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Abstract.  Based on the energy method considering the second order effects, the natural frequencies of 
externally prestressed simply supported beam and the compression softening effect of external prestress 
force were analyzed. It is concluded that the compression softening effect depends on the loss of external 
tendon eccentricity. As the number of deviators increases from zero to a large number, the compression 
softening effect of external prestress force decreases from the effect of axial compression to almost zero, 
which is consistent with the conclusion mathematically rigorously proven. The frequencies calculated by the 
energy method conform well to the frequencies by FEM which can simulate the frictionless slide between 
the external tendon and deviator, the accuracy of the energy method is validated. The calculation results 
show that the compression softening effect of external prestress force is negligible for the beam with 2 or 
more deviators due to slight loss of external tendon eccentricity. As the eccentricity and area of tendon 
increase, the first natural frequency of the simply supported beams noticeably increases, however the effect 
of the external tendon on other frequencies is negligible. 
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1. Introduction 
 

In recent years, interest in the maintenance, rehabilitation and strengthening of bridge has 

increased. The technique of bridge strengthening using prestressing with external tendons has been 

studied as a possible means of strengthening single-span girders, thus the knowledge of the 

flexural natural frequencies of externally prestressed simply supported beam is of vital importance. 

One question will be asked whether the prestress force affects the flexural natural frequencies of 

beams or not? Many researchers have studied the influence of prestress force on the flexural 

natural frequencies of beams, and there are differences in their conclusions. The natural frequency 

of a simply supported axially compressed beam is 
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where E and I are the elastic modulus and the moment of inertia of the beam, l is the length of the 

beam, m is the mass per unit length of the beam, i is the mode number and N is the axial 

compression. Eq. (1) reveals that by increasing the axial compression, the natural frequency 

decreases due to compression softening, the effect of N is called the effect of axial compression 

hereinafter. 

Saiidi (1994) determined the natural frequencies of a prestressed concrete bridge using Eq. (1). 

The paper by Saiidi (1994) has been followed by three discussions. In the first discussion, Dallasta 

(1996) pointed out Saiidi (1994) approach to consider the prestress force as external axial force is 

incorrect, and indicated that the effect of prestress force on the beam natural frequencies is 

negligible based on a linear model. In the second discussion, Deak (1996) pointed out that 

prestress force does not reduce the natural frequencies, nevertheless, the view is not supported by 

any analytical nor mathematical proof. In the third discussion, Jain (1996) pointed out that because 

the tendon becomes an integral part of the system, tension in the tendon cannot be treated as an 

external force, and hence the prestress force being an internal force does not cause the effect of 

compression softening, does not affect the natural frequencies of beams. Jaiswal (2008) 

investigated the first flexural natural frequency of beams by finite element method (FEM), and 

pointed out that the effect of prestress force on the first natural frequency depends on bonded and 

unbonded nature of the tendon, and also on the eccentricity of tendon. For the beams with bonded 

tendon, the prestress force does not have any appreciable effect on the first natural frequency. For 

the beams with unbonded tendon, the first natural frequency significantly changes with the 

prestress force and eccentricity of the tendon. Jaiswal (2008) findings are not supported by any 

analytical nor mathematical proof. Kanaka (1986) have shown that the prestress force reduces the 

natural frequency of the lower modes, based on a Rayleigh-Ritz formulation that describes 

prestress force as an external axial compression only. Chan (2000) indicated that the natural 

frequencies of a prestressed bridge decrease as the prestress force increases due to the compression 

softening. Dallasta (1999) have presented a general formulation for the vibration of beams, 

prestressed by internal frictionless tendons using kinematic relations of small displacements for the 

concrete beam. The formulation for the beam does not include the effect of the compression, 

however they indicated that the natural frequencies decrease as the prestress force increases. Kerr 

(1976) studied experimentally and analytically the dynamic response of a prestressed beam. It was 

found that the magnitude of the prestress force for a tendon that passes through the centroid of the 

beam cross-section has no effect on the dynamic response of the beam. The analytical model uses 

only a linear formulation for the study of the dynamic response of the prestressed beam. It is 

limited to straight tendons that pass through the centroid of the beam. Simsek (2007) indicated that 

the deflections of the beams increase as the prestress force increases because of the compression 

softening, i.e., the prestress force decreases the beam stiffness and the natural frequencies. Wang 

(2011) took the additional potential energy of the compression due to the prestressed force into 

consideration, and concluded that the prestress forces reduce the low transverse natural frequencies 

of the bridge. Jiang (2010) transferred the eccentric unbonded prestress force to an axial 

compression and a couple, concluded the prestress force results in compression softening effect. 

Hamed (2006) rigorously derived the equations of motion for a prestressed beam and its associated 

boundary and continuity condition using the variational principle of virtual work following 

Hamilton’s principle. The mathematical model is rigorous and general, and is valid for any kind of 

boundary and continuity conditions as well as any tendon layout. Based on the derived governing 

equation, it has been mathematically rigorously proven that the magnitude of prestress force does 

not affect the natural frequencies of bonded or unbonded prestressed beams as opposed to some 
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research works. 

There exist three kinds of posttensioning prestress tendon, bonded tendon, unbonded tendon 

and external tendon. Bonded and unbonded tendons are placed inside the concrete beam. Bonded 

tendon is integrated with the surrounding concrete. Unbonded tendon can slide along the duct 

embedded in concrete, however the transverse displacement of unbonded tendon follows the 

displacement of the beam throughout the entire span, hence there is no loss of eccentricity. 

External tendon is placed outside the concrete beam, and is in contact only at the deviators and 

anchorages. Under load, external tendon is free to move relative to the concrete section in between 

the deviators and/or anchorages, which leads to loss of eccentricity. Hamed (2006) pointed out no 

effect of prestress force of bonded or unbonded tendon on the natural frequencies. Miyamoto 

(2000) dealt with the dynamic behavior of prestressed beam strengthened with external tendon. 

The analytical expression of the natural frequencies includes the external prestress force, the effect 

of the external prestress force is simply treated as the effect of axial compression. Simsek (2009) 

also treated the externally applied eccentric prestress force as an axial compression and a couple, 

the effect of external prestress force is equivalent to the effect of axial compression. The loss of 

external tendon eccentricity results in a reduction of flexural stiffness, consequentially results in 

the decrease of natural frequencies. The loss of eccentricity depends on the layout of external 

tendon, hence the influence of the external force on the natural frequencies is also related to the 

layout of external tendon, the effect of the external prestress force can not be simply treated as the 

effect of axial compression. To the best of the author’s knowledge, there is no reference that 

properly studies the effect of the external prestress force on the natural frequencies. 

In the derivation of Miyamoto (2000) analytical expression of the natural frequencies, the key 

assumption is that the increment of tendon tension is proportional to the vibration displacement at 

midspan of beam, called proportional assumption hereinafter. In this study, it was indicated that 

there are some problems in the proportional assumption, in addition, the preceding problem of the 

effect of the external prestress force treated as the effect of the axial compression. Using the 

energy method considering the second order effects, the problems in the proportional assumption 

were solved, it was pointed out that although there is no effect of prestress force of bonded or 

unbonded tendon on the natural frequencies, the prestress force of external tendon does affect the 

natural frequencies, and the influence on the natural frequencies depends on the layout of the 

external tendon. Based on the new assumptions, the natural frequencies of the beam were obtained 

by the energy method considering the second order effects. Comparing with the method with 

proportional assumption, the energy method considering the second order effects gives more 

accurate calculation results which conform well to FEM results. 

 

 

2. Natural frequency equation  
In author’s view, there exists some problems in Miyamoto (2000) natural frequency formula, 

hence the derivation procedure is rewritten briefly as follow: 

For free vibration, the governing partial differential equation is 
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where y is vibration displacement; tc
0

tctc PPP  , Ptc, 
0

tcP  and ΔPtc are the horizontal 

components of prestress force Pt, initial prestress force Pt
0 and prestress force increment ΔPt; ΔMp  
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Fig. 1 Analysis model of vibration system 
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Fig. 2 Bending moment diagram ΔMp 

 

 

is the bending moment due to ΔPt, ΔPtx is the vertical component of ΔPt, e and e′ are the 

eccentricities, a is the position of deviators as shown in Fig. 1, the friction between the tendon and 

deviator is neglected. The effect of the prestress force and the effect of external tendon are 

represented by the terms Ptcy and ΔMp respectively in Eq. (2). The term Ptcy implies the effect of 

the prestress force Ptc is treated as the effect of the axial compression, and the prestress force 

decreases the natural frequencies, which is not consistent with the Hamed (2006) conclusions. 

To solve Eq. (2), two relationships must be established, the relationship between Ptcy and y, the 

relationship between ΔMp and y. Miyamoto (2000) neglected the term ΔPtcy in Ptcy, hence 

yPyP 0
tctc   since the maximum value ymax<<e, therefore ΔPtcy<<ΔPtce (ΔPtce is included in ΔMp 

as shown in Fig. 2). In author’s view, ΔPtcy is negligibly small, not due to ymax<<e, but due to the 

fact that ΔPtc is proportional to y where y can be infinitesimal, ΔPtcy becomes a high order 

infinitesimal, hence ΔPtcy can be neglected in comparison with infinitesimal yP0
tc . Acknowledging 

that in some beams, where e=0, the ymax<<e is not a valid assumption. Therefore Ptcy can be 

replaced by yP0

tc , then the relationship between Ptcy and y is established. Miyamoto (2000) 

simplified ΔMp as a uniform bending moment 

)sincos(tp  aePM                           (3) 

Miyamoto (2000) assumed that ΔPt is proportional to midspan displacement y(0.5l), combining 

the proportional assumption and Eq. (3) gives 
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of the beam cross section, Et, At and lt are the elastic modulus, cross section area and length of 

tendon. Substituting Eq. (5) into Eq. (2) gives 
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y(0.5l) in Eqs. (4), (5) and (6) is replaced by y in Miyamoto (2000) equations. Due to this 

replacement, Eq. (6) can be solved for natural frequencies 
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2. Some problems in proportional assumption 
 

In author’s view, there are two problems in the proportional assumption between ΔPt and 

y(0.5l). The first problem is: the proportional assumption is rational for the first vibration mode, 

but for the antisymmetric (even number) vibration modes, y(0.5l)=0, the proportional assumption 

is not valid. The second problem is: in order to solve Eq. (6) conveniently, y(0.5l) in Eqs. (4), (5) 

and (6) is replaced by y(x), that is, ΔPt is not proportional to y(0.5l), but is proportional to y(x). 

Such replacement is wrong because the prestress force increment ΔPt is a constant along the whole 

tendon under the frictionless assumption between the tendon and deviator, but the value y(x) varies 

along x, therefore, the proportional assumption between ΔPt and function y(x) is wrong. In 

addition, the effect of the initial prestress force 0
tcP  in Eq. (7) is simply treated as the effect of 

axial compression, which is not consistent with the Hamed (2006) conclusion. 

 

 

3. Energy method to analyze the natural frequencies 
 

The energy method considering the second order effects is adopted to solve the problems 

existed in Miyamoto (2000) solution, and to find the natural frequencies of the beam shown in Fig. 

3. The assumptions in the energy method are as follows: 1) the ith vibration mode 

yi=Aisin(iπx/l)sinωit, i=1,2,3…; 2) the beam is straight after applying external prestress force and 

before vibrating; 3) the axial deformation of the beam due to axial force is neglected. 

The velocity of the beam is ẏi=Aisin(iπx/l)ωicosωit, i=1,2,3…, when ẏi reaches the maximum or 

yi=0, the kinetic energy of the beam is 
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The strain energy of the beam is 
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where Pt
0mt is the bending moment due to the initial prestress force Pt

0, mt is the bending moment 

diagram due to the unit force of external tendon shown in Fig. 4, mij=cosθiej, angle θi and 

eccentricity ej of external tendon are shown in Fig. 3. The strain energy of external tendon is 
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Fig. 3 Externally prestressed simply supported beam 

 

m45

m44

m34

m23

m22

m12

m11

 

Fig. 4 Bending moment diagram due to the unit force of external tendon 
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Fig. 5 Deformation of line OA Fig. 6 Deformation of external tendon segment 

 

 

When yi reaches the maximum or ẏi=0, the bending moment of beam is: Mb1=−EIy′′i−Pt
omt. The 

strain energy of the beam is 
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As for calculating the deformation of the external tendon, the deformation of line OA in Fig. 5 

is investigated firstly. The deformations of line OA in x and y axes are δx and δy, taking the terms 

with the second differentiation into consideration, the deformation of line OA is 
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where θ and lA are angle and length of line OA. It is indispensable to consider the second 

differentiation terms in analyzing the compression softening caused by external prestress force. 

There are n contact points between the beam and external tendon, the first and the last contact 

points locate at two ends of the beam, the others are at the deviators. In the jth segment of external 

tendon as shown in Fig. 6, the coordinates of the jth and (j+1)th contact points are (xj,ej) and 

(xj+1,ej+1) before vibrating. Taking into account the horizontal displacement of the point at beam 

axis caused by the bending of the beam axis, the coordinates of the contact points ),( jj yx  and 

),( 11  jj yx  when ẏi=0 are: 
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Substituting δxj and δyj into Eq. (12), and neglecting the terms involving high order 

infinitesimal Ai
3 and Ai

4 (Ai can be infinitesimal), give the deformation of the jth segment of 

external tendon 
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the length and angle of the jth segment of external tendon respectively. The whole deformation of 

the external tendon is 
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Table 1 Relationship between influence coefficient Cpi and the number of contact points n 

n 
Straight tendon Parabolic tendon 

Cp1 Cp2 Cp3 Cp4 Cp1 Cp2 Cp3 Cp4 

2 1 1 1 1 1 1 1 1 

3 0.189 1 0.91 1 0.203 0.995 0.904 0.995 

4 0.088 0.316 1 0.829 0.09 0.338 0.991 0.812 

5 0.05 0.189 0.385 1 0.049 0.191 0.411 0.992 

7 0.023 0.088 0.189 0.316 0.02 0.084 0.189 0.322 

9 0.013 0.05 0.11 0.189 0.009 0.045 0.106 0.187 

11 0.008 0.032 0.072 0.125 0.004 0.026 0.066 0.12 

 

 

The natural frequency is obtained 
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where the influence coefficient of the external prestress force Cpi=−4lζi/(iπ)2. In comparison with 

the axial force N in Eq. (1), the external prestress force does affect the natural frequencies of beam, 

but its effect depends on the coefficient Cpi which is related to the layout of external tendon. 

Relationship between influence coefficient Cpi and the number of contact points n is listed in Table 

1, the deviators are distributed uniformly along the span, the layout of tendon is symmetric, the 

beam length l=16 m, the eccentricities at two ends are e1=en=0.2 m. For the parabolic tendon, all 

contact points locate at a parabola (see Fig. 3), the mid-span maximum eccentricity of the parabola 

is 1m. Table 1 indicates that for the beam with only 2 contact points, i.e., without deviator, the 

influence coefficient is 1, the effect of external prestress force is the same effect of axial 

compression, because the loss of eccentricity is maximum. As the number of contact points 

increases, the loss of eccentricity moderates, the influence coefficient decreases. In general, as the 

number of vibration mode increases, the influence coefficient increases because the number of 

contact points in every half-wave sinusoid decreases, just like the number of contact points of the 

whole beam decreases in the first vibration mode. The influence coefficient of straight tendon is 

close to the coefficient of parabolic tendon, which indicates the coefficient mainly depends on the 

number of contact points. For the beam with large number of contact points, there is almost no loss 

of eccentricity, the external tendon is closely a unbonded tendon, hence the influence coefficient 

decreases from 1 to almost 0, which is consistent with the conclusion pointed out by Hamed 

(2006), i.e., no effect of prestress force of bonded or unbonded tendon on the natural frequencies. 

 

 

3. Numerical examples 
 

For the externally prestressed simply supported beam shown in Fig. 3, l=16 m, width 0.4 m and 

height 0.8 m of rectangular cross section, E=32.5 GPa, the mass per unit length of the beam m=6 

t/m; Et=200 GPa, the deviators are distributed uniformly along the span, the initial prestress 

σt
0=1000 MPa, the layout of tendon is symmetric, e1=0.2 m. Table 2 lists the 1st, 2nd and 3rd 

natural frequencies of externally prestressed beams. In 8 calculation beams, there are two  
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Table 2 The 1st, 2nd and 3rd natural frequencies of externally prestressed beam 

Beam 
e2 

(m) 

e3 

(m) 

At 

(mm2) 

ω1(rad/s) ω2(rad/s) ω3(rad/s) 

M① M② M③ M① M② M③ M① M② M③ 

1 0.8  1668 12.98 12.45 12.94 46.74 47.63 46.74 105.1 106.2 105.1 

2 0.8 1.0 1668 13.45  13.39 46.8  46.8 105.5  105.5 

3 1.1  1668 13.96 13.27 13.89 46.73 48.51 46.73 105.1 107.1 105.1 

4 1.1 1.4 1668 14.8  14.7 46.8  46.8 105.4  105.4 

5 0.8  2502 13.57 12.71 13.48 46.66 47.91 46.66 105 106.5 105 

6 0.8 1.0 2502 14.23  14.11 46.76  46.76 105.4  105.4 

7 1.1  2502 14.96 13.78 14.81 46.65 49.08 46.65 105 107.7 105 

8 1.1 1.4 2502 16.11  15.92 46.76  46.76 105.4  105.4 

Note: M① stands for the method of this paper, M② for the method of Miyamoto (2000); M③ for FEM 

 
Table 3 The 1st, 2nd and 3rd natural frequencies of M① without initial prestress force 

Beam 0 1 2 3 4 5 6 7 8 

ω1(rad/s) 11.72 13.02 13.46 14 14.81 13.63 14.26 15 16.14 

ω2(rad/s) 46.89 46.89 46.89 46.89 46.89 46.89 46.89 46.89 46.89 

ω3(rad/s) 105.5 105.6 105.6 105.6 105.7 105.7 105.7 105.6 105.7 

Note: Beam 0 stands for the beam without external tendon 

 




beam

deviator

contact link element

external tendon  

Fig. 7 Contact link element 

 

 

eccentricities e2=0.8, 1.1 m, two areas of the tendon At=1668,2502 mm2 and two layouts of 

external tendon, trapezoid without mid-span deviator (beam 1,3,5,7, see Fig. 1) and approximate 

parabola (beam 2,4,6,8, e2<e3, see Fig. 3) respectively. M① stands for the method in this paper, 

M② for the method of Miyamoto (2000); M③ for FEM. Miyamoto (2000) only presented the 

analytical solution of trapezoidal external tendon, hence Table 2 only lists the results of trapezoidal 

external tendon. Generally speaking, the validity of theoretical results would be tested by 

experimental results. However, in the field and laboratory experiments, Saiidi (1994) found that 

the natural frequencies increases as the prestress force increases, which is not consistent with the 

theoretical conclusion. For this disparity, they opined that the prestress force causes closure of 

micro-cracks in the concrete, which increases the flexural stiffness and natural frequencies. In 

author’s view, to test the validity of theoretical results by FEM results, is also acceptable. 

Therefore FEM analysis was carried out to test the validity of analytical formula. 

There exists the frictionless slide between the external tendon and deviator, thus the increment 

of prestress force in external tendon depends on the deformation of whole beam and is assumed 
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uniform at all section. The concise method to overcome this additional difficulty is to add a contact 

link element at angle bisector between external tendon and deviator as shown in Fig. 7. The link 

element is subjected to only axial force, thus is chosen to simulate the external tendon. The contact 

link element can simulate the frictionless slide between the external tendon and deviator, and the 

position assures the uniform increment of prestress force of external tendon, the length of contact 

link element is 1cm, the axial stiffness is EtAt, the same as the external tendon axial stiffness. The 

deviator is simulated by the rigid beam element. The mass of the beam element is simplified by 

assuming that the distributed mass of the element can be lumped as point masses at two ends. 

The equation to calculate the natural frequencies is 

   iii M  ]][[2                            (19) 

where {φi} is the ith natural mode shape, [M] is the diagonal lumped mass matrix, [δ] is the 

vertical flexibility matrix. The coefficient δij of [δ] is the vertical displacement in ith lumped mass 

due to the unit vertical force applied in jth lumped mass, which is computed by standard 

procedures of structural analysis to obtain the flexibility matrix. The influence coefficient of the 

external prestress force Cpi in Eq. (18) is taken into consideration, hence the stiffness matrix of 

beam element to calculate ωi is 
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(20) 

Various parameters are involved in coefficient δij of [δ], such as EI and l of beam, EtAt, lt and 

the layout of external tendon, the frictionless slide of contact link element between the external 

tendon and deviator. Obtaining [δ] by ordinary structural analysis, the natural frequencies ωi and 

the natural mode shape {φi} are determined by Matlab software. The beam is discretized into 16 

beam elements with the same length for beam 2, 4, 6 8 in Table 2, and is discretized into 15 beam 

elements with the same length for the beam 1, 3, 5, 7. Before proceeding further, it is appropriate 

to ascertain the correctness of the preceding procedure for finding ω1~ω3. For this purpose, ω1~ω3 

of the simply supported beam without external tendon subjected to the external axial compression 

0 or 2502kN, are obtained by structural analysis and Matlab software. The results are compared 

with the Eq. (1) analytical solutions. When the axial compression is 2502kN, the error of ω3 is 

maximum, that is, FEM value ω3=104.8 rad/s, analytical value ω3=104.808 rad/s. This ascertains 

the validity of above FEM procedure. The lumped mass method has high accuracy in calculating 

low order natural frequencies, there are 15 lumped masses for the beam 2, 4, 6 8 or 14 lumped 

masses for the beam 1, 3, 5, 7, ω1~ω15 or ω1~ω14 can be found, so the high accuracy of ω1~ω3 is 

expected. Hence, the results of M③ in Table 2 can be used to validate the accuracy of the results 

of M① and M②. 

In Table 2, ω1 of M① is greater than ω1 of M②, which indicates that M② underestimates the 

effect of external tendon on ω1. In M②, since y(0.5l) is replaced by y(x), ΔPt which originally is 

proportional to the maximum vibration displacement y(0.5l), now is wrongly reduced to be 

proportional to y(x), y(x)≤ y(0.5l), therefore, the effect of external tendon on ω1 is underestimated. 

In M①, ψi representing the effect of external tendon is naught for even number vibration modes, 

and is quite small for the 3rd, 5th,….odd number vibration modes except the 1st vibration mode, 
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because the even number vibration modes are antisymmetric, which do not cause deformation of 

external tendon with symmetric layout, hence ψi=0, i=2,4,…; the odd number vibration modes are 

symmetric, the deformations of external tendon caused by positive and negative vibration 

displacements deduct mutually, the whole deformation is quite small, hence ψi≈0, i=3,5,…. In 

M①, the effect of external tendon mainly influences ω1, slightly influences ω3 and does not 

influence ω2. However in Eq. (7) of M②, the value of η(ecosθ+asinθ) representing the effect of 

external tendon is the same for each natural frequency, thus the effect of external tendon on ω2 and 

ω3 is overestimated, hence ω2 and ω3 of M② is greater than ω2 and ω3 of M①. ω1~ω3 of M① are 

almost equal to ω1~ω3 of M③, which indicates the high accuracy and rational assumptions of 

M①. In practical prestressed beam, the value of Pt
0 is greatly less than the term EI(iπ/l)2 in Eq. 

(18), the influence of Pt
0 is quite limited, especially for high order vibration mode, the influence 

coefficient Cp1 is also greatly less than 1 for the beam with 2 or more deviators. Table 3 lists the 

1st, 2nd and 3rd natural frequencies of M① without initial prestress force, i.e., Pt
0=0, the beam 

1~8 frequencies neglecting the effect of the prestress force is very close to the frequencies in Table 

2 considering the effect of the prestress force, which indicates the effect of the external prestress 

force can be neglected for beam 1~8, i.e., for the beam with 2 or more deviators due to slight loss 

of external tendon eccentricity. At=0 for beam 0 in Table 3, i.e., neglecting the effect of external 

tendon, ω1 of beam 0 is significantly less than ω1 of beam 1~8 in Table 2, which indicates the 

external tendon noticeably influences ω1. As the eccentricity and area of tendon increases, ω1 in 

Table 2 increases. However ω2, ω3 of beam 0 are very close to the frequencies of beam 1~8 in 

Table 2, which indicates that except ω1, the effect of external tendon on other frequencies can be 

neglected. 

 

 

6. Conclusions 
 

In this study, the effect of external prestress force and tendon on the frequencies of a simply 

supported beam was investigated. At first, the conclusion mathematically rigorously proven by 

Hamed (2006) was introduced, i.e., no effect of both bonded and unbounded prestress force on the 

natural frequencies of beams as opposed to some research works. Then, Miyamoto (2000) 

analytical solution of externally prestressed simply supported beam was introduced and discussed, 

3 problems were found. The energy method considering the second order effects was adopted to 

solve the problems. The frequency results by Miyamoto (2000) analytical solution, the energy 

method in this study and FEM were compared. The results obtained from this study are 

summarized below: 

1) There exist 3 problems in Miyamoto (2000) analytical solution, 2 problems in the 

proportional assumption that the increment of tendon tension is proportional to the vibration 

displacement at midspan of beam, 1 problem in the effect of the external prestress force which is 

treated as the effect of axial compression. 

2) The influence coefficient of the external prestress force, i.e., the compression softening 

effect caused by external prestress force depends on the layout of external tendon, mainly depends 

on the number of contact points. As the number of contact points increases from minimum value 2 

to a large number, the influence coefficient decreases from 1 to almost 0, which is consistent with 

the conclusion pointed out by .Hamed (2006). The loss of external tendon eccentricity results in 

the compression softening effect of external prestress force. The compression softening effect of 

external prestress force can be neglected for the beam with 2 or more deviators due to slight loss of 
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external tendon eccentricity. Therefore, Miyamoto (2000) treatment of the effect of external 

prestress force as the effect of axial compression without considering the number of contact points 

overestimates the compression softening effect for the beam with deviators. 

3) The comparison among the results obtained by the energy method in this study, FEM and 

Miyamoto (2000) solution validates the accuracy of the energy method. The comparison indicates 

that the Miyamoto (2000) proportional assumption underestimates the effect of external tendon on 

the 1st natural frequency, and overestimates the effect on other natural frequencies. 

4) The external tendon noticeably influences the first natural frequency. As the eccentricity and 

area of tendon increase, the first natural frequency increases. The external tendon almost does not 

influence the other frequencies except the first natural frequency. Therefore, the effect of external 

tendon must be taken into consideration only in calculating the first natural frequency, and can be 

neglected in calculating other frequencies. 
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