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Abstract.  This paper deals with free vibration analysis of bidirectional functionally graded annular plates
resting on a two-parameter elastic foundation. The formulations are based on the three-dimensional elasticity
theory. This study presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of
2-D functionally graded materials that gives designers a powerful tool for flexible designing of structures
under multi-functional requirements. Various material profiles along the thickness and in the in-plane
directions are illustrated by using the 2-D power-law distribution. The effective material properties at a point
are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka
scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to
discretize the governing equations and to implement the boundary conditions. The fast rate of convergence
of the method is shown and the results are compared against existing results in literature. Some new results
for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of
foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a
graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency
than conventional 1-D functionally graded materials.

Keywords: nonlinear distribution of material profiles; 3-D vibration analysis of plates; bidirectional
functionally graded materials; two-parameter elastic foundations; differential quadrature method

1. Introduction

Functionally graded materials (FGMs), a new generation of advanced composite materials,
possess continuous, and smooth spatial variations of macroscopic properties such as heat
conductivity, elastic modulus, mass density, etc. This is achieved by controlling the volume
fraction, sizes, and shapes of material components during manufacturing. The original application
of FGMs is for thermal barrier systems which are composed of heat-resisting ceramic and fracture-
resisting metal with smooth transition of material properties, thus reducing cracking and
delamination often observed in conventional layered systems. There have been increasingly many
modern engineering applications of FGMs, such as aircraft fuselages, rocking-motor casings,
packaging materials in microelectronic industry, human implants, and so.
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Eraslan and Akis (2009) obtained the closed-form solution of FG rotating solid shaft and
rotating solid disk under generalized plane strain and stress assumptions, respectively. Prakash and
Ganapathi (2006) analyzed the asymmetric flexural vibration and thermoelastic stability of FGMs
circular plates using finite element method. Efraim and Eisenberger (2007) studied the vibration of
variable thickness annular isotropic plates and FG plates. Nie and Zhong (2007) investigated three-
dimensional vibration of FG circular plates using semi-analytical method. Dong (2008) developed
a three-dimensional free vibration analysis of FG annular plates using the Chebyshev-Ritz method.
Allahverdizadeh et al. (2008) developed a semi-analytical approach for nonlinear free and forced
axisymmetric vibrations of a thin circular FG plate, using a time averaging technique. Ebrahimi
and Rastgo (2008) investigated free vibration of thin FG circular plates integrated with two
piezoelectric actuator layers based on the classical plate theory. Ponnusamy and Selvamani (2012)
studied the wave propagation in a generalized thermo elastic plate embedded in an elastic medium
based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of
thermo elasticity.

Plates on elastic foundations have been widely adopted by many researchers to study the free
vibration for various engineering plate problems (Gupta et al. 1990, Xiang et al. 1994, 1996,
Matsunaga 2000, Malekzadeh and Karami 2004, Zhou et al. 2004, 2006, Hosseini Hashemi et al.
2008, 2009, Ming Hung 2010, Shafiee et al. 2014), and limited studies have been done about the
influences of elastic foundations on the free vibration of FGM plates in recent years. Malekzadeh
(2009) used the differential quadrature method (DQM) for three-dimensional free vibration
analysis of thick functionally graded plates on elastic foundations. Amini et al. (2009) described a
method for the three-dimensional free vibration analysis of rectangular FGM plates resting on an
elastic foundation using Chebyshev polynomials and Ritz’s method. Yas and Sobhani (2010)
studied free vibration characteristics of rectangular continuous grading fiber reinforced (CGFR)
plates resting on elastic foundations using DQM. Recently, Tahouneh and Yas (2012) investigated
the free vibration analysis of thick FG annular sector plates on Pasternak elastic foundations using
DQM based on the three-dimensional elasticity theory. Hosseini-Hashemi et al. (2010) presented a
solution to study the free vibration analysis of thin radially functionally graded annular sector
plates of variable thickness on elastic foundations based on the classical plate theory (CPT) using
the DQM. It can be expressed that the vibration analysis of FG circular and annular plates on
elastic foundations is rare.

In the above-mentioned papers, the material properties are assumed to have a smooth variation
usually in one direction. A conventional FGM may also not be so effective in such design
problems since all outer surfaces of the body will have the same composition distribution. In 2003,
the Columbia space shuttle was lost in a catastrophic breakup due to outer surface insulation that
fell loose when the Columbia lifted off (Columbia Accident Investigation Board 2003a, b) such
damage to the space shuttle’s protective thermal tiles can be prevented by using FGMs. It is worth
mentioning that a conventional functionally graded material may also not be so effective in such
design problems since all outer surfaces of the body will have the same composition distribution
and temperature distribution in such advanced machine element changes in two or three directions.
Therefore, if the FGM has two-dimensional dependent material properties, a more effective high-
temperature-resistant material can be obtained. Based on this fact, two-dimensional functionally
graded materials (2-D FGMs) whose material properties are bidirectionally dependent are
introduced.

In structural mechanics, one of the most popular semi-analytical methods is DQM (Bellman
and Casti 1971), remarkable success of which has been demonstrated by many researchers in
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vibration analysis of plates, shells, and beams. Liu and Liew (1999), Liew and Liu (2000)
presented DQM for free vibration analysis of Mindlin isotropic circular and annular sector plates
with various types of boundary conditions. A new version of the DQM was extended by Wang and
Wang (2004) to analyze the free vibration of thin circular sector plates with six combinations of
boundary conditions. Liew et al. (1996) employed DQM for free vibration analysis of moderately
thick plates on Winkler foundation. Gupta et al. (2006) studied the free vibration analysis of non-
homogeneous circular plate of non-linear thickness variation by the DQM. Nie and Zhong (2010)
studied the free vibration of FG plates without elastic foundation using DQM. They assumed the
material properties of the FG plate having an exponent-law variation along the thickness, radial
direction or both directions. The mathematical fundamental and recent developments of
differential quadrature method as well as its major applications in engineering are discussed in
detail in book by Shu (2000).

This paper is motivated by the lack of studies in the technical literature concerning to the three-
dimensional vibration analysis of bidirectional FG plates resting on two-parameter elastic
foundations. The Mori-Tanaka scheme as an accurate micromechanics model is used for
estimating the homogenized material properties. The Mori-Tanaka scheme (Mori and Tanaka 1973,
Benveniste 1987, Dasgupta and Bhandarkar 1992, Hu and Weng 2000 and Genin and Birman
2009) for estimating the effective moduli is applicable to regions of the graded microstructure that
have a well-defined continuous matrix and a discontinuous particulate phase. In the present paper,
the differential quadrature method is employed to develop a semi-analytical solution for free
vibration analyses of two-directional functionally graded annular plates resting on two-parameter
elastic foundations. Simultaneous variations of the material properties in the radial and transverse
directions are described by a general function. A sensitivity analysis is performed, and the natural
frequencies are calculated for clamped-clamped, free-clamped and simply supported-clamped
boundary conditions and different combinations of the geometric, material, and foundation
parameters. Therefore, very complex combinations of the material properties, boundary
conditions, and foundation stiffnesses are considered in the present semi-analytical solution
approach.

2. Problem formulation

Consider a 2-D FGM annular plate which is made from a mixture of ceramics and metals as
depicted in Fig. 1 The plate is supported by an elastic foundation with Winkler’s (normal) and
Pasternak’s (shear) coefficients. The deformations defined with reference to a cylindrical
coordinate system (7,6z) are u,, ug and u. in the » 6 and z directions, respectively. The uniform
thickness, outer and inner radius of the plate are 4, a and b, respectively and r,, is the mean radius
of the annular plate.

2.1 Two-directional six-parameter power-law distribution

One of the well-known power-law distributions which is widely considered by the researchers
is three- or four- parameter power-law distribution (Tornabene 2009, Sobhani Aragh and Yas
2010). The benefit of using such power-law distributions is to illustrate and present useful results
arising from symmetric and asymmetric profiles. Consider V. (volume fraction of the ceramic
phase) is equal to f{z)*g(r), fz) and g(r) are both the three-parameter power-law distribution. They
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Fig. 1 A bidirectional functionally graded annular plate resting on a two-parameter elastic foundation
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Fig. 2 Variations of the Asymmetric volume fraction profiles along the radial («,) and thickness (u.)
directions of the plate, respectively (y,=y.=4,a,=0,=0)

can be used to illustrate symmetric, asymmetric and classical profiles along the thickness and
radial directions of the annular plate, respectively. So by considering V, as f(z)*g(r), one can
present a 2-D six-parameter power-law distribution which is useful to illustrate different types of
ceramic volume fraction profiles, including classical-classical, symmetric-symmetric and classical-
symmetric in both directions. It should be mentioned that this equation can be used to present
symmetric and asymmetric profiles in one direction (along the thickness or radial direction of the
plate) as f(z) or g(r) is equal to one.

In this work, it is proposed that the volume fraction of the ceramic phase follows a 2-D six-
parameter power-law distribution

r—r

= l_i l 2Ny _ l Y _l ANYZ
Vc—(((2 h)+a2(2+h) )V, Va)"‘Va)(ar(z"‘a_b) +1 (2+a—b)) (1
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Fig. 3 Variations of the Symmetric and Asymmetric volume fraction profiles along the radial and
thickness (u.) directions of the plate, respectively (y,=y.=3,a,=1,a.=0,5,=2)
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Fig. 4 Variations of the Symmetric volume fraction profiles along the radial (x.) and thickness (i)
directions of the plate, respectively (y,=y.=3.8,= f.=2,0,= a.=1)

where the radial volume fraction index y,, and the parameters a,, . and the thickness volume
fraction index y,, and the parameters o, f. govern the material variation profile through the radial
and along the thickness directions, respectively. The volume fractions ¥, and V,, which have
values that range from 0 to 1, denote the ceramic volume fractions of the two different isotropic
materials. For example, with assumption V=1 and V,=0.3, some material profiles through the
radial (w,=r-r,/a-b) and thickness (u,=z/h) directions are illustrated in Figs. 2-4. As can be seen
from Fig. 2, the classical volume fraction profile through the radial and thickness directions is
presented as a special case of the 2-D power-law distribution (1) by setting y,=y.=4, and a,= =0,
so in this case Eq. (1) is presented as follows
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With another choice of the parameters «,, f,, a. and £,, it is possible to obtain symmetric and
classical volume fraction profiles through the radial and thickness directions of the annular plate,
respectively, as shown in Fig. 3. This Figure shows a classical profile versus x, and a symmetric
profile versus x,. In this case Eq. (1) is presented as follows

1 1 1
Vo=(G— ) *0.T+03)(+ )+~ 41,) (3)
2 2 2
Fig. 4 illustrates symmetric profiles through the radial and thickness directions obtained by
setting a,=a.=1, f,=p.=2 and y,=y,=3

1 1 1 1
Vo= (G +(G+m)) *0.7+03) (5 +4,) + - 4,) 4
2 2 2 2
It is also possible to obtain classical and symmetric profiles from Eq. (1) along the thickness of
the plate as shown in the following equations
-Classical along the thickness of the plate (a.= y,=0, y.=2)

V. =(%—,uz)2*0.7+0.3 (5)
-Symmetric along the thickness of the plate (a.=1, =0, 8. =y.=2)
VC:(%_#Z+(%+ﬂz)2)2*o.7+o.3 (6)

The effective material properties of the isotropic 2-D FGMs are determined in terms of the
local volume fractions and material properties of the two isotropic phases by the Mori-Tanaka
scheme. It takes into account the interaction of the elastic fields among neighboring inclusions. It
is assumed that the matrix phase, denoted by the subscript m, is reinforced by spherical particles of
a particulate phase, denoted by the subscript c. In this notation, K,, and G, are the bulk modulus
and the shear modulus, respectively, and V,, is the volume fraction of the matrix phase. K., G., and
V. are the corresponding material properties and the volume fraction of the particulate phase. Note
that V,,+V.=1, that the Lamé constant 4 is related to the bulk and the shear moduli by 1=K-2G/3,
and that the stress—temperature modulus is related to the coefficient of thermal expansion by
S=(B3A+2G)a=3Ka. The following estimates for the effective local bulk modulus K and shear
modulus G are useful for a random distribution of isotropic particles in an isotropic matrix

K-K, 14

KK, 1+(0-V)(K. KK, +@3K,) @)

T g ®)
G -G, 1+(1-V.)(G.-G)/(G, +f,)

where f,=G,,(9K,+8G,)/6(K,+2G,). The effective values of Young’s modulus, £, and Poisson’s
ratio, v, are found from
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9KG 3K -2G
= . D= (9)
3K+ G 263K +G)

we choose a metal/ceramic annular plate with the metal (Al) taken as the matrix phase and the
ceramic (SiC) taken as the particulate phase. The material properties of aluminum and silicon
carbide are listed in Table 1 (Vel and Batra 2002 and Vel 2010).

2.2 Governing equations

In the absence of body forces, the equations of motion are as follows

oo, 10r, Or, o, -0, o’u,
— + + =p—
or r 00 oz r ot
2
or,, +l oo, N or,, N 27, :p6 uzg (10)
or r 060 0z r ot
or, 10z, Oo, T, o’u.
+— + =

o r o0 e r P

o0,, 0gand o, are normal stress components, and 7.4, 74 and 7. are shear stress components, u,,
ugand u. are displacement components, o denotes material density, and ¢ is time. The infinitesimal
strain tensor is related to the displacements as follows
ou, u, 10u, Ou, Ou, 10u,
£ = &y = +— E =—= Yy, =——+——=,

oz r o6
_ Ou, Ou 1 au 6u9 u, (11)

Y roor oo’ oz

Ve = Oz E’%ﬂ r 89 or r

where &, €4 &, ya, yroand y,. are strain components. The mechanical constitutive relations that
relate the stresses to the strains are as follows

= 8,8, +2u8, (12)

where 4 and y are the Lame constants, &; is the infinitesimal strain tensor and Jj is the Kronecker
delta. Using the three-dimensional constitutive relations and the strain-displacement relations, the
equations of motion in terms of displacement components with infinitesimal deformations can be
written as

——Uu z

+
o0 r oro0 r or 127 C”araz or or Or

o’u 12[ 1 % 1 ou, +l ou, 1 j o’u +80116&+8c12

u,  10u,  0Oc,ou,  cg

O’u, 10°u, 1 0u, Ocy(0u, Ou O’u,  Ou
(—++- +—= t—— =]+ |t | ot
r r o6 or 0oz r orol r 00 r 00 oz \ 0z oOr Oz Ozor
J’_l[c %_’_C (u_r+l% +C %_C aur
ro ' or Py 00 B oz 2 or
u, 10u, ou o’u
—. (—+ —c.,—=]= r 13
2Ot e T G TP (13)
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Eqgs. (13)-(14) represent the 1n—p1ane equations of motion along the » and G-axes, respectively;
and Eq. (15) is the transverse or out-of-plane equation of motion. The related boundary conditions
at z=-h/2 and h/2 are as follows:

at z=-h/2
Tzr = 0’
7,=0, (16a)
2 2
o =Ku K. |2 u 1 O, L 0 =
£\ or r or r 00
at z=h/2

r,=0,7,=0,0 =0 (16b)

K, and K, are Winkler and shearing layer elastic coefficients of the foundation. In this paper,
three different kinds of boundary conditions are considered; Clamped-Clamped (C-C), Free-
Clamped (F-C) and Simply supported-Clamped (S-C). The boundary conditions of circular edges
are:

-Clamped(r=b)-Clamped(r=a)

at r=a u,~ugu,=0
at r=>b u,~u7~u,=0 (17)

-Simply supported(r=>b)-Clamped(r=a)

at r=a u~ugu,=0

at r=>b o,~ug~u,=0 (18)
-Free(r=>b)-Clamped(r=a)

at r=a u~ugu,=0

at r=>b 0,~T.~7,,~0 (19)
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3. Solution procedure

It is necessary to develop appropriate methods to investigate the mechanical responses of 2-D
FG structures. But, due to the complexity of the problem caused by the two-directional
inhomogeneity, it is difficult to obtain the exact solution. In this paper, the DQM approach is used
to solve the governing equations of 2-D FG annular plates. One can compare DQ solution
procedure with the other two widely used traditional methods for plate analysis, i.e., Rayleigh-Ritz
method and FEM. The main difference between the DQM and the other methods is how the
governing equations are discretized. In DQM the governing equations and boundary conditions are
directly discretized, and thus elements of stiffness and mass matrices are evaluated directly. But, in
Rayleigh-Ritz and FEMs, the weak form of the governing equations should be developed and the
boundary conditions are satisfied in the weak form. Generally by doing so larger number of
integrals with increasing amount of differentiation should be done to arrive at the element
matrices. Also, the number of degrees of freedom will be increased for an acceptable accuracy.

The basic idea of the DQM is the derivative of a function, with respect to a space variable at a
given sampling point, is approximated as a weighted linear sum of the sampling points in the
domain of that variable. In order to illustrate the DQ approximation, consider a function
(& n)defined on a rectangular domain 0<&<a, and 0<7<b Let in the given domain, the function
values be known or desired on a grid of sampling points. According to DQM method, the rth
derivative of the function f{&,7) with respect to £ can be approximated as

N, N,
o' f(&.n) N ) S0
T (é,lz)z(éf’ﬂ_/):Z_;Aim / (fwﬂj)ZZ_;Afm o
fori=1,2,...,N§ andr=1,2,...,N§ -1 (20)

From this equation one can deduce that the important components of DQM approximations are
the weighting coefficients (Af(r))and the choice of sampling points. In order to determine the

weighting coefficients a set of test functions should be used in Eq. (20). The weighting coefficients
for the first-order derivatives in &- direction are thus determined as (Bert and Malik 1996)

1 M) for i#j
a (5, - fj)M(SZJ)
A = N, i, j=12,..,N, 21
—ZA; for i=j
J=1
i#]
Where

Ne

M@= T1 E-¢) 22)

J=Li#j

The weighting coefficients of the second-order derivative can be obtained as the matrix form

(Bert and Malik 1996)
[5i)=[4][4]-[4T @)
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In a similar manner, the weighting coefficients for the 7-direction can be obtained.

The natural and simplest choice of the grid points is equally spaced points in the direction of
the coordinate axes of computational domain. It was demonstrated that non-uniform grid points
gives a better result with the same number of equally spaced grid points (Bert and Malik 1996). It
is shown (Shu and Wang 1999) that one of the best options for obtaining grid points is Chebyshev—
Gauss—Lobatto quadrature points

s _1 1—cos (-Dz j:l 1— cos (j-Dx
“ 2 (Ve =D 2 (N, =D (24a,b)

for i=12,.,N

5j=12,..N,

Using the geometrical periodicity of the plate, the displacement components for the free
vibration analysis can be represented as

u (r,0,z,t)=u, (r,z)cos(md)e
u,(r,0,z,t)=u,, (r,z)sin(md)e' (25)
u (r,0,z,t)=u_, (r,z)cos(md)e™

Where m (=0,1,...,00) is the circumferential wave number; @ is the natural frequency and i (=V-
1) is the imaginary number. It is obvious that m=0 means axisymmetric vibration. At this stage the
DQ rules are employed to discretize the free vibration equations and the related boundary
conditions. Substituting for the displacement components from Eq. (25) and then using the DQ
rules for the spatial derivatives, the discretized form of the equations of motion at each domain
grid point (7;,z¢) with (=2,3,..., N,-1) and (k =2,3,...,N.-1) can be obtained as Eq. (13)

m
k
(cll)jkz jn rmnk + (012)]1(( r"m +— ZA/n rmnk l" uﬁmnk +

T j n=l j

i 8011 &
z u&mnk) + (cl3 )jk Z z A) A/fr zmnr Jk z A/n rmnk +
/ n=1 n=1 r=1
oc,, urm/k 0Cs . (Co) i ,—m”
( )]k ( u@mjk) + ( )jk z kn zmjn + (
}’T]. ] l" n=l1 l"/ ’/.-/
NV
urmjk + mz Aj"nuﬁmnk u@m/k) + (CSS )jk (Z Bkn rmjn + z Z Ak Aljr zmnr (26)
n=1 n=1 r=1
6655

)jk(z kn rmjn+zAn zmnk)+ ((Cll)jAZAjnurmnk(CIZ)jk

n=1 n=1

( urmjk +— u&mjk) + (cl3 )jk Z /m zmjn (CIZ )jk z jn rmnk (622 )jk

n=1

2
( urmjk +— u&mjk) (023 )jk z Akn zmjn =-0 pjkurmjk
j _/ n=1
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Eq. (14)
m
(Cé6 )jk (_2urm/'k Z A/n rmnk + Z Bjnuﬁmnk uﬂm/k Z A uﬁmnk ) +
}"j / n=1 n=1 j j n=1
Ocgs ,—
( al" )/k rm[k + Z Ajn u@mnk u@m/k) +— ((CIZ )/k ( m)z A/n rmnk
j n=1
m
(622 )jk (r_urm/'k uﬁm/k ) + (023 )/k ( m)z kn zmjn) + (c44 )/k (Z u&mjn - (27)
J
0cy, < z m 2(cee) o —m
_Z kn zmjn ) + ( )jk (Z Aknuﬁmjn - _uzmjk) + - (_urmjk
16}
j n=l1 z n=l1 ]"j j f"j
2
ZAjnuﬂmnk ’ uﬁmjk) —@ pjkugmjk
J
Eq. (15)
N, N. oc N:
(CSS )jk (Z Z A/frA]rn rmnr + Z B jn hmnk ) + ( = )_]k (Z A/;nurmjn +

n=1 r=1 n=1

2

44) ik m
Z A Jr zmrk ) — ( z Aknuﬂmjn - r_uzmjk ) + (013 )jk

J

(Z Z Akzr Aj’n rmnr) + (023 )jk ( z u@mjn +— Z Alm »m/n (28)

n=1 r=1 jnl jnl
N,

c;s 5623 Ui m
(033)/k Z kn zmjn + ( )jk Z jn »mnk )jk ( 7"( + r_uﬁmjk ) +
J

n=1 j

N,

80 ) u
33 Css /k r _ 2
)jk z kn zmjn Z i rmjn + z Ajruzmrk ) =-0 pjk uzmjk
r=1

n=1

where 4; , 4; and B; , B; are the first and second order differential quadrature weighting

g2y

coefficients in the r- and z- directions, respectively. t,r, tgnix and i, represent the displacement
components of the node (j, k) defined by r=7; and z=z;. Also, N, and N. represent the total number
of nodes through the radial and thickness of the plate, respectively. In a similar manner the
boundary conditions can be discretized. For this purpose, using Eq. (20) and the differential
quadrature discretization rules for spatial derivatives, the boundary conditions at z = -4/2 and A/2
become,

Eq. (16a)

Z kn rmjn + ZA]n zmnk ’ zmjk + ZAknuHmjn =

T

rm ik
(cl3 )]k Z jn rmnk + (C23 )]k ( - _ugmjk ) + (633 )]k Z Alm zmjn (293)

n=1 n=1

2

m
_K uzmjk + Kg (z B jn zmnk +— Z A/n zmnk r zmjk) 0

/nl j
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Eq. (16b)

Z kn rmjn z jn zmnk ’ zmjk +Z uﬁm]n = ’

Ty

N . (29b)
(Cl3 )jk z Ajr'nurmnk + (C23 )jk ( :"/k u@mjk) + (C33 )/k Z kn zmjn -
n=1 J J
where k=1 at z=-h/2 and k=N, at z=h/2, and j=1,2, .. ,N,.
The boundary conditions at 7/=b and a stated in Egs. (17)-(19) become,
-Simply supported (S)
uﬂmjk 0 uzmjk
Uy 30a
(cl 1 )/k Z jn rmnk + (c12 ) Jk ( = _u9n1/k) + (c13 ) Jjk 2 kn zmjn 0 ( )
/
-Clamped (C)
urmjk = 0’ u&m/'k = 0’ uzm/'k = O (30b)
-Free (F)
(Cll)/k Z jn rmnk + (012 )]k ( :’”k u&mjk ) + (Cl3 )/k Z kn zmjn = O:
J
1
Z u@mnk rmjk u@m/'k = 0’ (3OC)
r. r

J J

Z i rmjn : ', jn Uk =

n=1

In the above equations k=2, . . ., Nz-1; also j=1 at »=b and j=N, at r= a.

In order to carry out the eigenvalue analysis, the domain and boundary nodal displacements
should be separated. In vector forms, they are denoted as {d} and {b}, respectively. Based on this
definition, the discretized form of the equations of motion and the related boundary conditions can
be represented in the matrix form as:

Equations of motion Egs. (26)-(28)

[[de][Kddﬂ{{b}

{d}
Boundary conditions Eqs. (29a)-(29b) and Egs. (30a)-(30c)

[Kbd]{d}+[Kbb]{b} :{0} (32)

Eliminating the boundary degrees of freedom in Eq. (31) using Eq. (32), this equation becomes
[K]-o* [M]{d] ={0} (33)

}—wz[M]{d}={0} 31)



Free vibration analysis of bidirectional functionally graded annular plates... 675

where [K]=[Ka]-[Ka[Kss] ' [Ksa]. The above eigenvalue system of equations can be solved to find
the natural frequencies and mode shapes of the plate.

4. Numerical results and discussion

Due to lack of appropriate results for free vibration of 2-D FG annular plates for direct
comparison, validation of the presented formulation is conducted in two ways. Firstly, the results
are compared with those of 1-D conventional functionally graded annular plates, and then, the
results of the presented formulations are given in the form of convergence studies with respect to
N, and N,, the number of discrete points distributed along the thickness and radial directions,
respectively.

As a first example, it is assumed that the material properties have the following exponential
distributions in the thickness direction of the plate

G G
c;(2)= cl.]C.e hop(z)=pCe (34)
-Ceramic (Alumina, Al,O5)
E° =380%10° N/m?*, p° =3,800kg/m’ ,0=0.3.

where the superscript C refers to the material properties of the bottom surface and 4 is the material
property graded index.

In Table 2, the first non-dimensional natural frequency parameters for the simply supported-
clamped functionally graded annular plates are compared with those of Nie and Zhong (2007) and
Dong (2008). As the second example, the first three non-dimensional frequencies for FG annular
plates with clamped inner and outer edges for different circumferential wave number (m) are
compared with those of the three-dimensional elasticity solution of Nie and Zhong (2010) in Table 3.

As another example, based on the power law distribution, the Young’s modulus £ and the mass
density p are assumed to be in terms of a power law distribution as follows

E(z)=E.+EqV,, p(2)=pc+ PovV; (35)
ECM :EM _Eca Pcv = Pu ~ Pe> V/‘ :(Z/h)g (36)

where /4 is the thickness of the plate and g is the power law index which takes values greater than

or equal to zero. Subscripts M and C refer to the metal and ceramic constituents which denote the
material property of the top and bottom surface of the plate, respectively. The material properties
are as follows:

-Metal (Aluminum, Al):

E, =70%10° N/m* ,0v=0.3,p, =2702kg/m’

Table 1 Material properties of aluminum and silicon carbide

Young’s Modulus, £ (Gpa) Poisson’s ratio, v Mass density, p (kg/m’)
Al 70 0.30 2,707
Silicon carbide (Sic) 410 0.170 3,100
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Table 2 Convergence results of the first non-dimensional natural frequency parameters
(@ = wh\p/C,, ,C,, = EQl-v)/(1+v)(1-2v)) for functionally graded annular plates with simply supported
(r=b) and clamped (r=a) edges (a=1 m, b=0.1, h/a=0.2)

A

N,=N, wave number (m) 1 5 10 5

7 0 0.1886 0.1331 0.0784 0.0529

9 0.1873 0.1318 0.0783 0.0536

11 0.1872 0.1316 0.0782 0.0534

13 0.1872 0.1314 0.0782 0.0535

17 0.1870 0.1315 0.0781 0.0534

(Dong 2008) 0.1871 0.1315 0.0780 0.0536
(Nie and Zhong 2007) 0.1936 - - -

7 1 0.1801 0.1313 0.0733 0.0475

9 0.1972 0.1394 0.0809 0.0576

11 0.1990 0.1401 0.0821 0.0579

13 0.1990 0.1401 0.0852 0.0581

17 0.1993 0.1402 0.0842 0.0582

(Dong 2008) 0.1994 0.1402 0.0840 0.0582
(Nie and Zhong 2007) 0.2050 - - -

7 2 0.2744 0.1955 0.1227 0.0851

9 0.2748 0.1968 0.1202 0.0842

11 0.2785 0.1973 0.1201 0.0832

13 0.2783 0.1969 0.1201 0.0831

17 0.2782 0.1967 0.1187 0.0823

(Dong 2008) 0.2781 0.1967 0.1184 0.0820
(Nie and Zhong 2007) 0.2684 - - -

7 3 0.3831 0.277 0.1715 0.1188

9 0.3824 0.2765 0.1697 0.1184

11 0.3824 0.2757 0.1696 0.1180

13 0.3819 0.2757 0.1692 0.1181

17 0.3819 0.2752 0.1692 0.1182

(Dong 2008) 0.3819 0.2751 0.1693 0.1182
(Nie and Zhong 2007) - - - -

Table 3 Convergence results of the first three non-dimensional frequencies for functionally graded annular
plates with Clamped-Clamped edges (a=1 m, 5#=0.2, A=1)

wave number _ Number of the discrete point along the radial and thickness directions while using DQM

(m) 7 9 11 13 17 (Nie and Zhong 2010)  Ansys
0 0.094 0.0856  0.0816  0.0801  0.0806 0.0807 0.0810
1 0.1006  0.0896  0.0844  0.0831  0.0838 0.0837 0.0839
2 0.1147  0.1027  0.0977  0.0955  0.0961 0.0961 0.0963
* Nie and Zhong (2010)

-Ceramic (Alumina, Al,O;):
E.=380*%10° N/m*,0=0.3, p. =3800kg/m’.
In Tables 4 and 5, the results for FG annular plates are compared with those of Dong (2008) for
different values of the power law index and circumferential wave number (m).
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Table 4 Convergence study of the first five non-dimensional natural frequency parameters (@ = wa./p/G,, )
for free vibration of a Clamped-Clamped functionally graded annular plate (a/b=2.5 m, h/a=0.5, g=1)

N=N, wave number (m) W, w, (OR w, W,
7 0 8.177 13.912 15.516 19.446 20.108
9 8.201 13.875 15.511 19.481 20.158
11 8.208 13.867 15.511 19.484 20.162
13 8.210 13.870 15.511 19.485 20.164
17 8.213 13.872 15.515 19.485 20.166
(Dong 2008) 8.214 13.872 15.514 19.485 20.167
7 1 8.303 9.696 13.803 14.885 15.546
9 8.322 9.689 13.769 14.853 15.533
11 8.327 9.688 13.767 14.851 15.533
13 8.329 9.688 13.765 14.850 15.533
17 8.332 9.689 13.766 14.849 15.536
(Dong 2008) 8.333 9.689 13.766 14.850 15.535
7 2 8.849 11.160 13.842 15.638 16.561
9 8.861 11.147 13.814 15.615 16.548
11 8.863 11.146 13.812 15.615 16.549
13 8.865 11.145 13.810 15.614 16.549
17 8.868 11.145 13.811 15.614 16.550
(Dong 2008) 8.869 11.145 13.810 15.615 16.550
7 3 9.901 12.693 14.423 16.390 17.699
9 9.906 12.681 14.399 16.422 17.714
11 9.919 12.670 14.402 16.451 17.718
13 9.921 12.673 14.407 16.453 17.720
17 9.923 12.673 14.407 16.456 17.721
(Dong 2008) 9.924 12.672 14.407 16.455 17.721

Table 5 Convergence study of the first five non-dimensional natural frequency parameters (o = wa./p/G,, )
for free vibration of a clamped-clamped functionally graded annular plate (a/b=2.5, h/a=0.5, g=5)

N=N, wave number (m) W, w, (OR w, ,
7 0 10.063 18.379 19.726 24.456 25.726
9 10.087 18.342 19.720 24.421 25.786
11 10.094 18.333 19.721 24.424 25.790
13 10.096 18.336 19.721 24.425 25.792
17 10.098 18.338 19.723 24.427 25.794
(Dong 2008) 10.099 18.338 19.724 24.426 25.794
7 1 10.237 12.343 18.229 18.615 19.676
9 10.256 12.336 18.195 18.583 19.653
11 10.261 12.335 18.193 18.580 19.649
13 10.263 12.335 18.191 18.578 19.649
17 10.267 12.336 18.191 18.579 19.651
(Dong 2008) 10.266 12.336 18.192 18.578 19.651

7 2 10.917 14.407 18.479 18.514 20.715
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Table 5 Continued

9 10.929 14.394 18.451 18.490 20.702
11 10.931 14.393 18.449 19.490 20.703
13 10.933 14.392 18.447 19.489 20.703
17 10.936 14.392 18.448 19.489 20.704
(Dong 2008) 10.937 14.392 18.448 19.490 20.704
7 3 12.178 16.685 19.325 20.630 22.402
9 12.228 16.673 19.301 20.662 22.413
11 12.241 16.662 19.304 20.691 22.418
13 12.243 16.665 19.309 20.693 22.420
17 12.247 16.664 19.310 20.694 22.421
(Dong 2008) 12.246 16.664 19.310 20.695 22.421

Table 6 Various ceramic volume fraction profiles, different parameters, and volume fraction indices of two-
dimensional power-law distributions.

Volume fraction The thickness volume fraction The radial volume fraction index
profile index and parameters and parameters
Classical-Classical o,=0 o,=0
Symmetric-Symmetric a=1,p=2 o=1, =2
Classical- Symmetric 0,=0 o~=1, =2
Classical through the thickness o,=0 7,=0
Symmetric through the thickness a=1, =2 7,=0

According to the data presented in the above-mentioned tables, excellent solution agreements
can be observed between the present method and those of the other methods. Based on the above
studies, a numerical value of N,=N.,=17 is used for the next studies.

After demonstrating the convergence and accuracy of the method, parametric studies for 3-D
vibration analysis of bidirectional FG annular plates for different types of ceramic volume fraction
profiles and various thickness to outer radius ratio (4/a) and different combinations of free, simply
supported and clamped boundary conditions at the circular edges, are computed. The non-
dimensional natural frequency, Winkler and shearing layer elastic coefficients are as follows

Q=wa’\|p,h/D, D, =EN /12(1 ~0y,) (37)

kg = Kg aZ/DAL ) kw = Kw a4/DAL (38)

where py, E4 and vy are mechanical properties of aluminum. It should be noted that the two-
dimensional functionally graded annular plates considered in this work are assumed to be
composed of aluminum and silicon carbide. In the following, we have compared the several
different ceramic volume fraction profiles of conventional 1-D and 2-D FGMs with appropriate
choice of the radial and thickness parameters of the 2-D six-parameter power-law distribution, as
shown in Table 6. It should be noted that the notation Classical- Symmetric indicates that the 2-D
FG annular plate has classical and symmetric volume fraction profiles through the thickness and
radial directions, respectively.
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Fig. 5 Variations of fundamental frequency parameters of two-dimensional functionally graded
annular plates resting on an elastic foundation with A/ ratio for different volume fraction
profiles and various boundary conditions (K,=K,,=100, y.=2, b/a=0.2)

The variations of fundamental frequency parameters of 2-D FG annular plates resting on an
elastic foundation with thickness to outer radius ratio (/4/a) for different types of volume fraction
profiles and boundary conditions are depicted in Fig. 5. It can also be inferred from Fig. 5 that the
frequency is greatly influenced in that fundamental frequency parameter decreases steadily as (4/a)
ratio becomes larger. As can be seen from Fig. 5, for the all thickness to outer radius ratio (h/a),
Classical-Classical volume fractions profile has the lowest frequencies followed by Classical-
Symmetric, Classical, Symmetric-Symmetric and Symmetric profiles.

The effect of different types of ceramic volume fraction profiles on the frequency parameters of
S-C bidirectional annular plates for different values of circumferential wave number (m) is shown
in Fig. 6, According to this figure, the lowest frequency parameter is obtained by using Classical-
Classical volume fractions profile. On the contrary, the 1-D FG annular plate with symmetric
volume fraction profiles has the maximum value of the frequency parameter. Therefore, a graded
ceramic volume fraction in two directions has high capabilities to reduce the frequency parameter
than conventional 1-D FGM. Moreover, in Fig. 6, the interesting results show that, with increasing
values of the circumferential wave number (m), frequency parameter of the Classical FGM annular
plate is close to that of a Symmetric-Symmetric. Therefore, it can be concluded that using 2-D six-
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Fig. 6 Variation of the frequency parameters versus circumferential wave numbers (m) with
different volume fraction profiles for S-C annular plates resting on an elastic foundation
(K=K,~=100, y,=2, h/a=0.25, b/a=0.2)
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Fig. 7 Variation of the fundamental frequency parameters of two-dimensional functionally graded
annular plates resting on an elastic foundation versus the shearing layer elastic coefficient for different
Winkler elastic coefficient and different boundary conditions (a,=a.,=0, y.=y,=2, h/a=0.25, b/a=0.2)
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Fig. 8 Variations of fundamental frequency parameters of two-dimensional functionally graded
annular plates resting on an elastic foundation with Winkler elastic coefficient for different volume
fraction profiles and various boundary conditions (K,=100, #/a=0.25, y.=2, b/a=0.2)

parameter power-law distribution leads to a more flexible design so that maximum or minimum
value of natural frequency can be obtained to a required manner.

The influence of shearing layer elastic coefficient on the fundamental frequency parameters for
three sets of boundary conditions is shown in Fig. 7. It results the variation of Winkler elastic
coefficient has little effect on the non-dimensional natural frequencies at different values of
shearing layer elastic coefficient. It is clear that in all cases, with increasing the elastic coefficients
of the foundation, the frequency parameters increase to some limit values. It is observed for the
large values of shearing layer elastic coefficient, the results become independent of it. The effect of
the Winkler elastic coefficient on the fundamental frequency parameters at different values of the
shearing layer elastic coefficient with different boundary conditions is shown in Fig. 8. It is
observed that the fundamental frequency parameters converge with increasing Winkler elastic
coefficient of the foundation. According to this figure, the lowest frequency parameter is obtained
by using Classical-Classical volume fractions profile. On the contrary, the 1-D FG annular plate
with symmetric volume fraction profiles has the maximum value of the frequency parameter. The
variations of fundamental frequency parameters of 2-D FG annular plates with thickness-to-outer
radius ratio (#/a), and the volume fraction index through the thickness of the plates for F-C
boundary condition are shown in Fig. 9, by considering (a.=a,=0, y,=2, k,~k,~100) for Classical-
Classical 2-D FG plates. As it is observed, the fundamental frequency parameter decreases rapidly
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Fig. 9 Variations of fundamental frequency parameters of F-C two-dimensional functionally

graded annular plates with #/a ratio and the volume fraction index through thickness of the plate
(K,=K,~=100,a,=0.,=0 , y,=2, b/a=0.2)
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Fig. 10 Effect of the volume fraction index through the thickness direction (y,)on the fundamental
frequency parameters of two-dimensional functionally graded annular plates resting on an elastic
foundation for different volume fraction profiles and various boundary conditions (K.=K,~100,
h/a=0.25, b/a=0.2)
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with the increase of the /4/a ratio and then remains almost unaltered for the large values of
thickness-to outer radius ratio (4/@>0.25). This behavior is also observed for other boundary
conditions, not shown here for brevity. It is found that for the all boundary conditions the
frequency parameter decreases by increasing the thickness volume fraction index, due to the fact
that the silicon carbide fraction decreases, and as we know silicon carbide has a much higher
Young’s modulus than aluminum.

Now we study the influence of various types of the ceramic volume fraction profile on the
fundamental natural frequency at various volume fraction indices through the thickness direction
(y.) of the annular plates (Fig. 10). The results show that the fundamental natural frequency
decreases rapidly and then approaches a constant value for higher values of the volume fraction
index through the thickness of the plates. It is also seen that the thickness volume fraction index
has less effect on the frequency parameter for the Classical-Classical volume fraction profile.

5. Conclusions

In this research work, differential quadrature method is employed to obtain a highly accurate
semi-analytical solution for the three-dimensional free vibration of bidirectional annular plates
resting on a two-parameter elastic foundation under various boundary conditions. The study is
carried out based on the three-dimensional, linear and small strain elasticity theory. Various
material profiles through radial and thickness directions are illustrated using the 2-D power-law
distribution. The effective material properties at a point are determined in terms of the local
volume fractions and material properties by the Mori-Tanaka scheme. The effects of different
boundary conditions, various geometrical parameters, different ceramic volume fraction profiles in
the thickness and radial directions and elastic coefficients of foundation of bidirectional annular
plates resting on a two-parameter elastic foundation are investigated. Moreover, vibration behavior
of 2-D FG plates is compared with one-dimensional conventional 1-D FG plates. From this study,
some conclusions can be made:

* It results the variation of Winkler elastic coefficient has little effect on the non-dimensional
natural frequencies at different values of shearing layer elastic coefficient. One can see that in all
cases (Fig. 7), with increasing the shearing layer elastic coefficient of the foundation, the
frequency parameters increase to some limit values. It is observed for the large values of shearing
layer elastic coefficient, the results become independent of it.

* The non-dimensional natural frequency parameters converge with increasing Winkler elastic
coefficient of the foundation, it should be noted that non-dimensional natural frequency parameters
converge at the large values of the Winkler elastic coefficient.

* The results show that the fundamental natural frequency decreases rapidly and then
approaches a constant value for higher values of the thickness volume fraction index. It is also
seen that the thickness volume fraction index exerts an insignificant influence on the frequency
parameter for the Classical-Classical volume fraction profile.

» It is found that for the all boundary conditions the frequency parameter decreases by
increasing the thickness volume fraction index, due to the fact that the silicon carbide fraction
decreases, and as we know silicon carbide has a much higher Young’s modulus than aluminum.

* The interesting results show that the lowest magnitude frequency parameter is obtained by
using a Classical-Classical volume fractions profile. It can be concluded that a graded ceramic
volume fraction in two directions has higher capabilities to reduce the natural frequency than a
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conventional 1-D FGM. Moreover, the results show that with increasing values of the
circumferential wave number (m), frequency parameter of the Classical FGM annular plate is close
to that of a Symmetric-Symmetric.

Based on the achieved results, using 2-D six-parameter power-law distribution leads to a more
flexible design so that maximum or minimum value of natural frequency can be obtained to a
required manner.
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