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Abstract.  This paper deals with free vibration analysis of bidirectional functionally graded annular plates 
resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity 
theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 
2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures 
under multi-functional requirements. Various material profiles along the thickness and in the in-plane 
directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point 
are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka 
scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to 
discretize the governing equations and to implement the boundary conditions. The fast rate of convergence 
of the method is shown and the results are compared against existing results in literature. Some new results 
for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of 
foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a 
graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency 
than conventional 1-D functionally graded materials. 
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1. Introduction 
 

Functionally graded materials (FGMs), a new generation of advanced composite materials, 

possess continuous, and smooth spatial variations of macroscopic properties such as heat 

conductivity, elastic modulus, mass density, etc. This is achieved by controlling the volume 

fraction, sizes, and shapes of material components during manufacturing. The original application 

of FGMs is for thermal barrier systems which are composed of heat-resisting ceramic and fracture-

resisting metal with smooth transition of material properties, thus reducing cracking and 

delamination often observed in conventional layered systems. There have been increasingly many 

modern engineering applications of FGMs, such as aircraft fuselages, rocking-motor casings, 

packaging materials in microelectronic industry, human implants, and so. 
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Eraslan and Akis (2009) obtained the closed-form solution of FG rotating solid shaft and 
rotating solid disk under generalized plane strain and stress assumptions, respectively. Prakash and 
Ganapathi (2006) analyzed the asymmetric flexural vibration and thermoelastic stability of FGMs 
circular plates using finite element method. Efraim and Eisenberger (2007) studied the vibration of 
variable thickness annular isotropic plates and FG plates. Nie and Zhong (2007) investigated three-
dimensional vibration of FG circular plates using semi-analytical method. Dong (2008) developed 
a three-dimensional free vibration analysis of FG annular plates using the Chebyshev-Ritz method. 
Allahverdizadeh et al. (2008) developed a semi-analytical approach for nonlinear free and forced 
axisymmetric vibrations of a thin circular FG plate, using a time averaging technique. Ebrahimi 
and Rastgo (2008) investigated free vibration of thin FG circular plates integrated with two 
piezoelectric actuator layers based on the classical plate theory. Ponnusamy and Selvamani (2012) 
studied the wave propagation in a generalized thermo elastic plate embedded in an elastic medium 
based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of 
thermo elasticity. 

Plates on elastic foundations have been widely adopted by many researchers to study the free 
vibration for various engineering plate problems (Gupta et al. 1990, Xiang et al. 1994, 1996, 
Matsunaga 2000, Malekzadeh and Karami 2004, Zhou et al. 2004, 2006, Hosseini Hashemi et al. 
2008, 2009, Ming Hung 2010, Shafiee et al. 2014), and limited studies have been done about the 
influences of elastic foundations on the free vibration of FGM plates in recent years. Malekzadeh 
(2009) used the differential quadrature method (DQM) for three-dimensional free vibration 
analysis of thick functionally graded plates on elastic foundations. Amini et al. (2009) described a 
method for the three-dimensional free vibration analysis of rectangular FGM plates resting on an 
elastic foundation using Chebyshev polynomials and Ritz’s method. Yas and Sobhani (2010) 
studied free vibration characteristics of rectangular continuous grading fiber reinforced (CGFR) 
plates resting on elastic foundations using DQM. Recently, Tahouneh and Yas (2012) investigated 
the free vibration analysis of thick FG annular sector plates on Pasternak elastic foundations using 
DQM based on the three-dimensional elasticity theory. Hosseini-Hashemi et al. (2010) presented a 
solution to study the free vibration analysis of thin radially functionally graded annular sector 
plates of variable thickness on elastic foundations based on the classical plate theory (CPT) using 
the DQM. It can be expressed that the vibration analysis of FG circular and annular plates on 
elastic foundations is rare. 

In the above-mentioned papers, the material properties are assumed to have a smooth variation 
usually in one direction. A conventional FGM may also not be so effective in such design 
problems since all outer surfaces of the body will have the same composition distribution. In 2003, 
the Columbia space shuttle was lost in a catastrophic breakup due to outer surface insulation that 
fell loose when the Columbia lifted off (Columbia Accident Investigation Board 2003a, b) such 
damage to the space shuttle’s protective thermal tiles can be prevented by using FGMs. It is worth 
mentioning that a conventional functionally graded material may also not be so effective in such 
design problems since all outer surfaces of the body will have the same composition distribution 
and temperature distribution in such advanced machine element changes in two or three directions. 
Therefore, if the FGM has two-dimensional dependent material properties, a more effective high-
temperature-resistant material can be obtained. Based on this fact, two-dimensional functionally 
graded materials (2-D FGMs) whose material properties are bidirectionally dependent are 
introduced.  

In structural mechanics, one of the most popular semi-analytical methods is DQM (Bellman 
and Casti 1971), remarkable success of which has been demonstrated by many researchers in 
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vibration analysis of plates, shells, and beams. Liu and Liew (1999), Liew and Liu (2000) 
presented DQM for free vibration analysis of Mindlin isotropic circular and annular sector plates 
with various types of boundary conditions. A new version of the DQM was extended by Wang and 
Wang (2004) to analyze the free vibration of thin circular sector plates with six combinations of 
boundary conditions. Liew et al. (1996) employed DQM for free vibration analysis of moderately 
thick plates on Winkler foundation. Gupta et al. (2006) studied the free vibration analysis of non-
homogeneous circular plate of non-linear thickness variation by the DQM. Nie and Zhong (2010) 
studied the free vibration of FG plates without elastic foundation using DQM. They assumed the 
material properties of the FG plate having an exponent-law variation along the thickness, radial 
direction or both directions. The mathematical fundamental and recent developments of 
differential quadrature method as well as its major applications in engineering are discussed in 
detail in book by Shu (2000). 

This paper is motivated by the lack of studies in the technical literature concerning to the three-
dimensional vibration analysis of bidirectional FG plates resting on two-parameter elastic 
foundations. The Mori–Tanaka scheme as an accurate micromechanics model is used for 
estimating the homogenized material properties. The Mori-Tanaka scheme (Mori and Tanaka 1973, 
Benveniste 1987, Dasgupta and Bhandarkar 1992, Hu and Weng 2000 and Genin and Birman 
2009) for estimating the effective moduli is applicable to regions of the graded microstructure that 
have a well-defined continuous matrix and a discontinuous particulate phase. In the present paper, 
the differential quadrature method is employed to develop a semi-analytical solution for free 
vibration analyses of two-directional functionally graded annular plates resting on two-parameter 
elastic foundations. Simultaneous variations of the material properties in the radial and transverse 
directions are described by a general function. A sensitivity analysis is performed, and the natural 
frequencies are calculated for clamped-clamped, free-clamped and simply supported-clamped 
boundary conditions and different combinations of the geometric, material, and foundation 
parameters. Therefore, very complex combinations of the material properties, boundary 
conditions, and foundation stiffnesses are considered in the present semi-analytical solution 
approach. 
 
 
2. Problem formulation 
 

Consider a 2-D FGM annular plate which is made from a mixture of ceramics and metals as 
depicted in Fig. 1 The plate is supported by an elastic foundation with Winkler’s (normal) and 
Pasternak’s (shear) coefficients. The deformations defined with reference to a cylindrical 
coordinate system (r,,z) are ur, u and uz in the r,  and z directions, respectively. The uniform 
thickness, outer and inner radius of the plate are h, a and b, respectively and rm is the mean radius 
of the annular plate. 

 
2.1 Two-directional six-parameter power-law distribution 
 
One of the well-known power-law distributions which is widely considered by the researchers 

is three- or four- parameter power-law distribution (Tornabene 2009, Sobhani Aragh and Yas 
2010). The benefit of using such power-law distributions is to illustrate and present useful results 
arising from symmetric and asymmetric profiles. Consider Vc (volume fraction of the ceramic 
phase) is equal to f(z)*g(r), f(z) and g(r) are both the three-parameter power-law distribution. They  
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 4 41 1
(( ) * 0.7 0.3)( )

2 2c z rV                             (2)               

With another choice of the parameters αr, βr, αz and βz, it is possible to obtain symmetric and 
classical volume fraction profiles through the radial and thickness directions of the annular plate, 
respectively, as shown in Fig. 3. This Figure shows a classical profile versus μz and a symmetric 
profile versus μr. In this case Eq. (1) is presented as follows 

 3 2 31 1 1
(( ) * 0.7 0.3)(( ) )

2 2 2c z r rV                              (3) 

Fig. 4 illustrates symmetric profiles through the radial and thickness directions obtained by 
setting αr=αz=1, βr=βz=2 and γr=γz=3 

2 3 2 31 1 1 1
(( ( ) ) * 0.7 0.3)(( ) )

2 2 2 2c z z r rV                          (4)
 

It is also possible to obtain classical and symmetric profiles from Eq. (1) along the thickness of 
the plate as shown in the following equations 

-Classical along the thickness of the plate (αz= γr=0, γz=2) 

21
( ) * 0.7 0.3
2c zV                                (5)

 

-Symmetric along the thickness of the plate (αz=1, γr=0, βz =γz=2) 

2 21 1
( ( ) ) * 0.7 0.3
2 2c z zV      

                      
(6)

 

The effective material properties of the isotropic 2-D FGMs are determined in terms of the 
local volume fractions and material properties of the two isotropic phases by the Mori-Tanaka 
scheme. It takes into account the interaction of the elastic fields among neighboring inclusions. It 
is assumed that the matrix phase, denoted by the subscript m, is reinforced by spherical particles of 
a particulate phase, denoted by the subscript c. In this notation, Km and Gm are the bulk modulus 
and the shear modulus, respectively, and Vm is the volume fraction of the matrix phase. Kc, Gc, and 
Vc are the corresponding material properties and the volume fraction of the particulate phase. Note 
that Vm+Vc=1, that the Lamé constant λ is related to the bulk and the shear moduli by λ=K-2G/3, 
and that the stress–temperature modulus is related to the coefficient of thermal expansion by 
β=(3λ+2G)α=3Kα. The following estimates for the effective local bulk modulus K and shear 
modulus G are useful for a random distribution of isotropic particles in an isotropic matrix 

1 (1 ) ( ) ( (4 3) )
m c

c m c c m m m

K K V

K K V K K K K




    
                  (7) 

1 (1 )( ) ( )
m c

c m c c m m m

G G V

G G V G G G f




    
                      (8) 

where fm=Gm(9Km+8Gm)/6(Km+2Gm). The effective values of Young’s modulus, E, and Poisson’s 
ratio, υ, are found from 
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9 3 2
,

3 2(3 )

KG K G
E

K G K G
 

 
 

                            (9) 

we choose a metal/ceramic annular plate with the metal (Al) taken as the matrix phase and the 
ceramic (SiC) taken as the particulate phase. The material properties of aluminum and silicon 
carbide are listed in Table 1 (Vel and Batra 2002 and Vel 2010). 
 

2.2 Governing equations 
 
In the absence of body forces, the equations of motion are as follows 

2

2

2

2

2

2

-1

21

1

r rr rz r

r z r

zrz z rz z

u

r r z r t

u

r r z r t

u

r r z r t

 

    



    


   



   


  
   

   
   

   
   

  
   

   

                      (10) 

σr, σ and σz are normal stress components, and r, z and rz are shear stress components, ur, 
u and uz are displacement components,  denotes material density, and t is time. The infinitesimal 
strain tensor is related to the displacements as follows 

1 1
, , , ,

1
,

r r z z
r z z

r z r
rz r

u uu u u u

r r r z z r
u uu u u

z r r r r

 
 

 


   
 

 


   
     
    

  
    
   

               
(11)

 

where r, , z, γz, γr and γrz are strain components. The mechanical constitutive relations that 
relate the stresses to the strains are as follows 

2ij kk ij ij                                    (12) 

where λ and μ are the Lame constants, ij is the infinitesimal strain tensor and ij is the Kronecker 
delta. Using the three-dimensional constitutive relations and the strain-displacement relations, the 
equations of motion in terms of displacement components with infinitesimal deformations can be 
written as 

22 2
11 12

11 12 132 2 2

2 2 2 2
13 66 55

552 2

11

1 1 1 1

1 1 1
( ) [ ]

1
[

r r z r
r

r z r r z r z

u uu u u c u c
c c u c

r r r r r r r r z r r r

u c c u u cu u u u u u u
c

r r r z r r r r z z r z z r

c
r

 

  

 

   

       
                  

                                    

 12 13 12

1
( )r r z ruu u u u

c c c
r r r z r




  

   
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2

22 23 2

1
( ) ]r z ruu u u

c c
r r z t

 


  
   

  
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      
         

  
 

  

            (15) 

Eqs. (13)-(14) represent the in-plane equations of motion along the r and -axes, respectively; 
and Eq. (15) is the transverse or out-of-plane equation of motion. The related boundary conditions 
at z=-h/2 and h/2 are as follows: 
at z=-h/2 

2 2

2 2 2

0,

0,

1 1

zr

z

z z z
z w z g

u u u
K u K

r r r r












   
                          

 (16a) 

at z=h/2  

0, 0, 0zr z z                                 (16b) 

Kw and Kg are Winkler and shearing layer elastic coefficients of the foundation. In this paper, 
three different kinds of boundary conditions are considered; Clamped-Clamped (C-C), Free-
Clamped (F-C) and Simply supported-Clamped (S-C). The boundary conditions of circular edges 
are: 

-Clamped(r=b)-Clamped(r=a) 

at r=a    ur=u=uz=0 

at r=b    ur=u=uz=0                           (17) 

-Simply supported(r=b)-Clamped(r=a) 

at r=a    ur=u=uz=0 

at r=b    σr=u=uz=0                            (18) 

-Free(r=b)-Clamped(r=a) 

at r=a    ur=u=uz=0 

at r=b    σr=r=rz=0                           (19) 
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3. Solution procedure 
 

It is necessary to develop appropriate methods to investigate the mechanical responses of 2-D 
FG structures. But, due to the complexity of the problem caused by the two-directional 
inhomogeneity, it is difficult to obtain the exact solution. In this paper, the DQM approach is used 
to solve the governing equations of 2-D FG annular plates. One can compare DQ solution 
procedure with the other two widely used traditional methods for plate analysis, i.e., Rayleigh-Ritz 
method and FEM. The main difference between the DQM and the other methods is how the 
governing equations are discretized. In DQM the governing equations and boundary conditions are 
directly discretized, and thus elements of stiffness and mass matrices are evaluated directly. But, in 
Rayleigh-Ritz and FEMs, the weak form of the governing equations should be developed and the 
boundary conditions are satisfied in the weak form. Generally by doing so larger number of 
integrals with increasing amount of differentiation should be done to arrive at the element 
matrices. Also, the number of degrees of freedom will be increased for an acceptable accuracy. 

The basic idea of the DQM is the derivative of a function, with respect to a space variable at a 
given sampling point, is approximated as a weighted linear sum of the sampling points in the 
domain of that variable. In order to illustrate the DQ approximation, consider a function 
f(,)defined on a rectangular domain 0a, and 0b Let in the given domain, the function 
values be known or desired on a grid of sampling points. According to DQM method, the rth 
derivative of the function f(,) with respect to  can be approximated as 
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From this equation one can deduce that the important components of DQM approximations are 
the weighting coefficients ( )( )r

ijA and the choice of sampling points. In order to determine the 

weighting coefficients a set of test functions should be used in Eq. (20). The weighting coefficients 
for the first-order derivatives in - direction are thus determined as (Bert and Malik 1996) 
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Where 

1,

( ) ( )
N

i i j
j i j

M


  
 

                             (22)  

The weighting coefficients of the second-order derivative can be obtained as the matrix form 
(Bert and Malik 1996) 

2

ij ij ij ijB A A A                                             (23) 
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In a similar manner, the weighting coefficients for the -direction can be obtained. 
The natural and simplest choice of the grid points is equally spaced points in the direction of 

the coordinate axes of computational domain. It was demonstrated that non-uniform grid points 
gives a better result with the same number of equally spaced grid points (Bert and Malik 1996). It 
is shown (Shu and Wang 1999) that one of the best options for obtaining grid points is Chebyshev–
Gauss–Lobatto quadrature points  

1 ( 1) 1 ( 1)
1 cos , 1 cos

2 ( 1) 2 ( 1)

1,2,..., ; 1,2,...,

ji i j

a N b N

for i N j N

 

 

                                  

 

           (24a, b)  

Using the geometrical periodicity of the plate, the displacement components for the free 
vibration analysis can be represented as 
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                       (25) 

Where m (=0,1,…,) is the circumferential wave number;  is the natural frequency and i (=-
1) is the imaginary number. It is obvious that m=0 means axisymmetric vibration. At this stage the 
DQ rules are employed to discretize the free vibration equations and the related boundary 
conditions. Substituting for the displacement components from Eq. (25) and then using the DQ 
rules for the spatial derivatives, the discretized form of the equations of motion at each domain 
grid point (rj,zk) with (j=2,3,…, Nr-1) and (k =2,3,…,Nz-1) can be obtained as Eq. (13) 
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Eq. (14) 
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(27)

Eq. (15) 
 

(28)

where r
ijA , z

ijA  and r
ijB , z

ijB  are the first and second order differential quadrature weighting 

coefficients in the r- and z- directions, respectively. urmjk, umjk and uzmjk represent the displacement 
components of the node (j, k) defined by r=rj and z=zk. Also, Nr and Nz represent the total number 
of nodes through the radial and thickness of the plate, respectively. In a similar manner the 
boundary conditions can be discretized. For this purpose, using Eq. (20) and the differential 
quadrature discretization rules for spatial derivatives, the boundary conditions at z = -h/2 and h/2 
become, 
Eq. (16a) 
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Eq. (16b) 
 

(29b)

where k=1 at z=-h/2 and k=Nz at z=h/2, and j=1,2, . . .,Nr. 
The boundary conditions at r=b and a stated in Eqs. (17)-(19) become, 
-Simply supported (S) 

 

(30a)

-Clamped (C) 
 

(30b)

-Free (F) 
 

(30c)

In the above equations k=2, . . ., Nz-1; also j=1 at r=b and j=Nr at r= a. 
In order to carry out the eigenvalue analysis, the domain and boundary nodal displacements 

should be separated. In vector forms, they are denoted as {d} and {b}, respectively. Based on this 
definition, the discretized form of the equations of motion and the related boundary conditions can 
be represented in the matrix form as: 

Equations of motion Eqs. (26)-(28) 
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Boundary conditions Eqs. (29a)-(29b) and Eqs. (30a)-(30c)                              
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where [K]=[Kdd]−[Kdb][Kbb]
-1[Kbd]. The above eigenvalue system of equations can be solved to find 

the natural frequencies and mode shapes of the plate. 
 
 
4. Numerical results and discussion 
 

Due to lack of appropriate results for free vibration of 2-D FG annular plates for direct 
comparison, validation of the presented formulation is conducted in two ways. Firstly, the results 
are compared with those of 1-D conventional functionally graded annular plates, and then, the 
results of the presented formulations are given in the form of convergence studies with respect to 
Nz and Nr, the number of discrete points distributed along the thickness and radial directions, 
respectively. 

As a first example, it is assumed that the material properties have the following exponential 
distributions in the thickness direction of the plate 

( ) ( )
( ) , ( )

z z
C Ch h

ij ijc z c e z e
 

                            (34) 

-Ceramic (Alumina, Al2O3) 

 
9 2 3380*10 , 3,800 , 0.3.c cE N m kg m     

where the superscript C refers to the material properties of the bottom surface and λ is the material 
property graded index. 

In Table 2, the first non-dimensional natural frequency parameters for the simply supported-
clamped functionally graded annular plates are compared with those of Nie and Zhong (2007) and 
Dong (2008). As the second example, the first three non-dimensional frequencies for FG annular 
plates with clamped inner and outer edges for different circumferential wave number (m) are 
compared with those of the three-dimensional elasticity solution of Nie and Zhong (2010) in Table 3.  

As another example, based on the power law distribution, the Young’s modulus E and the mass 
density  are assumed to be in terms of a power law distribution as follows 

( ) , ( )C CM f C CM fE z E E V z V                                              (35) 
, , ( )g

CM M C CM M C fE E E V z h                                          (36) 

where h is the thickness of the plate and g is the power law index which takes values greater than 
or equal to zero. Subscripts M and C refer to the metal and ceramic constituents which denote the 
material property of the top and bottom surface of the plate, respectively. The material properties 
are as follows: 

-Metal (Aluminum, Al): 
  9 2 370*10 , 0.3, 2702M ME N m kg m     
 
 
Table 1 Material properties of aluminum and silicon carbide 

 Young’s Modulus, E (Gpa) Poisson’s ratio, υ Mass density, ρ (kg/m3) 
Al 70 0.30 2,707 

Silicon carbide (Sic) 410 0.170 3,100 
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Table 2 Convergence results of the first non-dimensional natural frequency parameters 

11 11( , (1 ) (1 )(1 2 ))h C C E           for functionally graded annular plates with simply supported 
(r=b) and clamped (r=a) edges (a=1 m, b=0.1, h/a=0.2)  

Nr=Nz wave number (m) 
λ   
1 5 10 15 

7 0 0.1886 0.1331 0.0784 0.0529
9  0.1873 0.1318 0.0783 0.0536
11  0.1872 0.1316 0.0782 0.0534
13  0.1872 0.1314 0.0782 0.0535
17  0.1870 0.1315 0.0781 0.0534

(Dong 2008) 
(Nie and Zhong 2007) 

 
0.1871 
0.1936 

0.1315 
- 

0.0780 
- 

0.0536
- 

7 1 0.1801 0.1313 0.0733 0.0475
9  0.1972 0.1394 0.0809 0.0576
11  0.1990 0.1401 0.0821 0.0579
13  0.1990 0.1401 0.0852 0.0581
17  0.1993 0.1402 0.0842 0.0582

(Dong 2008)  0.1994 0.1402 0.0840 0.0582
(Nie and Zhong 2007)  0.2050 - - - 

7 2 0.2744 0.1955 0.1227 0.0851
9  0.2748 0.1968 0.1202 0.0842
11  0.2785 0.1973 0.1201 0.0832
13  0.2783 0.1969 0.1201 0.0831
17  0.2782 0.1967 0.1187 0.0823

(Dong 2008)  0.2781 0.1967 0.1184 0.0820
(Nie and Zhong 2007)  0.2684 - - - 

7 3 0.3831 0.277 0.1715 0.1188
9  0.3824 0.2765 0.1697 0.1184
11  0.3824 0.2757 0.1696 0.1180
13  0.3819 0.2757 0.1692 0.1181
17  0.3819 0.2752 0.1692 0.1182

(Dong 2008)  0.3819 0.2751 0.1693 0.1182
(Nie and Zhong 2007)  - - - - 

 
Table 3 Convergence results of the first three non-dimensional frequencies for functionally graded annular 
plates with Clamped-Clamped edges (a=1 m, b=0.2, λ=1) 

wave number 
(m) 

Number of the discrete point along the radial and thickness directions while using DQM 
7 9 11 13 17 (Nie and Zhong 2010) Ansys*

0 0.094 0.0856 0.0816 0.0801 0.0806 0.0807 0.0810 
1 0.1006 0.0896 0.0844 0.0831 0.0838 0.0837 0.0839 
2 0.1147 0.1027 0.0977 0.0955 0.0961 0.0961 0.0963 

 * Nie and Zhong (2010) 
 
 

-Ceramic (Alumina, Al2O3): 
   9 2 3380*10 , 0.3, 3800 .C CE N m kg m     

In Tables 4 and 5, the results for FG annular plates are compared with those of Dong (2008) for 
different values of the power law index and circumferential wave number (m). 
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Table 4 Convergence study of the first five non-dimensional natural frequency parameters ( )ma G  

for free vibration of a Clamped-Clamped functionally graded annular plate (a/b=2.5 m, h/a=0.5, g=1) 

Nr=Nz wave number (m) 1  2  3  4  5  

7 0 8.177 13.912 15.516 19.446 20.108 
9  8.201 13.875 15.511 19.481 20.158 
11  8.208 13.867 15.511 19.484 20.162 
13  8.210 13.870 15.511 19.485 20.164 
17  8.213 13.872 15.515 19.485 20.166 

(Dong 2008)  8.214 13.872 15.514 19.485 20.167 
7 1 8.303 9.696 13.803 14.885 15.546 
9  8.322 9.689 13.769 14.853 15.533 
11  8.327 9.688 13.767 14.851 15.533 
13  8.329 9.688 13.765 14.850 15.533 
17  8.332 9.689 13.766 14.849 15.536 

(Dong 2008)  8.333 9.689 13.766 14.850 15.535 
7 2 8.849 11.160 13.842 15.638 16.561 
9  8.861 11.147 13.814 15.615 16.548 
11  8.863 11.146 13.812 15.615 16.549 
13  8.865 11.145 13.810 15.614 16.549 
17  8.868 11.145 13.811 15.614 16.550 

(Dong 2008)  8.869 11.145 13.810 15.615 16.550 
7 3 9.901 12.693 14.423 16.390 17.699 
9  9.906 12.681 14.399 16.422 17.714 
11  9.919 12.670 14.402 16.451 17.718 
13  9.921 12.673 14.407 16.453 17.720 
17  9.923 12.673 14.407 16.456 17.721 

(Dong 2008)  9.924 12.672 14.407 16.455 17.721 

 

Table 5 Convergence study of the first five non-dimensional natural frequency parameters ( )ma G    

for free vibration of a clamped-clamped functionally graded annular plate (a/b=2.5, h/a=0.5, g=5) 

Nr=Nz wave number (m) 1  2  3  4  5  

7 0 10.063 18.379 19.726 24.456 25.726
9  10.087 18.342 19.720 24.421 25.786
11  10.094 18.333 19.721 24.424 25.790
13  10.096 18.336 19.721 24.425 25.792
17  10.098 18.338 19.723 24.427 25.794

(Dong 2008)  10.099 18.338 19.724 24.426 25.794
7 1 10.237 12.343 18.229 18.615 19.676
9  10.256 12.336 18.195 18.583 19.653
11  10.261 12.335 18.193 18.580 19.649
13  10.263 12.335 18.191 18.578 19.649
17  10.267 12.336 18.191 18.579 19.651

(Dong 2008)  10.266 12.336 18.192 18.578 19.651
7 2 10.917 14.407 18.479 18.514 20.715
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Table 5 Continued 

9  10.929 14.394 18.451 18.490 20.702
11  10.931 14.393 18.449 19.490 20.703
13  10.933 14.392 18.447 19.489 20.703
17  10.936 14.392 18.448 19.489 20.704

(Dong 2008)  10.937 14.392 18.448 19.490 20.704
7 3 12.178 16.685 19.325 20.630 22.402
9  12.228 16.673 19.301 20.662 22.413
11  12.241 16.662 19.304 20.691 22.418
13  12.243 16.665 19.309 20.693 22.420
17  12.247 16.664 19.310 20.694 22.421

(Dong 2008)  12.246 16.664 19.310 20.695 22.421
 
Table 6 Various ceramic volume fraction profiles, different parameters, and volume fraction indices of two-
dimensional power-law distributions. 

Volume fraction 
profile 

The thickness volume fraction 
index and parameters 

The radial volume fraction index 
and parameters 

Classical-Classical αz=0 αr=0 
Symmetric-Symmetric αz=1, βz=2 αr=1, βr=2 
Classical- Symmetric αz=0 αz=1, βz=2 

Classical through the thickness αz=0 γr=0 
Symmetric through the thickness αz=1, βz=2 γr=0 

 

 

According to the data presented in the above-mentioned tables, excellent solution agreements 
can be observed between the present method and those of the other methods. Based on the above 
studies, a numerical value of Nr=Nz=17 is used for the next studies.

  After demonstrating the convergence and accuracy of the method, parametric studies for 3-D 
vibration analysis of bidirectional FG annular plates for different types of ceramic volume fraction 
profiles and various thickness to outer radius ratio (h/a) and different combinations of free, simply 
supported and clamped boundary conditions at the circular edges, are computed. The non-
dimensional natural frequency, Winkler and shearing layer elastic coefficients are as follows 

2 3 212 1Al Al Al Al Ala h D ,D E h ( )                         (37) 

2 4
g g AL w w ALk K a D , k K a D                         (38) 

where Al, EAl and Al are mechanical properties of aluminum. It should be noted that the two-
dimensional functionally graded annular plates considered in this work are assumed to be 
composed of aluminum and silicon carbide. In the following, we have compared the several 
different ceramic volume fraction profiles of conventional 1-D and 2-D FGMs with appropriate 
choice of the radial and thickness parameters of the 2-D six-parameter power-law distribution, as 
shown in Table 6. It should be noted that the notation Classical- Symmetric indicates that the 2-D 
FG annular plate has classical and symmetric volume fraction profiles through the thickness and 
radial directions, respectively. 
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with the increase of the h/a ratio and then remains almost unaltered for the large values of 
thickness-to outer radius ratio (h/a>0.25). This behavior is also observed for other boundary 
conditions, not shown here for brevity. It is found that for the all boundary conditions the 
frequency parameter decreases by increasing the thickness volume fraction index, due to the fact 
that the silicon carbide fraction decreases, and as we know silicon carbide has a much higher 
Young’s modulus than aluminum. 

Now we study the influence of various types of the ceramic volume fraction profile on the 
fundamental natural frequency at various volume fraction indices through the thickness direction 
(γz) of the annular plates (Fig. 10). The results show that the fundamental natural frequency 
decreases rapidly and then approaches a constant value for higher values of the volume fraction 
index through the thickness of the plates. It is also seen that the thickness volume fraction index 
has less effect on the frequency parameter for the Classical-Classical volume fraction profile. 
 
 
5. Conclusions 
 

In this research work, differential quadrature method is employed to obtain a highly accurate 
semi-analytical solution for the three-dimensional free vibration of bidirectional annular plates 
resting on a two-parameter elastic foundation under various boundary conditions. The study is 
carried out based on the three-dimensional, linear and small strain elasticity theory. Various 
material profiles through radial and thickness directions are illustrated using the 2-D power-law 
distribution. The effective material properties at a point are determined in terms of the local 
volume fractions and material properties by the Mori-Tanaka scheme. The effects of different 
boundary conditions, various geometrical parameters, different ceramic volume fraction profiles in 
the thickness and radial directions and elastic coefficients of foundation of bidirectional annular 
plates resting on a two-parameter elastic foundation are investigated. Moreover, vibration behavior 
of 2-D FG plates is compared with one-dimensional conventional 1-D FG plates. From this study, 
some conclusions can be made: 

• It results the variation of Winkler elastic coefficient has little effect on the non-dimensional 
natural frequencies at different values of shearing layer elastic coefficient. One can see that in all 
cases (Fig. 7), with increasing the shearing layer elastic coefficient of the foundation, the 
frequency parameters increase to some limit values. It is observed for the large values of shearing 
layer elastic coefficient, the results become independent of it. 

• The non-dimensional natural frequency parameters converge with increasing Winkler elastic 
coefficient of the foundation, it should be noted that non-dimensional natural frequency parameters 
converge at the large values of the Winkler elastic coefficient.  

• The results show that the fundamental natural frequency decreases rapidly and then 
approaches a constant value for higher values of the thickness volume fraction index. It is also 
seen that the thickness volume fraction index exerts an insignificant influence on the frequency 
parameter for the Classical–Classical volume fraction profile. 

• It is found that for the all boundary conditions the frequency parameter decreases by 
increasing the thickness volume fraction index, due to the fact that the silicon carbide fraction 
decreases, and as we know silicon carbide has a much higher Young’s modulus than aluminum. 

• The interesting results show that the lowest magnitude frequency parameter is obtained by 
using a Classical–Classical volume fractions profile. It can be concluded that a graded ceramic 
volume fraction in two directions has higher capabilities to reduce the natural frequency than a 

683



 
 
 
 
 
 

Vahid Tahouneh 

conventional 1-D FGM. Moreover, the results show that with increasing values of the 
circumferential wave number (m), frequency parameter of the Classical FGM annular plate is close 
to that of a Symmetric-Symmetric. 

Based on the achieved results, using 2-D six-parameter power-law distribution leads to a more 
flexible design so that maximum or minimum value of natural frequency can be obtained to a 
required manner. 
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