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Abstract.  A simulation of failures on responsible elements is only one form of the extreme structural 
behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a 
special structural design from the point of the largest axial force, stress and redundancy. The numerical 
realization of one such simulation analysis was performed using FEM in this paper. The boundary 
parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of 
load fall and internal forces in the responsible structural elements, were determined on the basis of the 
dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the 
study, the basic incidental models were set. The models were identified by many years of monitoring 
incidental situations and the most frequent human errors in work with heavy structures. The combined load 
models of structure are defined in the paper since the incidents simply arise as consequences of cumulative 
errors and failures. A feature of a combined model is that the single incident causes the next incident 
(consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was 
observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic 
responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic 
coefficient KD was adopted as a parameter for the evaluation of structural sensitivity. 
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1. Introduction 
 

Perturbations caused by external influences like wind excitation, lightning strike, overload, 

seismic wave, etc., lead to the appearance of extreme dynamics and large translations of big 

structures. The sensitivity of support structure on dynamic changes is more pronounced in the 

transition from working (regular) to extreme (incidental) regimes. Therefore, the modern structural 

design is more and more directed to the dynamic stability at extreme incidental events. 

There are heavy frame structures on big cranes. The jib support tie rod is a high loaded 

structural part where a fracture (disruption) occurs most often. Will the local fracture jeopardize 
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the structural stability? Will the redundancy enable the stability preservation? The simulations of 

extreme transient regimes give the responses to these questions. 

Practical examples on the crane structures indicate simultaneous appearance of incidents (a 

single incident causes the next incident), after which the large amplitudes of vibration and the 

structural damages result. The subject of a possible design then is a structure with still preserved 

global stability. The mechanism of the whole structure overturn is not a subject of simple 

incidents, and it is often the consequence of the actions for which structures are not prepared (such 

as tsunami, tectonic movement, fall of an adjacent object on the structure, etc.). 

Discrete incidental situations can cause local damages but they can also pass without them. A 

discrete incident arises more often in practice by the load management error with the simultaneous 

failure (fracture) of some responsible element, usually a connection element. Accordingly, two 

incidents are discussed. That is when the uncontrolled load sway occurs, as well as the 

disconnection between a counter-jib support tie rod and the hoisting jib. The second incidental 

combination of structural load is often caused by overload. The combination of effects causes 

unexpected, often intensive dynamics. 

Isherwood (2010) provided an insight into the global presence of incidents on structures. 

Incidents are a real danger because at least one incident for each manufacturing brand of crane, 

according to Isherwood (2010), has been recorded. 

Structural analysts, in recent studies, consider various cases of failures and the non-functional 

consequences of structural components caused by fracture and other incidental influences. Also, 

very topical is application of numerical simulations to study the dynamic behavior of frame 

structures as well as application of geometrically nonlinear analyzes. For example, the influence of 

wind excitation, as a potentially extreme (incidental) dynamical influence, on large truss tower 

structures was considered by Qu et al. (2001) using an analytical method for determining dynamic 

response which was based on the numerical integration of equations of motion for the two finite 

element models (static and dynamic). Cho et al. (2012) considered the wave-induced excitation as 

a serious dynamic perturbation which could jeopardize the dynamic stability of see-floating port or 

mobile harbor with a large-scale heavy crane system. Ibrahim et al. (2013) investigated the effects 

of crack location and crack depth on free vibration of cracked frame structures using the FEM 

model with a crack element that was developed on the fracture mechanics principles. Katkhuda et 

al. (2010) showed a novel system for damage detection at the local element level under normal 

operating conditions and structural health assessment of steel frame structures. Shi et al. (2008) 

developed a numerical model to simulate and analyze the dynamical behavior of different types of 

steel connection between the structural elements achieved by using the bolted end-plates. Da Silva 

et al. (2008) included the geometrical non-linearity in their modeling strategy of the dynamical 

behavior of frame structures under dynamic actions using the finite element analysis. Kettal and 

Wiberg (2004) indicated that the simulation of failure process is an inherently difficult task 

because it includes solving of a large set of nonlinear equations which require use of newer and 

faster numerical methods for structural mechanics applications. 

 

 

2. Geometrically nonlinear transient dynamics 
 

Structural analysts tend to employ linear models and analysis whenever this allows a 

sufficiently accurate approximation of the actual structural behavior. The prediction of linearity of 

the structural response rests however on certain assumptions, such as rather small displacements 
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compared to the dimensions of the modeled structure, linear elastic material behavior as well as 

unchangeable boundary conditions during the analysis. 

Geometrically-only nonlinear structural analysis is characterized by non-negligible changes in 

structural configuration, whereas the induced strains and stresses remain within the realm of 

material linear behavior. While the structural behavior of a tower crane in most typical working 

conditions can be described with sufficient accuracy by a linear model, this paper considers a case 

of incident involving structural behavior that is beyond the limit of geometrical linearity. Hence, 

the conducted analysis is of geometrically nonlinear type. 

The FEM equation of geometrically nonlinear transient structural dynamics, at the time t, has 

the following form 

           intffuCuM t
ext

tttt                              (1) 

where [M] and [C] are the mass and damping matrices, {fext} and {fint} are the external (excitation) 

and internal (elastic) forces of the FEM assemblage, {u} are the structural displacements with dots 

above denoting time derivatives (acceleration and velocity), while the left superscript denotes at 

which moment of time the quantity is taken. The geometrically nonlinear analysis requires 

computation of engineering stresses in the current structural configuration, {}, and their 

integration over the current structural domain, 
t
V, in order to obtain the internal structural forces 

      VdBf tt

V

tt

t

 int
                              (2) 

where [B] is the strain-displacement matrix (yielding the linear part of the strain field) of the FE 

assemblage. 

The integration of dynamic equilibrium Eq. (1) is the most time-consuming part of the FEM 

transient computation. Geometrically nonlinear analysis requires direct integration methods, which 

are divided into the group of explicit methods and group of implicit methods. The main differences 

between them are the expense of calculating one time step, the time step size due to stability 

criteria and at which moment of time the equilibrium is considered. 

The equilibrium at time t (Eq. (1)) is suitable for the time-marching-forward schemes of 

explicit methods. They are rather inexpensive regarding the computational effort required to 

compute a single time step. However, the size of the time step is restricted and has to be smaller 

than a certain critical value for the solution to be stable. The critical time step directly depends on 

the largest eigenfrequency of the finite element assemblage influenced by the discretization of the 

structure. Another consequence of a short time step is that the iteration errors due to nonlinearities 

are negligible and hence, no iterations are performed. 

The implicit methods are unconditionally stable, which accounts for their advantage. However, 

the time step is certainly limited by the required level of accuracy. More precisely, it depends on 

the highest eigenfrequency in the structural response that is of interest for the analysis. A general 

recommendation is to choose the time step size so as to split the period of the highest 

eigenfrequency of interest into 8-10 segments. It should also be taken into account that, within an 

implicitly integrated geometrically nonlinear transient analysis, large time steps imply a relatively 

large computational effort to resolve a time step due to the coupled system of equations and 

necessary iterations. 

Finally, to resolve the structural configuration at time t+t, the equilibrium equation for the 

very same moment in time (i.e., t+t) is used. 
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The structure considered in the paper is made of steel and the conditional stability of an explicit 

time integration would impose a critical time step of the order of magnitude of 10
-7

÷10
-5

 s. Taking 

additionally into account the considered excitation and the range of structural vibration modes that 

is of interest, a reasonable choice would be an implicit time integration scheme with a time step of 

10
-3

 s. Such a choice also filters out effectively higher modes in the structural response. The choice 

of the authors is the Newmark time integration. The system of equations for geometrically 

nonlinear structural dynamics for time t+t reads 

                )(
int

)()()( 1 
 ktt

ext
ttk

T
ttkttttktt ffuKuCuM

tt

          (3) 

where [KT] is the tangential stiffness matrix,  denotes the increment of a quantity and k denotes 

the iteration. The tangential stiffness matrix together with the increment of displacements enables 

estimation of the internal forces at time t+t. According to the updated Lagrangian formulation, 

the tangential stiffness matrix is computed as 

      KKK t
L

t
T

t                                (4) 

where 
t
[KL] is the linear stiffness matrix and 

t
[K] is the geometric stiffness matrix, both 

determined for the current structural configuration, i.e., at time t as 

        VdBHBK tt

V

t
L

t

t

T

                              (5) 

        VdBBK t
NL

tt

V

NL
tt

t

 

T
                           (6) 

where [H] is the Hooke’s matrix, [BNL] is the matrix that yields the nonlinear part of the strains and 

[] is the stress state given in matrix form, all of them defined at the current structural 

configuration, i.e., at time t. 

Within the Newmark integration method, the following assumptions are employed 

        uu
t

uu tttttt   



2

                             (7) 

        uu
t

uu tttttt   



2

                             (8) 

and, additionally, the incremental relation yields 

      )()()( kkttktt uuu 
 1                             (9) 

Introducing Eqs. (7)-(9) into Eq. (3), one obtains 

                 
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      (10) 

with the system matrix [   given as 
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(a) Discrete model (b) Detail “A” 

Fig. 1 Tower crane POTAIN 744E 

 

 

       M
t

C
t

KK ttt

2

42





ˆ                            (11) 

The discrete tower crane model POTAIN 744E (hereinafter: TC), shown in Fig. 1(a), and its 

detail “A”, shown in Fig. 1(b), illustrate the extreme dynamics research of the structure. The 

precise introduction of the concentrated masses in the model leads to quality improvement - to the 

accuracy of a solution (Jovanović et al. 2011). The developed theoretic model TC was based on 

beam and rod elements (MSC NASTRAN). To describe the crane foundation of reinforced 

concrete, the 8-node solid element is used. The developed model of the tower crane structure is 

characterized by mass MM=72204 kg, number of finite elements NE=1667, number of nodes 

NN=1146 and total DOF number NDOF=6876. 

In the direct transient analysis, the experimentally identified overall structural damping 

coefficient G=0.05 by Radoičić and Jovanović (2013) was used. The conversion of overall 

structural damping G and element structural damping GE into an equivalent viscous damping using 

the model MSC and Eq. (12) by Rose (2002) and the dominant circular frequencies 3 and 4 

from the modal analysis (Jovanović et al. 2011), was performed by Radoičić and Jovanović 

(2013). Eq. (12) contains: C complex damping matrix, CV viscous damping matrix, K global 

stiffness matrix and KE element stiffness matrix. 

       





 EEV KGK
G

CC
43

1
                        (12) 

 

 

3. Experimental basis of the research 
 

Basic characteristics of the investigated TC are: range of 45 m, total height of 23.5 m, hoisting 

height of 16 m and maximal carrying capacity of 10 t at reach of 14.8 m. Under the working load, 

the vertical vibrations of the concrete foundation were very small. The highest vertical 

displacement of the foundation amounted to 4/100 mm (see Fig. 2(a)). The experimental  
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(a) Foundation deflection (b) Force on hook and acceleration (c) Micro-deformations of tie rod 

Fig. 2 Experimental measurements of the tower crane POTAIN 744E 

 

 

measurement of foundation deflection was performed using the measuring system shown in Fig. 

2(a) (Jovanović et al. 2012b). Incidental dynamics research requires the determination of several 

experimental values such as: unload time of hoisting rope, unload time of a counter-jib support tie 

rod (due to fracture) and axial force in the remaining counter-jib support tie rod. Fig. 2(b) shows a 

part of the measuring system to determine the force on the hoisting rope and the acceleration of 

load. Fig. 2(c) shows the position of the measuring point MT3 on the TC, to measure the micro-

deformations of a counter-jib support tie rod. 

From the diagram in Fig. 3 the unload time of structure tI caused by the load fall was 

obtained, i.e., tI=t4–t3=0.83 s. The trial load of mass m=2.2 t at maximum range Lmax and a force 

transducer shown in Fig. 2(b), in the experiment were used. The HBM measuring equipment and 

HBM CatMAN AP software were used for measurement and processing of results. 

The interruption of the connection between a counter-jib support tie rod and rest of the crane 

structure was caused by an extremely strong strike of the load to the ground. Therefore, the 

duration of interruption by short time of creation less than the duration of load striking the ground 

was defined. Such choice of incidental time corresponds to destruction or disconnection. The time 

of the tie rod interruption tF was empirically adopted, i.e., tF=0.6 s<tI=0.83 s. 

Using the measuring gauge MT3 placed on the counter-jib support tie rod (see Fig. 2(c)), the 

deformations caused by the examination regimes were measured. The experimental excitation was 

caused by hoisting and suddenly lowering the load until striking the ground. The experimental idea  
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Fig. 3 Record of the measured force on hook 

 

 
Fig. 4 Record of the measured deformations by measuring gauge MT3 

 

 

included the determination of deformation values shown in Fig. 4, and then the computation of all 

total changes of axial force in the counter-jib support tie rod in the duration of simulation. 

Although a support tie rod was not physically interrupted in the experiment, this measurement was 

useful to inform us about the real forces in the counter-jib support tie rod. 

On the basis of the experimentally measured deformation i, the axial force Fi is computed (the 

Hooke’s law). Thus obtained, the experimental values of force Fi are enlarged by adding the value 

of the static axial force in the tie rod. The measurement did not include this static force. The 

measuring regime was different than the simulation regime because the mechanical interruption - 

fracture of a tie rod element was not caused experimentally. The largest measured value of the 

change of micro-deformation was extracted as max65 m/m. This value corresponds to the 

largest change of the axial force FE-158,max77 kN in the element E-158. 

 

 

4. Incidental effect models 
 

The basic models of incidental effects are shown in Fig. 5 using the approximate perturbation  
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(a) Lowering and braking of load 
(b) Suddenly lowering the load 

until striking the ground 

(c) Interruption (fracture) of a 

counter-jib support tie rod 

Fig. 5 Three basic incident load models 

 

 

function pi (i=1, 2, 3). Actually, this function is the change of normalized load force in time for 

models M-I and M-II contrary to the model M-III where the function is displayed as the 

normalized rod axial force. The normalization was performed according to the static value of load 

force and rod axial force. 

The approximate function p1 of the model M-I has the impulse form corresponding to the rapid 

lowering and the following sudden braking of the load Q before striking the ground (see Fig. 5(a)). 

The model M-I is the very frequent effect case in the practical handling of load, according to 

Radoičić and Jovanović (2012). 

The effect model M-II, shown in Fig. 5(b), corresponds to the rapid lowering of load until 

striking the ground. The duration of unloading is taken from the experiment and it is tI=0.83 s 

(see Fig. 3). The model is introduced by the normalized load force Q/Q (Radoičić et al. 2011) 

i.e., the perturbation function p2. 

The third basic model of the incidental effect M-III is similar in its form to the previous model, 

except that the function p3 relates to the internal - axial force of a counter-jib tie rod and it 

represents the normalized force F/F (see Fig. 5(c)). In this model, an interruption of physical 

connection between a counter-jib tie rod and tower occurs in one moment. This sudden change is a 

consequence of the fallout of a pin for the tower-rod connection. The interruption can also be a 

consequence of the random collision of two cranes with the damage of fracture. The duration of 

the static force change in the tie rod is a short-term for all processes with the discontinuation of 

kinematic coupling, so the unload time in the tie rod is estimated according to the experimentally 

measured duration of the structure unloading. Considering the smaller mass and energy of the tie 

rod, the slightly shorter duration of the effect change (fracture) of tF=0.6 s was approximately 

determined by Jovanović et al. 2012a. 

Fig. 5 uses the following labels: tA is the acceleration time, tB the braking time, tBI the time 

before incident, tI the incident time of load, tPI the calming time of structure, tBF the time 

before fracture, tF the fracture time, tPF the post fracture time and TS = 120 s is the simulation 

time. The acceleration time tA and the braking time tB were determined by Radoičić and 

Jovanović (2012) when solving the dynamic model of hoisting mechanism. 

 

 

5. Simulation scenarios 
 

Experimental dynamic investigation is a risky job because the structural stability is often  
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(a) First combination of models 

M-I (function p1) and M-III (p3) 

(b) Second combination of models  

M-I (p1) and M-III (p3) 

(c) Combination of models 

M-II (p2) and M-III (p3) 

Fig. 6 Incidental combinations of the basic models 

 

 

endangered. Therefore, simulation methods are alternatively applied. The simulation scenarios are 

the ways for introduction of individual effects to the load process. Scenarios determine the time 

impact of excitation and they describe the extreme dynamic regimes. Scenarios also contain the 

incidental extensions as the consequences of the previous failures (incidental combinations). In 

each of the situations in Fig. 6, a failure of a counter-jib support tie rod is simulated. Thus, the tie 

rod axial force is excluded from the static balance of the support structure. Such sudden event 

causes the dynamic increase (reallocation) of internal forces in a structure. 

The incidental scenario S-I.1 in Fig. 6(a) is characterized by consecutive perturbation and an 

algorithm in which: the crane operator begins the sudden lowering of load at the velocity of v=20 

m/min at the moment t1=40.25 s (curve p1, acceleration period t3–t1=0.2 s); then the operator stops 

the load until the moment t5=40.75 s (curve p1, braking period t5–t3=0.3 s); a fracture of one 

counter-jib support tie rod then occurs as a consequence of the previous effect at the moment 

t5=40.75 s, while the unloading lasts for tF=0.6 s (curve p3, t6 –t5); the total interruption of the tie 

rod occurs at the moment t6=41.35 s; the damping vibration of the structure (calming) lasts until 

the end of simulation t7=120 s (curves p1 and p3). 

The simulation model S-I.2 in Fig. 6(b) represents the simultaneity of two perturbations and 

takes place according to the following scenario: the earlier damages in the material of joint 

connections at one counter-jib tie rod (curve p3, t1=40 s) lead at a moment to the interruption of the 

tie rod (curve p3, t6=40.6 s); not understanding the failure of this responsible element, the crane 

operator at the moment t2=40.25 s (curve p1) starts the extreme rapid load lowering at the velocity 

of v=20 m/min; the acceleration period is t4–t2=0.2 s (curve p1); the operator then extremely 

suddenly stops the load by braking at the moment t7=40.75 s (curve p1, braking period t7 –t4=0.3 s); 

the damping vibration of structure lasts until the end of simulation i.e., t8=120 s (curves p1 and p3). 

Finally, the incidental dynamic simulation of the load fall, denoted as S-II.1 in Fig. 6(c), is 

performed according to the scenario: the previous damages in the linkage system of counter-jib 

and tower cause the fracture of one tie rod (curve p3, t1=40 s); simultaneously, the sudden lowering 

of load starts with the interruption of the tie rod (curve p2, t1=40 s); the fracture of the tie rod lasts 

until the moment t2=40.6 s (curve p1); after the rapid lowering, it comes to load striking the ground  

1201



 

 

 

 

 

 

Goran N. Radoičić, Miomir LJ. Jovanović and Dragan Z. Marinković 

Table 1 Dynamic responses of the modeled structural configuration 

Element 

Carrying 

capacity 

t 

FS
*
 N FD,max

*
 N KD

*
 = FD,max  / FS - 

Incidental scenario 

S-I.1 S-I.2 S-II S-I.1 S-I.2 S-II.1 S-I.1 S-I.2 S-II.1 

E-17 

10 337814 533416 282099 362546 578766 352714 1.073 1.085 1.250 

2.9 474476 474481 293474 503397 516603 353626 1.061 1.089 1.205 

2.35 466471 455634 293887 496471 501908 351655 1.064 1.102 1.197 

E-158 

10 439788 439843 439572 476301 481482 568992 1.083 1.095 1.294 

2.9 439849 439871 440155 475813 476726 547066 1.082 1.084 1.243 

2.35 439691 439854 439897 478679 477844 543192 1.089 1.086 1.235 
*
FS: Static force; FD,max: Max dynamic force; KD: Dynamic coefficient 

 

 

at the moment t3=40.83 s (curve p3) when the structural unloading arises and it lasts for tI=0.83 s 

(experimentally measured); the damping of structure takes place in the end of simulation and it 

lasts until the moment t4=120 s (curves p2 and p3). 

 

 

6. Analysis of simulation results 
 

The results of analyses gave the dynamic responses (axial forces and dynamic coefficients) for 

two responsible structural elements, the hoisting jib support tie rod (Element E-17) and the 

counter-jib support tie rod (Element E-158). The dynamic responses are shown in Table 1. 

Three characteristic carrying capacities (working points) for analysis are selected from the 

crane passport: a. 10 t at 14.8 m of reach, b. 2.9 t at 39 m and c. 2.35 t at 45 m. This choice of 

carrying capacities included the extreme permissible load of burden (a.), the maximal reach (c.) 

and the position (b.) of the highest dynamic coefficient according to Jovanović et al. (2012a). For 

the evaluation of structural sensitivity on incidental dynamics the dynamic coefficient KD is 

adopted. It is the ratio of the maximal dynamic force FD,max and the static force FS in the same 

element after an incident (see Eq. (13)). 

S

D
D

F

F
K

max,
                                    (13) 

 

6.1 Case studies S-I.1 & S-I.2 
 

The simulation of the incidental scenario S-I.1 (acceleration–braking & fracture) first was 

performed. Thus, the dynamic records of force in the hoisting jib support tie rod (Element-17) for 

three selected carrying capacities have been obtained and shown in Fig. 7(a). The diagram in Fig. 

7(a) shows higher values of the axial force under the load m=2.9 t at the reach L=39 m, especially 

of the maximal dynamic force FD,max and the post-incident (static) force FSt-PI. After the structure 

calming, the post-incident axial forces in the element E-17 at all carrying capacities in Fig. 7(a), 

returned to own values as before the incident i.e., FSt-PI  FBI. 

Fig. 7(b) shows the change of axial force in the remaining counter-jib support tie rod E-158 

obtained according to the scenario S-I.1. Since the similarity of the obtained dynamic responses in  
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(a) Axial forces in the hoisting jib support tie rod 

E-17 for three carrying capacities 

(b) Axial force in the counter-jib support tie rod    

E-158 for the longest boom range 

Fig. 7 Scenario S-I.1, axial forces 

 

 

the three capacity-range cases existed, only one curve of the axial force in the element E-158 for 

the capacity of 2.35 t at reach of 45 m here is shown. The dynamic response in Fig. 7(b) gives the 

insight into one more dynamic parameter. It is about the coefficient of overall force growth KF. 

Actually, this coefficient is the ratio of the maximal dynamic force FD,max and the before-incident 

axial force FBI in a selected element (see Eq. (14)). The coefficient KF indicates the new 

equilibrium situation of a structure and local reallocation of forces after an incident (redundancy). 

.
max,

BI

D
F

F

F
K                                    (14) 

Using Eq. (14) and the force values FD,max and FBI, indicated in Fig. 7(b), the coefficient of 

overall force growth of the remaining counter-jib support tie rod E-158 in the simulation S-I.1 was 

calculated. This coefficient took a very high value of KF=2.28. The labels in Fig. 7(b) are: FO is 

the overall force growth (jump) and FD is the highest force change at modified geometry under 

an incident. 

The calculated stresses in all incidental combinations with the interruption of a support tie rod 

took values which ranged within the area of permissible static stress for the constructive steel from 

the group I. 

According to the scenario S-I.2, the changes of axial forces in the jib tie rods were very similar 

to the situations in the scenario S-I.1 from Fig. 7, so they were not shown especially. Only in the 

case S-I.2, the dynamic coefficients were more pronounced at higher carrying capacities. 

 
6.2 Case study S-II.1 
 

After the combined incidental effect, according to the scenario S-II.1, the different values of  
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Fig. 8 Scenario S-II.1, axial forces in the hoisting jib support tie rod E-17 for three carrying capacities 

 

 
Fig. 9 Scenario S-II.1, axial force in the counter-jib support tie rod E-158 for the capacity of 10 tons 

 

 

internal dynamic forces in the tie rod E-17, at different carrying capacities, can be practically 

observed only in the second part of simulation (see Fig. 8). The indicator of these differences is the 

internal dynamic force FSt-PF. In an area of the diagram after the incident t>40.83 s, it applies                                               

         
t
PFSt

t
PFSt

t
PFSt FFF 1035292

  ..
                              (15) 

The diagrams of axial force in the counter-jib tie rod E-158 for different carrying capacities are 

very similar so they can be replaced with one, e.g. the diagram for the carrying capacity of 10 t on 

the reach of 14.8 m (see Fig. 9). The intensity of maximal dynamic force FD,max was more 

pronounced than in the previous scenarios. 

The dynamic coefficients KD were higher by up to 20% in the simulation case S-II.1 in relation 

to the previous scenarios (see Table 1). It indicates that the incidental scenario S-II.1 was the 

unfavourable scenario with the aspect of geometric sensitivity in relation to the dynamic structural 

changes. Also, the largest vertical translation was found in the S-II.1 scenario. 

Fig. 10 shows the total translations of the end node N-1409 of hoisting jib under the load of 

mass m=10 t at the reach L=14.8 m. This load/reach corresponds to higher dynamic coefficients of  
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Fig. 10 Scenario S-II.1, total translations of the node N-1409 (dominantly vertical movement) 

 

 
Fig. 11 Scenario S-II.1, total translations of the node N-958 (dominantly lateral movement) 

 

 

the hoisting jib tie rod and the counter-jib tie rod shown in Table 1. The dominant direction of 

translation is the vertical direction. The largest translation was caused by incidental dynamics in 

the node N-1409. This translation took the value Smax(N-1409)=0.84 m (see Fig. 10), while the 

difference of static deflection, prior and after the interruption of a counter-jib support tie rod and 

the sudden unloading, took the value Sst(N-1409)=0.22 m. The translations of the end node of 

hoisting jib can be larger in cases of overload at the maximal range. 

The lateral translation of the tower top caused by the interruption of a support tie rod was not 

large and the largest amounted Smax(N-958)=0.18 m (see Fig. 11). The lateral translation of the 

tower top after the incident and structural calming due to the disturbed geometrical symmetry 

amounted Sst(N-958)=0.03 m. 

 
6.3 Dynamic coefficients 
 

The diagrams in Fig. 12 show the dynamic coefficients KD for two selected responsible  
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Fig. 12 Dynamic coefficients KD for the hoisting jib tie rod (left) and the counter-jib tie rod (right) 

 

 

structural elements, E-17 and E-158. The coefficients KD were obtained by simulation of three 

incidental scenarios with combined loads. The range of corresponding carrying capacities on the 

abscissa of the diagrams is shown, and the values of the coefficient KD on the ordinate are shown. 

The greatest dynamic changes are caused by the incidental effect S-II.1 (tie rod fracture and 

load striking the ground) at all load ranges. This is shown in Fig. 12 by the curve KD,S-II.1. The 

regime S-I.2 followed in the case of the hoisting jib support tie rod E-17 as well as the counter-jib 

support tie rod E-158 only for bigger loads at shorter ranges. Dynamics of the regime S-I.1 exerted 

least influence on the structure. Comparing the two responsible elements, one can see that the 

counter-jib tie rod E-158 generally has higher sensitivity on incidental dynamics in 78% of the 

observed combined loads. 

 

 

7. Conclusions 
 

• The developed FEM model of a structure of heavy lifting and moving machinery is 

experimentally and numerically verified. This model is proposed for use due to its completeness 

and small geometric approximations. The model introduces even very small constructive elements 

and, accordingly, faithfully represents the real structure. 

• The composed FEM model of the crane can have the universal use. The model can be applied 

very easily and quickly in various simulation situations performing simple adjustment. Such 

situations are: a failure of any other structural element, earthquake, collision, etc. New incidental 

situations imply the formation of own load models.  

• Contrary to high numerical vibration amplitudes in some regimes, the experimental tests at 

the extreme loads did not cause the dynamic instability of the structure. 

• The measured stresses of the structure take place under the border of elasticity and they 

correspond to the numerical values. The stress obtained in the simulation can be an additional 
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criterion to design of a frame structure in which a local damage, caused by incident, is 

compensated by surrounding structural elements (redundancy). 

• The deflections of the jib end obtained in the simulation correspond to the measured values 

and they indicate the area of higher amplitudes. 

• The analyzed dynamical simulation regimes of incidental effects showed a more expressed 

ability to the redundancy of local structure and they did not jeopardize the global structural 

stability. 

• The dynamic responses of the main structure elements were determined clearly by 

comparison of the simulation effects (regimes). The sensitivity of these elements on dynamic 

changes under the external perturbation effects was also determined. Thus the situation which 

requires the largest dynamic adjustment of the structure was found. It was an incidental situation in 

which the fall of load caused the interruption (fracture) of a support tie rod. 
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