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Abstract.  In this present work, Artificial Bee Colony Algorithm (ABCA) is used to optimize the stacking 
sequences of simply supported antisymmetric laminated composite plates with criticial buckling load as the 
objective functions. The fibre orientations of the layers are selected as the optimization design variables with 
the aim to find the optimal laminated plates. In order to perform the optimization based on the ABCA, a 
special code is written in MATLAB software environment. Several numerical examples are presented to 
illustrate this optimization algorithm for different plate aspect ratios, number of layers and load ratios. 
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1. Introduction 
 

As part of the massive introduction of the composite materials within aircraft manufacturing, a 

particular attention is turned on the buckling behaviour and energy dissipation capacities of basic 

structures. In industry, composite laminated materials have proved their efficiency in the 

manufacture of primary structures parts, due to their performance, lightness and form versatility. 

The design of this type of structures requires more and more sophisticated mechanical modeling 

tools for taking into account the particularities of these materials. Numerical methods and notably 

the finite element method are necessary for dimensioning complex composite structures. Due to 

their behaviour complexity, the analysis of laminated plates remains an open research problem. 

     Structural instability becomes an important challenge regarding reliable and feasible design of 

composite plates. Buckling load optimization of the laminated composite plates has been 

extensively studied in the literature. Karakaya and Soykasap (2009) used genetic algorithm and 

generalized pattern search algorithm for optimal stacking sequence of a simply supported 

composite panel subjected to biaxial in-plane compressive loads. Sebaey et al. (2011) maximized 

critical buckling load of laminated composite panels under biaxial compression loads using ant 

colony optimization technique. Raju et al. (2012) presented differential evolution algorithm 

technique to design a rectangular composite plate by optimising the laminate stacking sequence 

whose aim was to maximise the buckling load capability without any failure at ply level. Rao and 

Arvind (2007) investigated optimal stacking sequence design of laminated composite plates for 
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maximizing buckling load using tabu embedded simulated annealing algorithm. Ahmadian et al. 

(2011) presented a totally general approach to optimal design of composite laminates using plar-

genetic method. Wu et al. (2012) investigated buckling load optimization of variable angle tow 

composite plates using genetic algorithm. Narita and Turvey (2004) determined the optimum lay-

ups and maximum buckling loads of symmetrically laminated rectangular plates using layerwise 

optimization. Honda et al. (2007) compared three optimum design approaches to clarify the 

advantages and disadvantages for optimizing the buckling performance of laminated composite 

plates. Iyengar and Vyas (2011) carried out optimization of composite laminates for maximizing 

the buckling load with and without cut-out using genetic algorithm. Honda and Narita (2006) 

proposed an optimum design approach to optimize buckling performance of laminated composite 

plates by using the lamination parameters. Lingaard and Lund (2011) focused on criterion 

functions for gradient based optimization of the buckling load of laminated composite structures 

considering different types of buckling behaviour. Correia et al. (2003) investigated optimal 

design of laminated composite plates with integrated piezoelectric actuators. Refined finite 

element models based on equivalent single layer high-order shear deformation theories were used. 

These models were combined with simulated annealing, a stochastic global optimization 

technique, in order to find the optimal location of piezoelectric actuators and also to find the 

optimal fiber reinforcement angles in both cases having the objective of maximizing the buckling 

load of the composite adaptive plate structure. De Faria (2002) considered optimal design for 

elastic buckling loads of composite plates under uncertain loading conditions. More results can be 

found in the literature. 

This study investigates the applicability of artificial bee colony algorithm to optimize the 

stacking sequences of simply supported antisymmetric laminated composite plates with criticial 

buckling load as the objective functions. The fibre orientations of the layers are selected as the 

optimization design variables with the aim to find the optimal laminated plates. In order to perform 

the optimization based on the ABCA, a special code is written in MATLAB software environment. 

Several numerical examples are presented to illustrate this optimization algorithm for different 

plate aspect ratios, number of layers and load ratios. 

 

 

2. General formulations 
 

A typical laminated composite plate subjected to biaxial loading is shown in Fig. 1. In this 

paper, first order shear deformation theory (FSDT) has been applied in the analytical formulation 

to account for the displacement fields in each plate. The displacement field of this theory is as 

follows 

xo zuu   

yo zvv   

oww                                                                       (1) 

where u, v and w are components of displacement at a general point, whilst uo, vo and wo are 

similar components at the middle surface (z=0), Ψx is the rotation of a transverse normal about the 

axis y and Ψy is the rotation of a transverse normal about the axis x. 

The strain vector ε can be written in terms of the mid-plane deformation 
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Buckling load optimization of laminated plates via artificial bee colony algorithm 

 

Fig. 1 Geometry and loading of a laminated plate 
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where εm is the membrane strain, εb is the bending strain and εs is the shear strain, which can be 

given by 
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The constitutive relationship of laminated composite plates can be expressed as 

 ˆˆˆ D                                                                     (4) 

where 
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where  Txyyxm NNN̂  is the membrane force vector,  Txyyxb MMM̂  is the 
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bending moment vector and  Tyxs QQ̂  is the transverse shear force vector. The membrane 

stiffness (A), the bending stiffness (D), the bending-extensional coupling stiffness (B) and the 

transverse shear stiffness (S) are defined as 
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in which κ1 and κ2 are the shear correction factors. The stiffness in Eq. (6) can be defined as 

 1

1

)(




 kk

N

k

k
ijij hhQA

i

,    2
1

2

1

)(

2

1




  kk

N

k

k
ijij hhQB

i

, 

 3
1

3

1

)(

3

1




  kk

N

k

k
ijij hhQD

i

,    1

1

)(




 kk

N

k

k
ijij hhQS

i

                                    (7) 

where Aij, Bij and Dij  are defined for i, j=1, 2, 6, whereas Sij is defined for i, j=4, 5. hk and hk+1 

denote the distances from the plate reference mid-plane to the outer and inner surfaces of the kth 

layer, respectively. Ni is the total number of layers in the laminated plate and )(k
ijQ  (i, j=1,2,4,5,6) 

are related to the engineering constans for the kth layer. 

The basic equation of buckling analysis in the form of an eigenproblem is 

 G
e KK                                                                   (8) 

where Ke and KG are the elastic and geometric stiffness matrices of the structure, respectively, ϕ is 

the generalized global displacementvector. This eigenproblem is solved by the subspace iteration 

procedure that is an effective method widely used in engineering practice for the solution of 

eigenvalues and eigenvectors of finite element equations. This technique is particularly suited for 

the calculation of a few eigenvalues and eigenvectors of large finite element system. The smallest 

eigenvalue λ1 among eigenvalues obtained by the subspace iteration method is the buckling load 

Ncr. 

 

 

3. Artificial bee colony algorithm (ABCA) 
 

ABCA is a new population based metaheuristic approach proposed by Karaboğa and Baştürk 

(2007). The algorithm, simulates the intelligent foraging behaviour of honey bee swarms, consists 

of three essential components such as; food sources, employed and unemployed bees. Employed 

bees employed at a specific food source which is discovered before. They carry information about 

distance, the direction and profitability of the source and share it with the other bees in the hive. 

Unemployed bees are divided into two groups. One of the groups is called scout bees who search  
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Buckling load optimization of laminated plates via artificial bee colony algorithm 

 

Fig. 2 Flow chart of artificial bee colony algorithm 

 

 

the environment randomly and the other group called onlookers who try to find a food source by 

means of the information given by the employed bees. In the algorithm, the position of a food 

source represents a possible solution to the optimization problem and the nectar amount of a food 

source corresponds to the quality (fitness) of the associated solution (Karaboğa and Akay 2006). 

The flow chart of this algorithm is shown in Fig. 2. At the first step, algorithm generates random 

solutions for all bees. This operation can be defined as 

))(1,0( and minmaxmin
jjjij xxrxx                                                 (9) 

where i=1...SN, j=1…D, SN denotes the number of food sources or employed bees, D is the 

number of design variables. 
min
jx and max

jx are lower and upper bounds of the jth parameter, 

respectively. In employed bee phase, each employed bee searches for candidate food source 

having more nectar in the neighborhood of its current food source by following expression 

         )( ijkjijijij xxx                                                          (10) 

where k{1,2,…,SN} and j{1,2,…,D}are randomly chosen index and  k≠i. φij is a random real 

number between [-1,1]. After producing the candidate food source, its fitness is calculated as 
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where, fi is the value of cost function for ith solution. After then greedy selection is applied 

between old and candidate food source. If nectar amount (fitness) of candidate food source is 

higher than that of the old food source, the bee memorizes the new source and forgets the old one. 

Otherwise it keeps the position of the old one in its memory. After all employed bees complete the 

search process; they share the nectar information of the food sources and their position information 

with the onlooker bees on the dance area. Onlooker bees produce candidate food sources, 

according to probability value of the old sources, in the neighbourhood of the food source chosen 

by them. In other words onlooker bees select a food source according to a probability proportional 

to the amount of nectar (Öztürk and Durmuş (2013)). After producing the candidate food source, a 

greedy selection process is applied between old and candidate food source again. Probability value 

calculated by 

pi=(0.9 fitnessi + max(fitness))+0.1                                          (12) 

In scout bee phase, when a food source cannot be improved by a predetermined number of 

trials which is called limit, then that food source is abandoned by its employed bee and the 

employed bee is converted to a scout to find a new source. Then, a new food source positions is 

generated randomly by Eq. (9) and replaced with the abandoned ones by scouts. The best food 

source is determined and position of that food source is memorized. This cycle is repeated until 

requirements are met. 

 

 

4. Optimization problem 
 

The main objective in this study is to determine the optimal layer sequences which maximize 

the critical buckling load of the simply supported antisymmetric laminated composite plates. The 

optimization problem can be defined as 

Find:  
saNopt ,21 /....//    

which maximizes:  optcrcr NN   

subjected to the constraints:  9090  k  

where N is the number of layers. 

 

 

5. Numerical results and discussion 
 

In order to demonstrate the accuracy and applicability of the proposed method, firstly the 

buckling problems of simply supported cross ply and angle ply square laminated plates are 

investigated and compared with the corresponding results for different b/h ratios. The mechanical 

properties of each layer are taken to be E1=25E2, G12=G13=0.5E2, G23=0.2E2, v12=0.25. The non-

dimensional buckling load is defined by 

)/( 3
2

2 hEbNN crcr                                                          (13) 

From Table 1, it is obvious that the results of the present study give an accurate prediction of 

buckling loads in comparison with the literature results. The results presented in the Table 1 shows 

that the magnitude of buckling load is higher for angle-ply composite plate than corresponding  
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Buckling load optimization of laminated plates via artificial bee colony algorithm 

Table 1 Non-dimensional buckling loads of simply supported cross ply and angle ply square laminated plates 

b/h (0/90/0/90/0) (-45/45)4 

Uniaxial compression (Ny/Nx=0) 

 Present study Reddy (2004) Present study Reddy (2004) 

10 16.140 16.309 21.082 21.082 

20 21.045 21.125 34.990 34.990 

100 23.495 23.389 41.163 40.875 

Biaxial compression (Ny/Nx =1) 

 Present study Reddy (2004) Present study Reddy (2004) 

10 8.070 8.154 12.067 12.067 

20 10.523 10.562 17.495 17.495 

100 11.747 11.695 20.581 20.437 

 
Table 2 Optimal results for simply supported symmetric 8-layered composite plates (Δθ=5°) 

a/b  

Uniaxial compression 

 
Optimal stacking 

(Present study) 
 (Present study) 

Optimal stacking 

(Honda and Narita 2006) 
  

(Honda and Narita 2006) 

1 (45/-45/-45/-45)s 323.7 (45/-45/-45/-45)s 321.0 

2 (45/-45/-45/45)s 1295.0 (45/-45/-45/-45)s 1282.0 

Biaxial compression 

 
Optimal stacking 

(Present study) 
  

(Present study) 

Optimal stacking 

(Honda and Narita 2006) 
  

(Honda and Narita 2006) 

1 (45/-45/45/45)s 161.9 (45/-45/-45/-45)s 160.5 

2 (70/-75/70/60)s 489.7 (85/-50/75/85)s 473.7 

 

 

cross-ply composite plate. This is due to the fact that in cross-ply laminated plate every alternate 

fiber is oriented perpendicular to the direction of the applied load and fibers have very small 

strength in transverse direction.  

Second, the optimal solutions for critical buckling load of simply supported symmetric 8-

layered composite plates (θ1/θ2/θ3/θ4)s are searched using ABCA and the results are compared with 

the literature results for different a/b ratios. The fiber angle of each ply in the composite plate is 

changed with a step of Δθ=5° between (−90°≤θ≤90°). The laminate material properties are E1=138 

GPa, E2=138 GPa, G12=7.1 GPa, v12=0.30. The non-dimensional buckling load is defined by: 

o

x

D

aN 2

                                                                 (14) 

where Do=E2h
3/12(1−v12v21). From Table 2, it is evident that ABCA is successful in the 

determination of the optimal layer sequences maximizing the critical buckling load of the 

laminated plates. In this study, optimum results are investigated for simply supported 

antisymmetric composite plates for different plate aspect ratios, number of layers and load ratios 

(b/h=25). The composite material properties are given as E1=181 GPa, E2=10.3 GPa, G12=7.17 

GPa and v12=0.28. The non-dimensional buckling load is defined as Eq. (13). The fiber angle of 

each ply in the composite plate is changed with a step of Δθ=1° between (−90°≤θk≤90°). 

761



 

 

 

 

 

 

Umut Topal and Hasan Tahsin Ö ztürk 

 

Fig. 3 Optimal critical buckling load parameters for simply supported 8-layered antisymmetric 

composite plates 

 
Table 3 Optimum fibre orientations for 8-layered simply supported antisymmetric composite plates for 

different load ratios and plate aspect ratios (Δθ=1°) 

 a/b 

Ny/Nx 0.5 1 2 3 

0 (0/0/0/0)a,s (45/−45/45/−45)a,s (45/−45/45/−45)a,s (45/−45/45/−45)a,s 

0.25 (0/0/0/0)a,s (45/−45/45/−45)a,s (48/−48/90/−44)a,s (50/−49/90/−46)a,s 

0.5 (11/−16/3/−4)a,s (45/−45/45/−45)a,s (59/−59/90/−50)a,s (60/−59/90/−54)a,s 

0.75 (17/−21/1/−17)a,s (45/−45/45/−45)a,s (66/−63/90/−56)a,s (65/−62/90/−63)a,s 

1 (21/−26/0/−16)a,s (45/−45/45/−45)a,s (70/−67/90/−61)a,s (69/−66/90/−67)a,s 

 

 
Fig. 3 shows the optimal critical buckling load parameters for 8-layered simply supported 

antisymmetric composite plates for different load ratios (Ny/Nx) and plate aspect ratios (a/b). 

As seen from Fig. 3, as load ratio and plate aspect ratio increase, the optimal critical buckling 

load decreases. In Table 3, optimum fibre orientations are given for 8-layered simply supported 

antisymmetric composite plates for different load ratios and plate aspect ratios. 

In this study, effects of number of layers the optimum results are investigated for simply 

supported antisymmetric composite plates subjected to biaxial compressive loads for different 

plate aspect ratios. As seen from Fig. 4, the optimal critical buckling load increases, as the number 

of layers increases. But, this effect diminishes for larger number of layers. This is due to the 

influence of bending-extension coupling. For multilayered plates this effect is insignificant. In 

Table 4, optimum fibre orientations are given for simply supported antisymmetric composite 

plates subjected to biaxial compressive loads for different number of layers. 

 

ba /  

  
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Buckling load optimization of laminated plates via artificial bee colony algorithm 

 

Fig. 4 Effect of number of layers on the optimal critical buckling load for simply supported 

antisymmetric composite plates 

 
Table 4 Effect of number of layers on the optimum fibre orientations for simply supported antisymmetric 

composite plates subjected to biaxial compressive loads 

 a/b 

N 0.5 1 2 3 

4 (11/−33)a,s (45/−45)a,s (72/−57)a,s (72/−57)a,s 

8 (21/−26/0/−16)a,s (45/−45/45/−45)a,s (70/−67/90/−61)a,s (69/−66/90/−67)a,s 

12 
 (21/−25/16/−24/ 

0/−4)a,s 

 (45/−45/45/−45/ 

45/−45)a,s 

 (70/−68/72/−66/ 

90/−79)a,s 

(69/−67/73/−67/ 

90/−71)a,s 

16 
(21/−23/25/−23/1/ 

−13/0/−10)a,s 

(45/−45/45/−45/45/ 

−45/45/−45)a,s 

(69/−69/68/−71/ 

89/−71/88/−71)a,s 

(70/−66/72/−68/ 

72/−66/90/−82)a,s 

 

 

Fig. 5 Iteration stories of the optimal design for 8 layered composite plates (a/b=2) 
 

ba /  

  
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Fig. 5 Continued 

 

 

Fig. 5 shows iteration histories behind the optimized designs for 8 layered composite plates 

subjected to different load ratios (a/b=2). 
 

 

6. Conclusions 
 

In this paper, applicability of the artificial bee colony algorithm (ABCA) on critical buckling 

load optimization of simply supported antisymetric laminated plates is investigated. The optimal 

stacking sequences for laminated plates is searched for by means of the ABCA. In order to 

perform the optimization based on this algorithm, a special code is written in MATLAB software 

environment. The algorithm is implemented and validated using data available in the literature. It 

is proved that this optimization method for buckling load calculation is a very efficient and 

practical design tool in the application of laminated composite plates. In addition, the critical 

buckling load decreases with incerease in the load ratio and plate aspect ratio. On the other hand, 

as the number of layer increases, the critical buckling load increases.  
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