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Abstract.  Large space structures may have resonant low eigenvalues and often these appear with 
closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural 
frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause 
structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is 
well-conditioned, so a method is presented to design the feedback control law of intelligent structures with 
closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with 
closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition 
method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated 
eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with 
repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system 
on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the 
original system, the first order perturbations of eigenvalues are discussed when the parameter modifications 
of the system are introduced. Numerical examples are given to demonstrate the application of the present 
method. 
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1. Introduction 
 

Contemporary structures in many engineering fields may have large amplitude vibration when 

there is a small external excitation that may cause structural instability. Specially, large space 

structures may have resonant low eigenvalues and often these appear with closely-spaced natural 

frequencies (Rao and Pan 1990, Rao 1994). In this case, one important characteristic may arise 

(Chen 1992, Liu 1999): if the small changes are made on the structural parameters, the 

eigenvectors corresponding to the multiple eigenvalues may have a jump because in this case 

eigenvector corresponding to distinct eigenvalues of the real symmetric matrix is well-conditioned 

and to the closely-spaced eigenvalues may be ill-conditioned which depend on the distinctness of 

eigenvalues. The vibration control analysis of structures with closely-spaced natural frequencies 

has been an active research area. Controllability and observability criteria for multivariable linear 

second-order models are discussed (Laub et al. 1984). The controllability and its measurement of 
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repeated eigenvalues is discussed (Liu et al. 1994) but does not design the feedback control law of 

the system with repeated eigenvalues. Perturbation analysis of vibration modes with close 

frequencies is discussed (Chen et al. 1993). The condition for the existence of output feedback 

gain matrices is discussed to arrive at the desired eigenvalue placements (Maghami et al. 1997). A 

method is developed for syntheses of output feedback gains (Srinathkumar et al. 1978). A variable 

gain algorithm for direct velocity feedback to suppress transient response of structures with only 

two closely spaced natural frequencies is proposed on the basis of perturbation solutions of the 

initial value problem (Abe 1998). A technique for determining the optimum locations of 

piezoelectric sensors and actuators of intelligent structures is presented with element sensitivities 

of the singular-value which are used to measure the observability and controllability of intelligent 

structures (Chen et al. 2000). The active control of the intelligent structures with the uncertainties 

is studied (Cao et al. 2003), but the problem about systems with closely-spaced eigenvalues is not 

mentioned. In order to get practical conditions of structural controllability, two necessary 

conditions of controllability of systems with repeated eigenvalues (regular and defective systems) 

are discussed (Yao et al. 2011). An isoparametric element method was constructed to solve 3-D 

crack problems (Cao et al. 2012), this method can be widely used in the numerical analysis of 3-D 

crack fields in engineering but not mention of vibration modes with closely-spaced natural 

frequencies. A recursive procedure for designing the feedback controller of the multi-input system 

with defective repeated eigenvalues was presented (Chen 2007). A method to calculate the 

equivalent stiffness of the wheel center was obtained with the stiffness of the bushings (Zhao et al. 

2012), which would be used in suspension structures. An influence of the frequency intensity on 

the controllability of structures with closely-spaced natural frequencies was investigated (Xie et al. 

2009). A new method was presented to define close modes based on mode shape sensitivity to 

structure parameters，which emphasized the impacts of close modes on control (Liu and Hu 2010). 

A dimensional decomposition method for obtaining probabilistic descriptors of real value 

eigenvalues of positive semi-definite random matrices was presented (Rahman 2007). A method 

was developed to optimally locate actuators and sensors for structures with close modes (Liu and 

Hu 2010). 

However, vibration modes with closely-spaced natural frequencies often occur in some 

structural systems, such as multispan beams, some nearly periodic structures and large space 

structures. Owing to the coupling among modes with closely-spaced natural frequencies, each 

eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned and subspace to an 

invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned. That is why 

the method to deal with vibration control of structures with distinct eigenvalues can not be used to 

deal with vibration control of structures with closely-spaced eigenvalues. It is very necessary to 

develop the analysis approach of vibration modes of intelligent structures with closely spaced 

eigenvalues. The main idea in this paper is how to design the feedback control law of intelligent 

structures with closely-spaced eigenvalues. 

 

 

2. Eigenproblem with closely-spaced eigenvalues 
 

2.1 Motion equations of intelligent structures 
 

The vibration control equations of intelligent structures with distributed sensors and actuators 

are given (Chen et al. 1999) as follows 
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where q is a displacement vector; M0, K0 and C0 are the real symmetric mass, stiffness and 

damping matrices of the entire system, ∈R
nn

, respectively; F(t) is a control force vector, ∈R
p
; B0 

is the controllable matrix determined by placements of actuators, ∈R
np

; D0 is the observable 

matrix determined by placements of sensors, ∈R
pn

. If the sensor is not only used for measuring 

the motion, but also for controlling and suppressing the vibration of intelligent structures as the 

actuator, then D0 is written as follows 

Td 00 BD                                   (2) 

Where d is a constant that is concerned with the dielectric constant and the thickness of intelligent 

materials as sensors bonded on the surface of the main structure. 

 

2.2 Transformation of eigenproblem 
 

If the right side of Eq. (1) and C0 are equal to zero, the vibration eigenproblem of Eq. (1) can be 

obtained and written in the partitioned form 

         
     

   








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Where 0 is a diagonal of closely-spaced eigenvalues matrix, ∈R
mm

, 0 is a modal matrix 

corresponding to closely-spaced eigenvalues, ∈R
nm

. A and A are the remaining distinct 

eigenvalue matrix and corresponding modal matrix, respectively. By the spectral decomposition, 

K0 can be expressed as follows 

00000000 )()( MΦΛΦMMΦΛΦMK
T

AAA

T 
                 (4)

 

Let 0 be the average of the closely-spaced eigenvalues 

 m
m

i

i /)(
1

00 


 λλ                                (5) 

thus 0 can be expressed as 

000 ΛIλΛ                                 (6) 

where 

IλΛIλΛΛ )/)((
1

00000 m
m

i

i


                      (7) 

Substituting Eq. (6) into Eq. (4), we have 

000 KKK                                (8) 
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where 
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For the system with K0 given by Eq. (9) and M0, the following equation exists 
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(10)

 

Eq. (10) indicates that the repeated eigenvalues 0 with multiplicity m and corresponding 

eigenvector subspace 0 are the eigensolutions of the system (K0, M0) and A and A are also the 

eigensolutions of the same system. 

As can be seen from Eq. (8) that K0 is equal to the sum of K0 and K0. That is the system (K0 

and M0) with closely-spaced eigenvalues is changed into that (K0 and M0) with repeated 

eigenvalues. At the same time two systems both with closely-spaced eigenvalues and repeated 

eigenvalues have the same eigenvector space ([  A]). This indicates that the dynamic 

characteristics of the system with closely-spaced eigenvalues are the same as those of the system 

with repeated eigenvalue which is equal to the average value of closely-spaced eigenvalues. The 

method to design the feedback control law of the system with closely-spaced eigenvalues can be 

transformed into that to design the feedback control law of the system with repeated eigenvalues. 

 

 

3. Design of the feedback control law of intelligent structures 
 

3.1 Eigenproblem of intelligent structures with repeated eigenvalues 
 

From the above discussion, it can be seen that the eigenproblem of intelligent structures (K0 

and M0) with closely-spaced eigenvalues can be transformed into that (K0 and M0) with repeated 

eigenvalues. Thus the control equation for the system (K0 and M0) with repeated eigenvalues can 

be written as 

)()()()( 0000 tttt FBqKqCqM  

             

        (11) 

where 

000 CCC                                (12) 

or 

000 CCC                                (13) 

As the above discussion, each eigenvector corresponding to closely-spaced or repeated 

eigenvalues is ill-conditioned, and the subspace corresponding to repeated eigenvalues is 

well-conditioned. Although the eigenvectors corresponding to the multiple eigenvalues are not 

unique, the linear combination of 0, denoted by 0, is also the eigenvector associated with 0. 

The eigenproblem of the system with repeated eigenvalues is as follows 
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By Eq. (8), the following equation can be obtained 


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Substituting Eq. (15) into Eq. (14) yields 
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000
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T


                       (16) 

Because  is a small scalar parameter, the norm of matrix K0 is significantly smaller than the 

norm of K0. Thus Eq. (16) can be considered as the perturbation of Eq. (14). Since 0 is the 

repeated eigenvalue with multiplicity equal to m, and 01, 02, , 0m are the eigenvectors 

associated with 0, then the linear combination of 0j(j=1, 2, , m), denoted by 0, is also an 

eigenvector associated with 0, i.e. 

bΦΦ 00                                  (17) 

where 

]  ,  ,  ,[ 0m02010  Φ                           (18) 

1bb
T                                  (19) 

where 

]  ,  ,  ,[ m21 bbbT b                             (20) 

Note that b is arbitrary constant vector. According to the matrix perturbation (Chen1992), we 

obtain the m×m eigenproblem 

1bΛWb                                  (21) 

where 









000

001

)( ΦKΦW

IλΛΛ

T
                           (22) 

Solving the m×m eigenproblem of Eq. (21) yields b. If matrix W has no repeated eigenvalues, 

b can be uniquely determined; if matrix W has repeated eigenvalues, b can be determined through 

the higher order perturbation equations. Here we assume that the matrix W has no repeated 

eigenvalues. 

This completes the computation for 0. The complete algorithm is summarized as follows 
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(1) Compute 

m
m

i

i /)(
1

00 


 λλ   

(2) Compute 

000 )( ΦKΦW T  

(3) Solve the eigenvalue problem 

1bΛWb   

IλΛΛ 001   

1bb
T  

(4) Compute the new eigenvectors 

bΦΦ 00   

 

3.2 Feedback control of intelligent structures with repeated frequencies 
 

Transforming Eq. (11) into the modal coordinates through the coordinate transformation 

)(][)( 0 tt A ηΦΦq                              (23) 

yields 
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where Z=[0A]
T
C0[0A], ∈R

nn
; =[0A]

T
K0[0A], ∈R

nn
; B=[0A]

T
B0, ∈R

np
; 

D=D0[0A], ∈R
pn

. In order to obtain the governing equation corresponding to the repeated 

eigenvalue in modal coordinates, 0(t)= {01(t), 02(t), …, 0m(t)}
T
, Eq. (24) can be rewritten in 

the partitioned form 
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          (25) 

Where A=diag(
2

m+1, 
2

m+2, , 
2

n); A=diag(m+1, m+2, , n); Z0=200Im; 

ZA=diag(2m+1m+1, 2m+2m+2, , 2nn); Im is the m m identity matrix; i is the modal damping 

factor. 0 is the modal matrix and 0=0
2
, which satisfy  
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In the next section we will mainly discuss how to design the feedback control law of systems 

with repeated eigenvalues. Then the observation equation corresponding to repeated eigenvalue 

modes, denoted by Vs0, can be expressed as 

)()( 00000 tts DηηΦDV                          (27) 

and the governing equation corresponding to the repeated eigenvalue in term of modal coordinates 

0(t) can be rewritten as 

)()()(2)( 0

2

00000 tttt mm BFηIηIη                      (28) 

where B= 0
T
 B0, ∈R

mp
 ; D= D00, ∈R

pm
 . Taking the singular value decomposition of B, the 

following equation can be obtained  

T

00 VUB                                 (29) 

Where U0 and V0 are left and right singular vectors of B, respectively. U0∈R
mm

, V0∈R
pp

, 

U0
T
U0=Im V0

T
V0=Ip. 

pm











00

00
, 0=diag(a1,  a2, ,  aa), in which a is the number of 

controllable modes. ai is a measure of the controllability of the ith mode, ai >0. We assume that 

a=p here. Similarly, the singular value decomposition of D can be obtained 

T

0

'

0 UVD                                 (30) 

where 

mp











00

0'

0'
, 0

’
=diag(s1,  s 2, ,  ss), in which s is the number of controllable 

modes. si is a measure of the controllability of the ith mode, si >0. We assume that s=p here.  

It can be seen that Eq. (27) does not illustrate the relation between the feedback control force 

(F(t)) and controllability and that Eq. (26) does not illustrate the relation between Vs and 

observability. In order to reveal the relation between F(t) and controllability and between Vs and 

observability, the modal transformation, 0(t)=U0x(t), can be used, Eq. (28) and Eq. (27) can be 

changed into the following form 


0

2
000 )()()(2)( tfttt mm xIxIx                       (31) 

            
)('

0 tf xV                                 (32) 

where Vf=V0
T
 Vs0, f(t)= V0

T
 F(t). 

It can be seen from Eq. (31) that the controllability of xi can be measured by ai since f(t) is 

equivalent to F(t) in the terms of energy required. The greater ai is, the less energy is required to 

produce the same control effect on xi. Similarly, it can be seen from Eq. (32) that the observability 
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of xi can be measured by si since Vs is equivalent to Vf. The greater si is, the less energy is 

required to observe xi. For a direct output feedback control system, the control force f(t) of Eq. 

(31) is assumed to be the following form 

)()()( '

02

'

0121 ttt ff xGxGVGVGf                  (33) 

where G1 and G2 are the feedback gain matrices of displacement and velocity, ∈R
pp

. Coefficients 

of G1 and G2 are to be determined. From Eq. (33), it can be seen that f(t) is proportional to 0
’
 

when G1, G2, x(t) and x (t) are given. The greater si is, the smaller feedback gain is required to 

produce the same control effect on xi. It is assumed that G1=diag(g11, g12, …, g1p) and that 

G2=diag(g21, g22, …, g2p). Substituting Eq. (33) into Eq. (31), then Eq. (31) can be expressed as 

0)())()()2()( '
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2

0

'

02000  ttt xGIxGIx              (34) 

Eq. (34) can be uncoupled as  

, ..., p, itxgtxgtx iisiaiiisiaii 21  ,0)()()()2()( 1

2

0200         (35) 

The key factor of control and suppression vibration is the damping factor. It is assumed that the 

poles of the closed-loop system are S0j (=-j i), j=1, 2, …, p, j >0. Then we have 
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From Eq. (36) we obtain 
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Substituting Eq.(37) into Eq.(33), the control force F(t) in Eq.(1) is obtained 

)()()( 00

'

02000

'

010 ttt
TTTT
qUGVqUGVF                (38) 

It can be noted that the design of the feedback control law in Eq.(38) is based on the system 

with the repeated eigenvalues that are equal to the average of closely-spaced eigenvalues. Eq.(8) 

indicates that the system with closely-spaced eigenvalues can be referred as the perturbed system 

on the basis of the system with repeated eigenvalues. Therefore, it is necessary to discuss how the 

feedback control force affects eigenvalues of original and perturbed system. 

 

 

4. Perturbation analysis 
 

When the control force F(t) of Eq. (38) is applied to Eq. (11), we have 

0)()()(0  ttt KqqCqM 

                

        (39) 

where 
TT
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'

020000  UGUCC ; 
TT
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'

010000  UGUKK . The eigenvalue 
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problem corresponding to Eq. (39) is 

0])[( 00

2

00  AΦΦKCSSM 

                

        (40) 

Let us introduce a state vector 
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        (41) 

where T is the state transformation matrix, T=[S0I I]
T
; I is the identity matrix. u0 is the 

eigenvectors. Hence Eq. (40) becomes 

0)( 0000  uESA
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        (43) 

If the small changes (C0 and K0) are introduced, the corresponding state equation of Eq.(1) 

is as follows 
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The eigenvalue and eigenvector can be expressed as the power series in , that is 

 2
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         (47) 
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2
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         (48) 

where S0j==-j i. According to the matrix perturbation theory (Chen 1992), the first order 

perturbation of eigenvalues is obtained as follows 

i
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i

i

01

)(

010

)(

1 )( uASEuS  

                 

        (49) 

It is well known that the change of the jth damping factor of the closed-loop system only 

concerns with the real part of 
)(

1

i
S . So we define min=min Re(S1), max=max Re(S1), then the jth 

modal damping factor (j) of the closed-loop system of intelligent structures satisfies the following 
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condition 

maxmin δαηδα jjj 

                  

        (50) 

It can be seen from Eq. (50) that if j is suitably selected, intelligent structures will have 

enough dynamic stability tolerance. When the small modifications (K1, M1, and C1) are 

introduced to the matrices (K0, M0, and C0), respectively, the state equation of the closed-loop 

eigenproblem of intelligent structures like Eq. (42) becomes as follows 
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     (52) 

It is obvious that Eq. (52) is similar to Eq. (46). There is no difficulties to obtain the first order 

perturbations (S
′
1) of the eigenproblem when parameters of intelligent structures have small 

modifications. Similarly, we can completely obtain the jth modal damping factor (η
′
1) of the 

perturbed system of intelligent structures under the feedback control force. The jth modal damping 

factor (η
′
1) satisfies the following condition 

'

max

'

min δαηδα jjj 

                  

        (53) 

Where δ
′
min=min Re(S

′
1), δ

′
max=max Re(S

′
1). 

Obviously, when j is selected large enough in design of the feedback control force of 

intelligent structures in Eq. (53), perturbed system of intelligent structures may have the dynamic 

stability we need. 

 

 

5. Numerical example 
 

The numerical example of a simply supported plate is given to illustrate the application of the 

method presented in this paper. A rectangular composite plate simply supported with distributed 

piezoelectric polyvinylidene fluoride (PVDF) layers bonded on the lower surface of the main 

structure as sensors and upper surface of the main structure as actuators was used, as shown in Fig. 

1, modeled by 8×8 elements. The mass density of the main structure is 7800 Kg/m
3
, and Young’s 

modulus E1=E2=0.80E+10 N/m
2
, and Poison ratio 12=21=0.29. The mass density of the PVDF is 

1680Kg/m
3
, and Young’s modulus E1=E2=0.20E+10 N/m

2
, and Poison ratio 12=21=0.28. With Z 

direction being the poling direction, dielectric constants 11=22=33=0.1062E-9 and piezoelectric 

constants e31=e32= 0.046, e33= e24= e15=0.0. The plate lamina of the main structure is 6 mm thick 

and two PVDF layers, each is 0.05 mm thick. 

Four sensors and actuators are put at the 19th, 22th, 43th and 46th elements. The thickness of 

the tenth element is 1% more than that of other elements. To design the feedback control law of 

intelligent structures with closely-spaced eigenvalues, three steps for the simply supported plate 

are used. The first step is the eigenvalue analysis with the finite element method, as shown in 

Table 1. In Table 1, 0 denotes the eigenvalues of the original open-loop system, 0 denotes the 

912



 

 

 

 

 

 

Feedback control design for intelligent structures with closely-spaced eigenvalues 

 

Fig. 1 the simply supported plate with S/As 

 
Table 1 The eigenvalues and its perturbation analysis 

mode 
eigenvalues  

0 

 

S1 0 0 0 

1 35.89367 35.89367 35.89367 0 0 

2 227.45967 227.48772 227.48772 -0.02805 0.4148E-04-0.02805i 

3 227.51577 227.48772 288.54541 0.02805 -0.4655E-04+0.02805i 

4 624.99954 624.99954 624.99954 0 0 

5 928.36787 928.55237 928.55237 -0.184 0.5409E-03-0.1840i 

6 928.73679 928.55237 1079.147 0.184 -0.5824E-03+0.1840i 

 

 

corresponding repeated eigenvalues, 0 is the eigenvalues of the closed-loop system, S1 is the first 

order perturbations of eigenvalues. It is clear from Table 1 that the 2nd and 3rd modes form a 

closely-spaced eigenvalue subspace and that the 5th, 6th modes form a closely-spaced eigenvalue 

subspace, where 02=-0.02805, 03=0.02805, 05=-0.184, 06=0.184. It is assumed that the 

damping coefficient of each mode 0 of the main structure is equal to 0.001. The second step is to 

design feedback gain matrices in order to obtain the control force of intelligent structures with  

repeated eigenvalues. It is assumed that j is equal to 0.4 and 2
2 =227.48772, 2

3 =288.54541, 
2
5 =928.55237, 2

6 =1079.1476. The third step is to discuss (1) the first order perturbations of  

original system, listed in Table 1, (2) the perturbations of perturbed systems when the thickness of 

each element is added 5% and  10% to those of the original system, listed in Table 2. 

Similarly, it is assumed that j is equal to 0.6. We can obtain the first order perturbations of 

perturbed systems when the thickness of each element of the simply supported plate is added  5% 

and  10% to those of the original system, respectively, listed in Table 3. 

When there is a velocity impulse at the central point of the simply supported plate, transient 

displacement responses of the central point of the structure are calculated with Newmar’s method 

after the feedback control law is applied. In Table 1, when the eigenproblem of Eq. (1) with 

closely-spaced eigenvalues is substituted by the eigenproblem of repeated eigenvalues, the first 

order perturbation of the eigenvalues (S1) is very small. In Fig. 2, it can be seen that the responses 

of the system with closely-spaced eigenvalues is close to those with repeated eigenvalues when the 
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same feedback control law of Eq. (38) is used to both systems. These results illustrate that the 

feedback control law of intelligent structures with closely-spaced eigenvalues can be replaced by 

the feedback control law of Eq. (38) designed on the basis of the system with repeated 

eigenvalues. 

It can be seen from Tables 2 and 3 that absolute values of real or imaginary parts of the first 

order perturbations of eigenvalues increase as structural parameter modifications increase. When 

the thickness of the simply supported plate decrease, the real parts of the first order perturbations 

of eigenvalues increase, which make modal damping factors smaller than that of the original 

system. From Fig. 3, we can see that, consequently, the effect of the control and suppression 

vibration becomes worse. When the thickness of the plate simply supported increases, the real  

 

 
Table 2 The first order perturbations of Eigenvalues (j=0.4) 

Mode 
'

5%-  1S  '

5%  1 S  '

10%-  1S  '

10%  1 S  

1 0.00776-0.236i -0.00776+0.236i 0.0155-0.47i -0.0155+0.47i 

2 0.00744-0.609i -0.00736+0.553i 0.0148-1.19i -0.0148+1.13i 

3 0.00723-0.621i -0.00733+0.677i 0.0145-1.27i -0.0146+1.33i 

4 0.00664-0.915i -0.00664+0.915i 0.0133-1.83i -0.0133+1.83i 

5 0.00661-1.250i -0.00552+0.891i 0.0127-2.32i -0.0116+1.96i 

6 0.00520-0.951i -0.00636+1.310i 0.0110-2.08i -0.0121+2.44i 

 
Table 3 The first order perturbations of Eigenvalues (j=0.6) 

Mode 
'

5%-  1S  '

5%  1 S  '

10%-  1S  '

10%  1 S  

1 0.0176-0.356i -0.0176+0.356i 0.0353-0.712i -0.0353+0.712i 

2 0.0171-0.910i -0.0171+0.854i 0.0342-1.790i -0.0341+1.740i 

3 0.0169-0.961i -0.0170+1.020i 0.0338-1.950i -0.0339+2.010i 

4 0.0160-1.420i -0.0160+1.420i 0.0319-2.830i -0.0319+2.830i 

5 0.0156-1.860i -0.0146+1.500i 0.0307-3.540i -0.0297+3.180i 

6 0.0141-1.610i -0.0153+1.970i 0.0288-3.400i -0.0299+3.760i 

 

 

Fig. 2 Responses of intelligent structures 
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Fig. 3 Closed loop responses of the original system and the perturbed system using the 

feedback control law designed 

 

 

Fig. 4 Closed loop responses of intelligent structures different damping factors 

 

 

parts of the first order perturbations of eigenvalues decrease, which makes modal damping factors 

larger than that of the original system. Effect of the control and suppression vibration becomes 

better. It can be seen from Fig. 4, the larger j is, the larger effect of the control vibration is. 

When different feedback controls of systems designed according to with distinct eigenvalues 

and repeated eigenvalues are applied to the system with closely-spaced eigenvalues at the same 

feedback gain (G=150), transient displacement responses of the central point of the structure are 

calculated with Newmark’s method, respectively, shown in Figs. 5 and 6. Fig. 5 denotes transient 

displacement responses when feedback control of systems designed according to with distinct 

eigenvalues is applied to the system with closely-spaced eigenvalues. Fig. 6 denotes transient 

displacement responses when feedback control of systems designed according to with repeated 

eigenvalues is applied to the system with closely-spaced eigenvalues. It is seen from Fig. 5 and 

Fig. 6 that the feedback control effect of transient displacement responses to the excitation is 

obvious improvement on control by using the method for repeated eigenvalues compared with  
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Fig. 5 Displacement responses of intelligent structures with no perturbed analysis 

 

 

Fig. 6 Displacement responses of intelligent structures with perturbed analysis 

 

 

responses to excitation by using the method for distinct eigenvalues. The displacement decays 

more rapidly and the vibration of the structure can be effectively suppressed when the feedback 

control is designed according to the repeated eigenvalue system. 

 

 

6. Conclusions 
 

In this paper, a method is presented to design the feedback control law of intelligent structures 

with closely-spaced eigenvalues. To design the feedback control law of intelligent structures with 

closely-spaced eigenvalues, following steps are used. Firstly, the system with closely-spaced 

eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition 

method. Secondly, the computation for the linear combination of 0, denoted as 0, is completed. 

Thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues. 
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Finally, the feedback control law is applied to original system and perturbed system, this paper 

discusses the dynamic stability of the closed-loop system of intelligent structures when small 

modifications of structural parameters are introduced. It can be seen that the feedback control law 

of intelligent structures with closely-spaced eigenvalues can be designed on the basis of that with 

repeated eigenvalues. The numerical results prove that the present method is effective. 
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