E -06 CSCS 1 13.90 E -08 1.86 E -08 
 2 7.38 E -06 1.76 E -06  2 12.46 E -08 5.21 E -08 

SFSF 1 7.27 E -07 0.91 E -07 CCFF 1 3.59 E -08 1.34 E -08 
 2 1.72 E -06 0.75 E -06  2 18.62 E -09 0.72 E -09 

SSSS 1 3.63 E -07 0.25 E -07 CCCC 1 10.74 E -09 6.75 E -09 
 2 2.25 E -07 0.69 E -07  2 10.21 E -10 6.01 E -10 

 
Table 2 Maximum vertical displacement of the FML panels with [Al/45/-45/45]S stacking sequence under 
uniformly distributed step load (q=0.0231 MPa) 

BCs /a b  Maximum vertical displacement (m) BCs /a b Maximum vertical displacement (m)

  
Non-optimized 

response 
Optimized response 
(E-ABC algorithm)

  
Non-optimized 

response 
Optimized response
(E-ABC algorithm)

CFFF 1 12.27 E -06 1.32 E -06 CSCS 1 15.98 E -08 2.75 E -08 
SFSF 1 12.29 E -07 1.39 E -07 CCFF 1 3.61 E -08 1.31 E -08 
SSSS 1 3.11 E -07 0.31 E -07 CCCC 1 11.87 E -09 8.80 E -09 

 
Table 3 Maximum vertical displacement of the FML panels for [Al/0/0/0]S stacking sequence with double-
thickness aluminum layers under uniformly distributed step load (q=0.0231 MPa) 

BCs /a b  Maximum vertical displacement (m) BCs /a b Maximum vertical displacement (m)

  
Non-optimized 

response 
Optimized response 
(E-ABC algorithm)

  
Non-optimized 

response 
Optimized response
(E-ABC algorithm)

CFFF 1 4.27 E -06 0.92 E -06 CSCS 1 7.25 E -08 0.62 E -08 
SFSF 1 4.25 E -07 0.76 E -07 CCFF 1 17.92 E -09 5.30 E -09 
SSSS 1 16.68 E -08 2.82 E -08 CCCC 1 5.41 E -09 3.33 E -09 

 
 
The optimization results given in this paper are carried out for symmetrically FML panel under 

uniformly distributed step load of intensity q=0.0025 Pa over the whole panel surface with the 
different combinations of free (F), simply supported (S) and clamped (C) edge conditions. 
Consider the panel with known original shape and actuator configurations where the desired shape 
is specified (see Fig. 1). So the aim is to find the actuators voltages, which minimize the maximum 
vertical displacement of FML panels by consuming minimum energy. The effects of the edge 
conditions, panel length/width ratios, stacking sequences and thickness of metal sheets on the 
optimum design are shown for symmetric 8-layerd FML panels in Figs. 5, 6, 7 and 8 and in Tables 
1, 2 and 3. As inferred from the results, the good efficiency of the E-ABC search strategy and its 
ability to provide high-quality solutions is confirmed for various solutions. 

Tables 4, 5 and 6 also represent the optimal voltages of the piezoelectric patches, which 
minimize the maximum vertical displacement of FML panels by consuming minimum energy. In 
addition, the optimum voltages of patches are substantially influenced for edge conditions, 
thickness of metal sheets and /a b  ratios. As seen, the optimum voltages of the piezoelectric 
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patches are not influenced substantially and approach a limiting value by changing the stacking 
sequences. It is also clear from Tables 4, 5 and 6 that the optimum voltages of patches 1 and 3 and 
optimum voltages of patches 2 and 4 approach a same value for symmetric boundary conditions. 
 

 
Table 4 Optimum solutions for FML panels with [Al/0/0/0]S stacking sequence (Volt.) 

BCs /a b  [V1/ V2/V3/V4]Opt BCs /a b  [V1/ V2/V3/V4]Opt 
CFFF 1 [-400/-1/-400/-1] CSCS 1 [-173/100/-173/100] 

 2 [-304/41/-304/43]  2 [47/-29/46/-29] 
SFSF 1 [-326/55/-326/56] CCFF 1 [-3/-280/-127/-59] 

 2 [55/-37/53/-36]  2 [-10/-6/-9/-7] 
SSSS 1 [-400/-18/-400/-17] CCCC 1 [-61/155 /-61/155] 

 2 [49/-22/50/-21]  2 [2/9/2/9] 
 
Table 5 Optimum solutions for FML panels with double-thickness aluminum layers and [Al/0/0/0]S stacking 
sequence (Volt.) 

BCs /a b  [V1/ V2/V3/V4]Opt BCs /a b  [V1/ V2/V3/V4]Opt 

CFFF 1 [39/-234/37/-232] CSCS 1 [1/159/2/160] 

SFSF 1 [-37/189/-37/187] CCFF 1 [-6//-225/-91/-45] 

SSSS 1 [29/242/29/242] CCCC 1 [-85/54/-87/55] 

 
Table 6 Optimum solutions for FML panels with [Al/45/-45/45]S stacking sequence (Volt.) 

BCs /a b  [V1/ V2/V3/V4]Opt BCs /a b  [V1/ V2/V3/V4]Opt 

CFFF 1 [-400/0/-399/-1] CSCS 1 [-173/98/-174/99] 

SFSF 1 [-326/55/-326/55] CCFF 1 [-2/-280/-125/-61] 

SSSS 1 [-397/-15/-400/-17] CCCC 1 [-61/154 /-61/154] 

 

Fig. 5 Optimum solutions of symmetric 8-layered FML panels obtained by E-ABC algorithm for 
different boundary conditions and [Al/0/0/0]S stacking sequence ( / 1a b  ) : (a) CFFF, (b) SFSF, (c) 
SSSS, (d) CSCS, (e) CCFF, (f) CCCC;―Non-optimized response, ---Optimized response 
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Fig. 5 Continued 
 

 
Fig. 6 Optimum solutions of symmetric 8-layered FML panels obtained by E-ABC algorithm for 
different boundary conditions and [Al/0/0/0]S stacking sequence ( / 2a b  ): (a) CFFF, (b) SFSF, (c) 
SSSS, (d) CSCS, (e) CCFF, (f) CCCC;―Non-optimized response, ---Optimized response 

1219



 
 
 
 
 
 

H. Ghashochi-Bargh and M.H. Sadr 

 

 

 
Fig. 6 Continued 

 

Fig. 7 Optimum solutions of symmetric 8-layered FML panels obtained by E-ABC algorithm for 
different boundary conditions and [Al/45/-45/45]S stacking sequence  ( / 1a b  ): (a) CFFF, (b) 
SFSF, (c) SSSS, (d) CSCS, (e) CCFF, (f) CCCC;―Non-optimized response, ---Optimized response 
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Fig. 7 Continued 

 

 
Fig. 8 Optimum solutions of symmetric 8-layered FML panels obtained by E-ABC algorithm for 
different boundary conditions and [Al/0/0/0]S stacking sequence with double-thickness aluminum 
layers ( / 1a b  ): (a) CFFF, (b) SFSF, (c) SSSS, (d) CSCS, (e) CCFF, (f) CCCC;―Non-optimized 
response, ---Optimized response 
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Fig. 8 Continued 

 
 
4. Conclusions 

 
In this study, the voltages of patches optimization were carried out for minimizing the power 

consumption and maximum vertical displacement of symmetrically smart FML panels by the E-
ABC algorithm. The performance of the E-ABC was compared with the PSO algorithm and 
demonstrated the good efficiency of the E-ABC algorithm. As seen from the results, the E-ABC 
algorithm was successful in minimizing the power consumption and maximum vertical 
displacement of symmetrically FML panels using piezoelectric patches. In addition, the optimum 
voltages of patches were substantially influenced for edge conditions, thickness of metal sheets 
and /a b  ratios. As seen, the optimum voltages of patches were not substantially influenced and 
approach a limiting value by changing fiber orientations. 
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