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Abstract.  The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in 
microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of 
microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses 
of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite 
element formulation of viscoelastic beams in combination with the fractional derivative constitutive 
equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive 
equations. The electric force acting on the microbeam is introduced and numerical methods for solving the 
nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical 
response are described. The deflected configurations of a microbeam for different purely DC voltages and 
the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of 
the present analysis is confirmed by comparing the results with those of the corresponding cases available in 
the literature. 
 

Keywords:  viscoelastic microbeam; fractional derivatives; finite element method; electrical actuation; AC 
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1. Introduction 
 

The viscoelastic behavior is observed in a number of materials which are used in a wide range 

of applications such as disks in human spine, polymers, elastomers, automobile bumpers, metals 

and alloys at elevated temperatures, concrete, soils, road construction and building materials, 

biological tissues and Micro-Electro Mechanical Systems (MEMS) structures. The mechanics of 

viscoelastic media has been investigated by many researches in the last few decades. Ferry (1980) 

investigated linear viscoelasticity of amorphous polymers. Mainardi (2010) studied the 

connections among fractional calculus, linear viscoelasticity and wave motion. He presented how 

fractional calculus provides a suitable method for describing dynamical properties of the linear 

viscoelastic media including problems of wave propagation and diffusion. Marques and Creus 

(2012) developed a presentation of viscoelasticity theory oriented toward numerical applications.  
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The effect of viscoelastic behavior of MEMS structures has been the focus of many researches 

in the last few decades (Bethe et al. 1990, Teh and Lin 1999, Elwenspoek and Jansen 2004, Tuck 

et al. 2005). The viscoelastic properties of nine silicone-, polysulfide-, and polyether- based 

impression materials were determined using creep tests by Goldberg (1974). He argued that during 

deformation the materials demonstrated linear viscoelastic behavior and permanent deformation in 

these materials is a result of lack of recovery of elastic deformation as well as viscous flow. Fu and 

Zhang (2009) studied static and dynamic responses of an electrically actuated microbeam 

including viscoelastic effect. On the basis of the Euler-Bernoulli model, nonlinear static and 

dynamic responses of a viscoelastic microbeam under two kinds of electric forces (a purely direct 

current (DC) and a combined current composed of a DC and an alternating current (AC)) were 

studied by Fu and Zhang (2009). A new beam model was developed for the viscoelastic 

microbeam based on a modified couple stress theory by Zhang and Fu (2012). Rezazadeh et al. 

(2012) studied parametric oscillation of an electrostatically actuated microbeam using variational 

iteration method. In that paper, a micro-beam suspended between two conductive micro-plates, 

subjected to a same actuation voltage is considered. Bayat et al. (2013) studied vibration of an 

electrostatically actuated microbeam by an analytical approach. 

Since the stress state in a viscoelastic material at the current time depends on the stress and 

strain histories, the constitutive equation should include time. Describing the dynamic properties 

of viscoelastic materials with weak frequency dependence, using integer derivative operators, 

convolution integral or internal variables, requires a great number of high-order time derivatives 

acting on both stress and strain. By using fractional derivative operators instead of integer 

derivative operators in the constitutive equations of viscoelasticity, one can overcome this 

difficulty. It should be noted that different fractional models have been developed to describe the 

viscoelastic behavior. Furthermore, the fractional constitutive equations improve curve-fitting 

properties, especially when experimental data from long time intervals or spanning several 

frequency decades need to be fitted (Schmidt and Gaul 2002). Fractional derivatives were used for 

the description of viscoelastic materials and the results obtained were in good agreement with the 

experimental ones (Caputo and Mainardi 1971, Caputo 1974). Bagley and Torvik (1983) reported 

a physical justification for the concept of fractional derivatives in combination with viscoelasticity. 

The fractional derivative Zener model which is characterized by four-parameters has been 

introduced and used in (Rogers 1983, Bagley and Torvik 1986, Pritz 1996). Moreover, the 

fractional derivative models characterized by five parameters have been presented and used by 

Pritz (2003). In another study, the transient response of viscoelastic materials involving fractional 

integro-differential operators was studied by Padovan (1987) using finite element method. 

Hereditary integral fractional constitutive equations were presented by Koeller (1984) and their 

implementation into finite element formulation has been investigated by Enelund and Josefson 

(1997). Enelund et al. (1999) studied the finite element implementation of fractional derivative 

viscoelastic formulations using the concept of internal variables. Implementations of fractional 

constitutive equations into Boundary Element Method have been presented for the time and 

frequency domains (Gaul and Schanz 1999, Gaul 1999). Three-dimensional fractional constitutive 

equations based on the Grünwaldian formulation have been derived and their implementation into 

an elastic finite element code was demonstrated by Schmidt and Gaul (2002). A finite element 

formulation for transient dynamic analysis of viscoelastic sandwich beams was proposed by 

Galucio et al. (2004). An electromechanically coupled finite element model to handle active–

passive damped multilayer sandwich beams, consisting of a viscoelastic core sandwiched between 

layered piezoelectric faces was proposed by Trindade et al. (2001). A finite element formulation 
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for dynamic transient analysis of a damped adaptive sandwich beam composed of a viscoelastic 

core and elastic-piezoelectric laminated faces, using fractional derivative model to characterize its 

viscoelastic behavior in time domain was demonstrated by Galucio et al. (2001). Bahraini et al. 

(2013) investigated large deflection of viscoelastic beams using a fractional derivative model, and 

developed a finite element implementation for nonlinear analysis of viscoelastic fractional models 

using the storage of both strain and stress histories. Also, Bahraini et al. (2014) studied application 

of fractional-order PI
λ
D

μ
 controllers for vibration suppression of viscoelastic beams. 

In this paper, the fractional four-parameter model of viscoelastic materials is applied to obtain 

constitutive equations of microbeams. The electric force in microbeam is defined for transverse 

loading.  For quasi-static response of the microbeam a purely DC voltage and for dynamical 

response combination of those are considered. Quasi-static and dynamical analyses are separated 

in two sections.  In one section, based on Euler-Bernoulli assumption, first, the kinematics of the 

viscoelastic beam and its displacement field are presented. Then, using the nonlinear strain-

displacement relations, a finite element formulation for quasi-static analysis is presented. Since the 

governing algebraic equations are nonlinear, Picard method is used to solve the equations. In the 

next section, based on Euler-Bernoulli assumption, a finite element formulation for transient 

dynamic analysis of viscoelastic microbeams using fractional derivative constitutive equations is 

developed. The equation of motion in the dynamical analysis is nonlinear, too; therefore, an 

iterative method which can be considered as a modification of Newmark method is described to 

solve the equation. Two examples of a viscoelastic microbeam under a purely DC voltage (Fu and 

Zhang 2009) and a combined DC and AC voltage (Rezazadeh et al. 2012) are chosen to validate 

our formulations for quasi-static and dynamical responses of microbeam, respectively. The 

deflected configurations of a microbeam for three different voltages and three different dielectric 

constants of the gap are presented. The effect of order of fractional derivative in quasi-static 

response of the cantilever viscoelastic microbeam, is investigated. Furthermore, the dynamic 

response of a microbeam under a combined DC and AC voltage is presented. 

 

 

2. Fractional viscoelastic constitutive equations 
 

There are different definitions of fractional derivatives (Oldham and Spanier 1974). For 

developing numerical algorithms, the Grünwald definition, can be implemented easily based on 

the generalization of the backward difference. This definition of fractional derivative has the 

following form (Podlubny 1999) 
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where, α is the order of fractional derivative and Aj+1  is called the Grünwaldian coefficient which 

is defined in term of gamma function 

)1()(

)(
1 




 j

j
j

A



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Fractional derivatives can be calculated by approximating the infinite sum in Eq. (1) by a finite 

sum, such that Nl<N <∞, 
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The Grünwald coefficients are weighting functions which decrease with growing j. The weights 

Aj+1 are assigned to the values f(t-jt/N), so the effect of the values of function f for small j’s, in 

calculating the fractional derivative is larger.  

The constitutive equation of the four-parameter model (one-dimensional viscoelastic model) is 


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where σ and ε are the stress and the strain, E0 and E∞ are the relaxed and non-relaxed elastic 

moduli, and τ is the relaxation time. By introducing the constants 

 EbEca    and, 0  (5) 

Eq. (4) can be rewritten as 
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3. Electrical actuation 
 

In this section two model of electrically actuated microbeams, a clamped-free and a clamped-

clamped microbeam are studied. Consider a cantilever microbeam with length L, width b, 

thickness h, and gap g0 as shown in Fig. 1.  

The electric force applied on the microbeam can be defined as (Fu and Zhang 2009) 
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 (7) 

 

 

 

Fig. 1  Electrically actuated cantilever microbeam 
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Fig. 2  Electrically actuated clamped-clamped microbeam 

 

 

Model of a clamped-clamped microbeam is illustrated in Fig. 2 which is symmetrically located 

between two electrodes. The electric force applied on the microbeam can be defined as 

(Rezazadeh et al. 2012) 
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where εv is the dielectric constant of the gap medium and V is the voltage difference between the 

microbeam and infinite ground plane. The voltage is composed of a DC polarization voltage and 

an AC voltage 

tVVV AD  cos  (9) 

where VD is the DC voltage, VA and Ω are the amplitude and frequency of the AC voltage, 

respectively. In this paper, for quasi-static response of the microbeam a purely DC voltage and for 

dynamical response combination of both voltages are considered. 

 

 

4. Quasi-Static response 
 

By using the Grünwald definition of the fractional derivative, Eq. (6) can be represented as 
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Since A1=1, Eq. (10) can be rewritten as 
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which can be solved explicitly for σ(t) as 
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This relation can be simplified using the following abbreviations 
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(14) 

The stress and strain histories can be seen in the right hand sides of Eq. (14), this equation is 

used as the constitutive equation of viscoelastic beam in our nonlinear analysis.  

 
4.1 Strain-Displacement relation 
 

Based on Euler-Bernoulli assumption, the kinematics of the viscoelastic beam and its 

displacement field can be clearly illustrated as seen in Fig. 3. 

The bending of beam with moderately large rotations but with small strains can be derived 

using the following displacement fields 

)(0,)( 032
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Fig. 3  Undeform and deform geometries of a viscoelastic beam 
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where (u1, u2, u3) are the total displacements along the coordinate directions (x, y, z), (u0, w0) are 

the axial and lateral displacements of a point on the mid-plane of the undeformed beam. Using the 

nonlinear strain-displacement relation 
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and omitting the high order terms but retaining only the square of du3/dx (representing the rotation 

of the transverse normal line in the beam), we obtain 
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Other strains are zero. Note that the notations x1=x, x2=y, and x3=z are used. These strains are 

known as the von Kármán strains (Reddy, 2004). 

 
4.2 Finite element formulation 
 

This part presents a finite element formulation for the problem. Viscoelastic constitutive 

equations should be integrated into finite element formulations. The viscoelastic model used to 

describe the behavior of the beam is a four-parameter fractional derivative model. In order to 

implement the nonlinear viscoelastic model into the finite element formulation, the Grünwald 

definition of the fractional operator is employed. The generalized displacements 

 Te wuu 00  (18) 

are discretized using linear shape functions for u0 (axial deformation) and cubic or Hermite shape 

functions for w0 (lateral deformation). The generalized displacements are related to the elementary 

degrees-of-freedom vector 
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By introducing Hx and Hz as 
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the governing equations can be written as  
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The variation of Eq. (24) can be written as  
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By using the principle of virtual work  
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Now by replacing Eqs. (24)-(25) into Eq. (27), we obtain  
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By substituting the strain and stress histories in the right hand sides of Eq. (28), the equilibrium 

equation will be in the following form  
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where the element stiffness matrix K
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
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


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




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


     (31) 

The Grünwaldian formulation of fractional derivatives requires the strain and stress histories at 

equivalent discrete times. The actual displacements and strains are established at the end of each 

time step. The constitutive Eq. (14) as a function of the actual strains and the strain and stress 

histories is substituted in Eq. (31). 

 
4.3 Method of solution  
 

Note that the Eq. (29) is nonlinear, since the element stiffness matrix K
*
 and the element force 

vector F
*
 are functions of the unknown vector q. The assembled nonlinear equations must be 

solved, after imposing boundary conditions, by a suitable method. Here, the Picard iterative 

method is used in which we seek an approximate solution to the nonlinear algebraic equations by 

linearization (Reddy 2006). The iterative method is outlined using a nonlinear matrix equation of 

the form 

)()()( qFqFqqK extxxxx   (32) 

where q is the vector of unknown nodal values.  

 
 
5. Dynamical response 

 

Let us introduce the internal variable  , as a strain function 




E


  (33) 

such that the constitutive Eq. (6) can be rewritten as 










0

0

E

EE

dt

d 
   (34) 
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Using the Grünwald approximation with tNt / , we have: 







 



lN

j

jn
j

nn Ac
E

EE
c

1

1
1

1

0

01 )1(   (35) 

where c is a dimensionless constant given as 









t
c


  (36) 

 

5.1 Strain-Displacement relation 
 

Consider the kinematics of viscoelastic beam as shown in Fig. 2. The displacement field can be 

written as Eq. (15). Using Eq. (16) and omitting the high order terms, the strain-displacement 

relation can be written as: 

2

0
2

0
11

dx

wd
z

dx

du
xx  

                                                     
(37) 

 
5.2 Finite element formulation 
 

This part presents a finite element formulation for transient dynamic analysis of viscoelastic 

microbeams using fractional derivative constitutive equations. The viscoelastic model used to 

describe the behavior of the core is a four-parameter fractional derivative model. In order to 

implement the viscoelastic model in the finite element formulation, the Grünwald definition of the 

fractional operator is employed. To solve the equations of motion, a direct time integration method 

based on the implicit Newmark scheme in conjunction with an iterative method, is used. One of 

the main characteristic of the proposed algorithm lies in the storage of displacement history only, 

reducing considerably the numerical efforts related to the non-locality of the fractional operators. 

The generalized displacements  Te wuu 00  are discretized with linear (axial displacement) 

and cubic (lateral deflection) shape functions. They are related to the elementary degrees-of-

freedom vector  Te wwuwwuq 222111
  by ee qHu  , where the interpolation 

matrix H is defined in Eq. (21). 

The kinematic energy of viscoelastic beam can be written as 

 
l

dxwuAT
0

22 )(
2

1
  (38) 

by using finite element discretization, the variation of kinetic energy will be obtained as following 

form 

  eL TTe qdxHAHqT
e 

0   (39) 

The governing equations can be written as  
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  ee
zx

e
z

e
x

e
xx qHqHzHqHzqH    (40) 

the variation of Eq. (40) can be written as  

  ee
zx

e
z

e
x

e
xx qHqHzHqHzqH    (41) 

The internal energy of viscoelastic beam by using finite element discretization can be written as 

      eL

z
T

zx
T

x
eL

z
T

zx
T

x

Te qdxHHIHHAEqdxHHIHHAEqU
ee

   00


   

(42) 

By using the principle of virtual work, the governing equation will be obtained as 

e
n

e
ext

e
n

ee
n

e FFqKqM 111 )(  
                                               

(43) 

The stiffness matrix K
e
 and the loading vector e

nF 1 , arising from the viscoelastic behavior of 

the microbeam, are given by 

      
eL
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x
e dxHHIHHAEEEcK

000                                 
(44) 
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e qAdxHHIHHAEcF
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(45) 

the element mass matrix is given by 

 
eL

z
T
zx

T
x

e dxHHHHAM
0

)(
                                             

(46) 

Also, “inelastic displacements” by using Eq. (40) will be obtained as 


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(47) 

 

5.3 Method of solution  
 

Note that the element force matrix Fext in the equation of motion, Eq. (43), is a function of the 

unknown value w. The assembled nonlinear equation of motion must be solved, after imposing 

boundary conditions, by a suitable method. Here, we describe an iterative method which can be 

considered as a modification of Newmark method in (Galucio et al. 2004). The iterative method is 

outlined using a nonlinear matrix equation of the form 

FqFKqqM ext  )(
 

(48) 

where q is the vector of unknown nodal values. The Newmark scheme for implementation in 

structural dynamics with some modifications involves the following algorithm 

1. Initialize at t=0: 

0
0

000
1

000 )1(),(,, q
E

EE
cqqKFMqqq



 
  
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2. Enter time step loop, assuming that at tn, the state is completely known: 

nnnn qqqq ,,,   

Predict displacement and velocity 

nnn
pred
n qtqtqq  2

1 )5.0(    

nn
pred
n qtqq   )1(1   

Calculate the modified loading 


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EEEc
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11

00
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Form residual 

pred
nnn qKFR 111   where  extnn FFF   11  

In this step since the vector Fn+1 is unknown, the direct iteration method is based on the scheme 

pred
n

pred
rrr qKqFR 11 )(    (49) 

where 
pred
rq  denotes the solution at the rth iteration in the next step. Thus, in the direct iteration 

method, the coefficients Fi (i=1,…,n) are evaluated using the solution 
pred
rq  from the previous 

iteration, and the solution at the (r+1)th iteration is obtained by the Newmark method. At the 

beginning of the iteration (i.e., r=0), we assume a solution 
predq0  based on our qualitative 

understanding of the solution behavior. For example, 00 predq  would yield the linear solution of 

the problem at the end of the first iteration, 
predq1 . The iteration is continued until the difference 

between 
pred
rq  and 

pred
rq 1  is reduced to a preselected error tolerance (Reddy, 2006). The error 

criterion has the form 

pred
r

pred
r

pred
r

pred
r qqqq 111 1.0)(    (50) 

Evaluate acceleration by solving the following linear system 
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Evaluate the inelastic displacements history by 
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3. Update time step and return to 2. 
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6. Validation 
 

An example of a viscoelastic microbeam under a purely DC voltage (Fu and Zhang, 2009) was 

chosen to validate our formulation for a quasi-static response of microbeam. The length, width and 

thickness of the microbeam are L=80 μm, b=10 μm, h=1 μm, respectively, and g0=3 μm. The beam 

is modeled by 10 elements to achieve the convergency; the material properties are taken as 

E0=160.8 GPa, E∞=64.32 GPa, εv=8.854×10
-12

 C
2
N

-1
m

-2
, ρ=2231 kg/m

3

 
and υ=0.22. Moreover, the 

DC voltage is 37.6 volts. It should be noted that when a wide microbeam (b≥5h) is considered, the 

relaxation function should be changed into E(t)/(1−υ
2
), where υ denotes the Poisson’s ratio which 

is assumed to be time independent (Fu and Zhang, 2009). The tip displacement at t=4000 T for 

α=0.5 is obtained 0.42, which is in good agreement with the tip displacement (0.4) in the example 

presented in (Fu and Zhang 2009).  IEbhlT 0
4 /  

A clamped-clamped microbeam symmetrically located between two electrodes is chosen from 

(Rezazadeh et al. 2012) to validate the dynamical response of microbeam. The Newmark 

parameters β=1/4 and γ=1/2 are chosen in order to obtain an unconditionally stable and second 

order accurate scheme (Galucio et al. 2005). The length, width and thickness of the microbeam are 

L=350 μm, b=100 μm, h=3 μm, respectively, and g0=1 μm. The material properties are taken as 

E0=169.6 GPa, E∞=4E0, εv=8.854×10
-12

 C
2
N

-1
m

-2
, ρ=2231 kg/m

3
 and υ=0.06. The beam is modeled 

by 6 elements to achieve the convergency. The DC and AC voltages are 25.58 and 5.66 volts, 

respectively. The tip displacement at t=150 T for α=0.5, ω/T=10 and Nl=75 is presented in Fig. 4, 

which is in good agreement with the example presented in (Rezazadeh et al. 2012). 

 

 

7. Simulation results 
 

The deflected configurations of a cantilever microbeam for three different voltages are plotted 

in Fig. 5. The material properties are a=200, b=1.3518×10
14

 N/m
2
, c=1.6898×10

11
 N/m

2
, α=0.5, 

and the beam is under three purely DC voltages 10, 15 and 20 volts. 

 

 

  

(a) fractional viscoelastic model (b) (Rezazadeh et al. 2012) 

Fig. 4  Comparison of dynamic response of a microbeam 
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Fig. 5  Geometrical configurations of a cantilever microbeam for three different voltages 

 

 

Fig. 6  Geometrical configurations of a cantilever microbeam at different values of the gap 

 

 

It can be seen that with growing the DC voltage of microbeam, the transverse deflection 

increases. 

The deflected configurations of a microbeam for three different values of the gap are presented 

in Fig. 6. The DC voltage is chosen as 10 volts. The effect of order of fractional derivative in 

quasi-static response of the cantilever viscoelastic microbeam, is compared in Fig. 7. 

It is observed from Fig. 6 that with growing the gap, microbeam deflection decreases. The 

values of gap are 2, 2.5 and 3 μm. Deflection of a viscoelastic microbeam subjected to the 

electrical force is presented in Fig. 7. The orders of fractional derivatives are 0.3, 0. 4 and 0.5. It 

can be seen that with growing the order of fractional derivative, microbeam deflection increases. 
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Fig. 7 Geometrical configurations of a cantilever microbeam at different orders of fractional derivative 

 

 

Fig. 8  Dynamic response of a clamped-free microbeam under a combined DC and AC voltage 

for three different AC voltages 

 

 

The dynamic response of a clamped-free microbeam for Nl=400, VD=35, and different AC 

voltages VA=1 2, and 3, is plotted in Fig. 8. The material properties are E0=35 GPa, E∞=166 GPa, 

εv=8.854×10
-12

 C
2
N

-1
m

-2
, ρ=2231 kg/m

3
, υ=0.22, ω/T=10 and α=0.5. The length, width and 

thickness of the microbeam are L=80 μm, b=10 μm, h=1 μm, respectively and g0=3 μm. The 

Newmark parameters are β=1/4
 
and γ=1/2. The dynamic response of a clamped-free microbeam 

for three different values of the gap is presented in Fig. 9. The AC voltage amplitude is chosen as 

2 volts. The effect of order of fractional derivative on dynamic response of the clamped-free 

microbeam, is illustrated in Fig. 10. 
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Fig. 9 Dynamic response of a clamped-free microbeam under a combined DC and AC voltage 

for three different values of the gap 

 

 

Fig. 10 Dynamic response of a clamped-free microbeam under a combined DC and AC voltage 

for three different orders of the fractional derivative 

 

 

The dynamic response of middle point of a clamped-clamped microbeam for Nl=3000, VD=35, 

and different voltages VA=2, 4 and 6 is plotted in Fig. 11. The material properties are E0=35 GPa, 

E∞=166 GPa, εv=8.854×10
-12

 C
2
N

-1
m

-2
, ρ=2231 kg/m

3
, υ=0.22, ω/T=10 and α=0.5. The length, 

width and thickness of the microbeam are L=80 μm, b=10 μm, h=1 μm, respectively and g0=3 μm. 

The Newmark parameters are β=1/4
 
and γ=1/2. The dynamic response of a clamped-clamped 

microbeam for three different values of the gap are presented in Fig. 12. The AC voltage 

952



 

 

 

 

 

 

Analysis of an electrically actuated fractional model of viscoelastic microbeams 

 

Fig. 11 Dynamic response of a clamped-clamped microbeam under a combined DC and AC 

voltage for three different AC voltages 

 

 

Fig. 12 Dynamic response of a clamped-clamped microbeam under a combined DC and AC 

voltage for three different values of the gap 

 

 

amplitude is chosen as 2 volts. The effect of order of fractional derivative on dynamic response of 

a clamped-clamped microbeam, is illustrated in Fig. 13. The effect of DC and AC voltages on 

transverse deflection and the effect of vibration at the end of clamped-free microbeam, 

respectively, can be observed in Figs. 8-10. Additionally, Figs. 8-13 show that due to viscoelastic 

behavior of the microbeam, the vibration of microbeam is damped after a while.  From Figs. 11 

and 12, it can be observed that the amplitude of the vibrations increases with raising the AC 
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Fig. 13 Dynamic response of a clamped-clamped microbeam under a combined DC and AC 

voltage for three different orders of the fractional derivative 

 

 

voltage amplitude, while it decreases by adding to the gap span. Moreover, changing the AC 

voltage and the gap, do not cause any change in the period of the vibrations. Furthermore, the 

effect of variation in the order of fractional derivative can be seen in both amplitude and frequency 

of vibrations in Fig. 13.  

 

 

8. Conclusions 
 

A finite element formulation of viscoelastic microbeams using fractional derivative constitutive 

equations has been developed. The four-parameter fractional derivative model has been used to 

describe the constitutive equation. The electrical force acting on the microbeam was defined. The 

kinematics of the viscoelastic microbeam in the quasi-static and dynamical analysis based on 

Euler-Bernoulli assumption has been shown. To solve the nonlinear algebraic equations in quasi-

static analysis, the Picard iterative method has been used. An iterative method which can be 

considered as a modification of Newmark method was described for solving the equation of 

motion in dynamical analysis. The validation was provided good agreement with two examples 

which have been chosen to validate the described formulation. The deflected configurations of a 

microbeam for three different voltages and three different values of the gap were presented. The 

effect of the increase in the order of fractional derivative in quasi-static response of the cantilever 

viscoelastic microbeam, was presented. In addition, the dynamic response of clamped-free and 

clamped-clamped microbeams for three different voltages and three different values of the gap 

were demonstrated. The effects of the increase in the order of fractional derivative on dynamic 

response of the clamped-free and clamped-clamped viscoelastic microbeams, were studied. The 

effects of DC and AC voltages in transverse deflection, vibration at the end and middle points of 

the microbeams were also investigated. Finally, we think the results presented in this investigation 

would be helpful for both engineering applications and scientific studies. 
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