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Abstract.  In this paper a new particle swarm ray optimization algorithm is proposed for truss shape and 
size optimization with natural frequency constraints. These problems are believed to represent nonlinear and 
non-convex search spaces with several local optima and therefore are suitable for examining the capabilities 
of new algorithms. The proposed algorithm can be viewed as a hybridization of Particle Swarm 
Optimization (PSO) and the recently proposed Ray Optimization (RO) algorithms. In fact the exploration 
capabilities of the PSO are tried to be promoted using some concepts of the RO. Five numerical examples 
are examined in order to inspect the viability of the proposed algorithm. The results are compared with those 
of the PSO and some other existing algorithms. It is shown that the proposed algorithm obtains lighter 
structures in comparison to other methods most of the time. As will be discussed, the algorithm's 
performance can be attributed to its appropriate exploration/exploitation balance. 
 

Keywords:  optimal design of truss structures; ray optimization; particle swarm optimization; PSRO; 

frequency constraints 

 
 
1. Introduction 
 

In most of the low frequency vibration problems, the response of the structure is primarily a 

function of its fundamental frequencies and mode shapes (Grandhi 1993). Hence, it is conceivably 

beneficial to place some restrictions on the natural frequencies of a structure for different purposes. 

Specifically it might be desirable to restrict the natural frequencies of a structure in order to avoid 

the unwanted resonance phenomenon. 

Structural optimization with frequency constraints was first introduced by Bellagamba and 

Yang (1981) and since then has been focused on by different researchers using a wide variety of 

methods. However, the problem has not been yet completely addressed particularly when size and 

shape optimization of the structure are meant to be performed simultaneously. Combining shape 

and sizing variables may cause severe mathematical difficulties, and sometimes this leads to 

divergence (Rozvany et al. 1995). This problem, especially when the frequencies are lower 

bounded, is still believed to be a demanding problem (Gomes 2011). Since the frequency 

constraints are highly nonlinear, non-convex and implicit functions with respect to the design  
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variables (Grandhi 1993), the problem includes several local optima and calls for a competent 

optimization algorithm in order to be appropriately addressed. 

As mentioned, different researchers carried out research on the field using various methods. Lin 

et al. (1982) studied the minimum weight design of structures under simultaneous static and 

dynamic constraints proposing a bi-factor algorithm based on the Kuhn–Tucker criteria.  

Konzelman (1986) considered the problem using some Dual methods and approximation concepts 

for structural optimization.  Grandhi and Venkayya (1988) studied the problem using an algorithm 

in which an optimality criterion based on the uniform Lagrangian density was used for the resizing 

and scaling procedure to locate the boundary constraints. 

Sedaghati et al. (2002) made use of an integrated finite element force method for the frequency 

analysis part. The optimization of both trusses and frames was then carried out using a 

mathematical programming technique. Wang et al. (2004) formed an optimality criterion using the 

differentiation of the Lagrangian function. Simultaneous shape and size optimization of three-

dimensional truss structures was taken into account. An infeasible starting point with the minimum 

weight increment was utilized. Lingyun et al. (2005) studied the problem of truss shape and size 

optimization using a hybridization of the simplex search method and genetic algorithms called 

niche genetic hybrid algorithm (NGHA). Gomes (2011) used the Particle Swarm Optimization 

(PSO) algorithm to investigate simultaneous shape and size optimization of trusses under 

frequency constraints. Kaveh and Zolghadr considered the weight optimization of trusses on shape 

and size using the Charged System Search (CSS) algorithm and its enhanced form (Kaveh and 

Zolghadr 2011) and a Hybridized CSS-BBBC with trap recognition capability (Kaveh and 

Zolghadr 2012). Some other applications of metaheuristic algorithms can be found in the work of 

Tang et al. (2013), Mohammadzadeh and Nouri (2013).  

 According to Sergeyev and Mroz (2000) natural frequencies of a structure are much more 

sensitive to shape alterations than to size modifications. This might be because of the fact that the 

shape modifications may lead to mode switches which in turn result in significant changes in 

natural frequencies. Additionally, when simultaneously considering shape and size optimization of 

a structure, variables are of different orders. These facts make the shape and size optimization of 

structures a challenging problem of its kind, including several local optimal solutions. Hence, it is 

important for the optimization algorithm to preserve adequate diversification tendency while 

maintaining proper intensification capability. Diversification is the exploration of the search space 

while intensification is the exploitation of the best solutions found (Talbi 2009).  

 Particle Swarm Optimization (PSO) introduced by Kennedy and Eberhart (1995) is a well-

known multi-agent meta-heuristic optimization algorithm. It has become one of the researchers' 

favorites in different branches of science thanks to its little number of parameters, ease of 

implementation, and capability of obtaining good suboptimal solutions in a reasonable amount of 

time. In structural engineering, PSO has been successfully applied to different types of 

optimization problems (Kaveh 2014, Kaveh and Talatahari 2009, 2011, Kaveh and Laknejadi 

2011, Fourie and Groenwold 2002, Perez and Behdinan 2007, Jansen and Perez 2001, Luh and Lin 

among others). However, despite having the above-mentioned benefits standard versions of PSO 

are infamous of premature convergence (Xinchao 2010, Zhao 2009). Improving the exploration 

ability of PSO has been an active research topic in recent years (Wang et al .2011). 

In this paper a hybridized Particle Swarm Ray Optimization (PSRO) algorithm is developed 

which can be viewed as an attempt to improve the exploration capabilities of the PSO. In order to 

do this, some of the expressions introduced by Kaveh and Khayatazad in their newly developed 

Ray Optimization (Kaveh and Khayatazad 2012) algorithm are incorporated. As it will be shown, 
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the modifications improve the exploration capabilities of the PSO and therefore result in an 

enhancement of the algorithm’s performance.  

The remainder of this paper is organized as follows: In section 2, the optimization problem 

under consideration is stated.  In section 3, the optimization algorithm is proposed. Five numerical 

examples are studied in section 4 in order to show the capability of the proposed algorithm. A 

comparison will also be made between the exploration capabilities of this algorithm and the PSO.  

Finally, in section 5 some concluding remarks are provided. 

 

 

2. Problem statement 
 

2.1 Frequency constraint truss shape and size optimization 
 

In a frequency constraint truss shape and size optimization problem the aim is to minimize the 

weight of the structure while satisfying some constraints on natural frequencies. The design 

variables are considered to be the cross-sectional areas of the members and/or the coordinates of 

some nodes. The topology of the structure is not supposed to be changed and thus the connectivity 

information is predefined and kept unaffected during the optimization process. Each of the design 

variables should be chosen from a permissible range. The optimization problem can be stated 

mathematically as follows 

        Find X=[x1,x2,x3,….,xn] 

        to minimizes Mer (X) = f(X) × fpenalty(X) 

       subjected to 

         ωj≤ωj
*
    for some natural frequencies j 

          ωk≥ωk
*
   for some natural frequencies k 

        ximin ≤ xi ≤ ximax 

(1) 

where X is the vector of the design variables, including both nodal coordinates and cross-sectional 

areas. Here n is the number of variables which is naturally affected by the element grouping 

scheme which in turn is chosen with respect to the symmetry and practice requirements. Mer(X) is 

the merit function; f(X) is the cost function, which is taken as the weight of the structure in a 

weight optimization problem; fpenalty(X) is the penalty function which is used to make the problem 

unconstrained. When all of the constraints are satisfied, the penalty function value is equal to 

unity; ωj is the jth natural frequency of the structure and ωj
*
 is its upper bound. ωk is the kth natural 

frequency of the structure and ωk
*
 is its lower bound. ximin and ximax are the lower and upper bounds 

of the design variable xi, respectively. 

The cost function is expressed as 

f(X)= ii

nm

i

i AL
1

                                                           (2) 

where ρi  is the material density of member i; Li is the length of member i; and Ai is the cross-

sectional area of member i. 

The penalty function is defined as (Kaveh and Talatahari 2010a) 
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     fpenalty(X) =   2.1 1


 v ,  v=



q

i

iv
1

                                             (3) 

where q is the number of frequency constraints. If the ith constraint is satisfied vi will be taken as 

zero, if not it will be taken as 

vi = 









 else

satisfiedisintconstraitheif

i

i

*
1

th0



                                     (4) 

The parameters ε1 and ε2 are selected considering the exploration and the exploitation rate of 

the search space. In this study ε1 is taken as unity, and ε2 starts from 1.5 linearly increasing to 6 in 

all the test examples. These values penalize the unfeasible solutions more severely as the 

optimization procedure proceeds. As a result, in the early stages, the agents are free to explore the 

search space, but at the end they tend to choose solutions without violation. 

 

2.2 Finite element equations 
 

A planar/spatial truss structure is modeled using two dimensional bar elements with two/three 

degrees of freedom at each end.  From finite elements theory, the corresponding stiffness and mass 

matrices in element coordinate system can be expressed as (Chandruputla and Belegundu 2002) 

[k] = 












11

11

L

EA
                                                            (5) 

[m] = 








21

12

6

AL
                                                            (6) 

in which, A, E, L and ρ are cross-sectional area, modulus of elasticity, length and density of the 

member, respectively. These matrices can be transformed into global coordinates using following 

relations 

[K] = [T]
t
[k][T]                                                            (7) 

[M] = [T]
t
[m][T]                                                           (8) 

in which T is the transformation matrix. For Planar truss the transformation matrix [T] can be 

written as 

[T] = 























cs00

sc00

00cs

00sc

                                                       (9) 

where  c=cosα and s=sinα, α being the angle between the element and the global axis X. Similarly, 

for a spatial truss the transformation matrix [T] can be written as 
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[T] = 



























321

321

321

321

321

321

000

000

000

000

000

000













                                               (10) 

Where {ξ1, η1, ζ1} are the direction cosines of the global axis X with respect to local xyz coordinate 

system. Similarly, {ξ2, η2, ζ2} and {ξ3, η3, ζ3} are direction cosines of global Y and Z axis with 

respect to xyz coordinate system respectively. 

The dynamic equation which governs the behavior of an undamped structure is 

[M]{ẍ}+[K]{x}= 0                                                         (11) 

where [M] and [K] are global mass and global stiffness matrices, respectively. 

 

 

3. Optimization algorithm 
  

Particle Swarm Ray Optimization (PSRO) is a population based meta-heuristic algorithm. Most 

of the meta-heuristic algorithms imitate natural phenomena to form their convergence operators. 

Genetic Algorithms (GA) is based upon the basic principles and mechanisms of Mendelian 

genetics (Goldberg 1989, Holland 1992). Particle Swarm Optimization (PSO) mimics the social 

behavior of animals like fishes schooling and birds flocking (Kennedy and Eberhart 1995). 

Charged System Search (CSS) is founded on the Coulomb and Gauss laws of electrostatic and 

Newtonian mechanics (Kaveh and Talatahari 2010a). Big Bang-Big Crunch (BB-BC) imitates the 

theories of the evolution of the universe (Erol and Eksin 2006). Ray Optimization (RO) simulates 

a set of rays of light passing through a boundary between two transparent materials (Kaveh and 

Khayatazad 2012) and so forth. However, in case of PSRO, the convergence process cannot be 

directly associated with a natural phenomenon. In fact, some features of two already existing 

algorithms, namely PSO and RO, are hybridized in order to achieve a new algorithm with an 

improved performance which is neither of the two algorithms anymore.  

Like any other algorithm of this kind, PSRO begins with spreading some agents or particles all 

over the search space in a random manner. Then, as the optimization process proceeds, the agents 

modify their positions considering the values of the objective function and using some 

convergence directives. Steps of this algorithm can be summarized as follows: 

Step 1. Initialization 

• Initializing particle positions: 
The initial positions of the particles are chosen randomly. Then, the objective function values 

are evaluated for all of the particles. The best particle in terms of objective function value is then 

saved as the Global Best (GB). The current position for each particle is saved as its Local Best 

(LB). 

• Initializing random vectors:  
For each particle a random vector is generated as follows 

 rand.21ij V'  (12) 
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where V'ij is the jth component of the random vector for the ith particle. All of the random vectors 

are then normalized. In Ray Optimization these vectors (called movement vectors) are assumed to 

be rays of light and their refraction as they pass through a boundary between two transparent 

materials gradually results in convergence. In PSRO there are no rays to be refracted. Hence, the 

normalized movement vectors can be assumed as the producers of the random part of the particles’ 

movements. Moreover, unlike RO, in PSRO these vectors are produced randomly throughout the 

optimization process. In this sense these vectors can better be called as “Random Vectors”. In fact 

this is the source for the explorative nature of the algorithm. 

Step 2. Definition of the Target Point 

The point which is used as the Origin in RO is used here as the Target Point for each particle 

max

maxmax

.2

).().(

ite

kitekitek
i

iLBGB
T




                                       
(13) 

where Ti
k
 is the origin of the ith agent in the kth iteration, itemax is the maximum number of 

iterations, and GB and LBi are the global best and local best solutions of the ith agent, 

respectively. As the name suggests, the Target Point is the point towards which the particle is 

willing to move in the absence of randomness. Eq. (13) is defined in a way that produces an equal 

tendency in the agent towards global best and local best solutions at the start of the search process. 

As the optimization process continues the effect of the global best solution increases while the 

effect of the local best solution decreases. This provides the algorithm with an appropriate amount 

of diversification at the early steps which decreases gradually and results in convergence. When 

the total number of iterations is not decided upon a priori the parameter itemax can be replaced by 

an arbitrary estimated value. In fact, the value for this parameter is not important by itself. It is 

merely incorporated so as to define the Target Point as a weighted average of global best and local 

best solutions. The user can also change these weights in order to change the significance of local 

best and global best solutions, and therefore increase or decrease the convergence rate of the 

algorithm when needed.  

Step 3. Particle Movement 

After the Target Points and the normalized random movement vectors for all of the particles are 

determined. The regularized movement vectors can be obtained as follows 

 ji
k

ji
k

ji
k

ji
k xTVcV ,,,

'
,

1 . 
                                             (14) 

where Vi,j, Ti,j and Xi,j are the jth components of the regularized movement vector, target point 

vector and the current position vector of the ith particle, respectively; c is a scaling factor which is 

taken as the square root of the number of variables in this paper; |.| denotes the absolute value. 

Vector V' is generated randomly in every iteration using Eq. (12). According to Eq. (14) the ith 

particle travels a random portion of its distance from the target point in the jth dimension. The fact 

that the elements of vector V' could be both positive and negative allows the ith particle to be 

either attracted or repelled by the target point. This results in an increase of the algorithm's 

diversification and can prevent premature convergence phenomenon.  

Now, the new position of each particle can be located as 

ji
k

ji
k

ji
k VXX ,

1
,,

1                                                       (15) 

In this stage, the boundary constraints should also be handled. Whenever a particle leaves the  
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Hybridized PSRO algorithm 

Initialization 

Initialize positions of all Particles randomly; 

Initialize velocity vectors (random vectors) using Eq. (12), and normalize them; 

Evaluate the initial population and name the best particle “global best”; 

Consider all of the initial solutions as local bests; 

Movement 

i=1 

WHILE (i<Maximum number of iterations)   

FOR (each Particle j) 

Define the Target Point using Eq. (13) 

Calculate the regularized velocity vector using Eq. (14) 

Determine the new position of the particle by adding the regularized velocity vector to its previous 

position vector (Eq. (15)) 

Generate the new velocity vector (random vector) using Eq. (12), and normalize it; 

IF (any component of Particle's position vector violates a boundary constraint) 

Handle the violation using a fly back or a HS-based boundary constraint handling scheme   

ENDIF 

ENDFOR 

Evaluate new objective functions and update “global best” and “local best” if necessary 

i=i+1 

ENDWHILE 

Fig. 1 Pseudo-code of the PSRO algorithm 

 

 

search space, its position could be corrected using the HS-based technique described by Kaveh and 

Talatahari (2009). A simple fly back strategy could also be used. Once this step is accomplished, 

the objective functions for the particles in their new positions are evaluated and the values of 

Global best, GB, and local best, LB, are updated. 
Step 4. Termination Criteria Control 

Steps 2 and 3 are repeated until a termination criterion is satisfied. The pseudo-code for the 

PSRO algorithm is summarized in Fig. 1. 

 
 
4. Numerical examples 
 

In this section, five numerical examples are provided in order to examine the viability of the 

proposed algorithm. A total population of 20 particles is considered for all of the examples except 

for the second example where 30 agents are used. Each example has been solved 20 times 

independently. The termination criterion is taken as the number of iterations in all the examples. 

Other termination criteria can be used as well. The results for other methods are gathered from 

literature. 

 

4.1 A ten-bar truss 
 

A ten-bar truss, as depicted in Fig. 2, is considered for the first example. This is a well-known 

benchmark problem in the field of structural optimization and has been investigated by different 

researchers using a wide variety of methods. Each of the members’ cross-sectional areas is taken as  

451



 

 

 

 

 

 

A. Kaveh and A. Zolghadr 

 

Fig. 2  A ten-bar planar truss 

 
Table 1 Material properties, variable bounds and frequency constraints for the 10-bar truss  

Property/unite Value 

E (Modulus of elasticity)/ N/m
2
 6.89×10

10
 

ρ (Material density)/ kg/m
3
 2770.0 

Added mass/kg 454.0 

Design variable lower bound/m
2
 0.645×10

-4
 

L (Main bar’s dimension)/m 9.144 

Constraints on first three frequencies/Hz ω1≥7, ω2≥15, ω 3≥20 

 
Table 2 Final design cross sections (cm

2
) for several methods for the ten bar planar truss (weight does not 

include added masses) 

Element 

number 

Grandhi 

and 

Venkayya 

(1998) 

Sedaghati 

et al. 

(2002) 

Wang et 

al. (2004) 

Lingyun 

et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Kaveh and 

Zolghadr 

(2012) 
Proposed 

Algorithm 
Standard 

CSS 

Enhanced 

CSS 

CSS-

BBBC 

1 36.584 38.245 32.456 42.23 37.712 38.811 39.569 35.274 37.075 

2 24.658 9.916 16.577 18.555 9.959 9.0307 16.740 15.463 15.334 

3 36.584 38.619 32.456 38.851 40.265 37.099 34.361 32.11 33.665 

4 24.658 18.232 16.577 11.222 16.788 18.479 12.994 14.065 14.849 

5 4.167 4.419 2.115 4.783 11.576 4.479 0.645 0.645 0.645 

6 2.070 4.419 4.467 4.451 3.955 4.205 4.802 4.880 4.643 

7 27.032 20.097 22.810 21.049 25.308 20.842 26.182 24.046 24.528 

8 27.032 24.097 22.810 20.949 21.613 23.023 21.260 24.340 23.188 

9 10.346 13.890 17.490 10.257 11.576 13.763 11.766 13.343 12.436 

10 10.346 11.452 17.490 14.342 11.186 11.414 11.392 13.543 13.500 

Weight 

(kg) 
594.0 537.01 553.8 542.75 537.98 531.95 529.25 529.09 532.85 

 

 

a design variable and no grouping is incorporated. A non-structural mass of 454.0 kg is attached to 

all free nodes. Table 1 provides the material properties, variable bounds, and frequency constraints 

for this example. 

The final design variables together with the optimal weights of the structures are summarized in 

Table 2. It should be noted that a modulus of elasticity of E=6.98× 10
10

 Pa is used in Gomes  
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Fig. 3 The convergence curve of the best run of the proposed algorithm for the ten-bar planar truss 

 
Table 3 Natural frequencies (Hz) of the optimized structures (the ten-bar planar truss) 

Frequency 

number 

Grandhi 

and 

Venkayya 

(1998) 

Sedaghati 

et al. 

(2002) 

Wang et 

al. (2004) 

Lingyun 

et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Kaveh and 

Zolghadr 

(2012) 
Proposed 

Algorithm 
Standard 

CSS 

Enhanced 

CSS 

CSS-

BBBC 

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000 7.000 7.000 

2 15.895 17.599 17.302 18.148 17.786 17.442 16.238 16.119 16.143 

3 20.425 19.973 20.001 20.000 20.000 20.031 20.000 20.075 20.000 

4 21.528 19.977 20.100 20.508 20.063 20.208 20.361 20.457 20.032 

5 28.978 28. 173 30.869 27.797 27.776 28.261 28.121 29.149 28.469 

6 30.189 31.029 32.666 31.281 30.939 31.139 28.610 29.761 29.485 

7 54.286 47.628 48.282 48.304 47.297 47.704 48.390 47.950 48.440 

8 56.546 52.292 52.306 53.306 52.286 52.420 52.291 51.215 51.257 

 

 

(2011), Kaveh and Zolghadr (2011), and Kaveh and Zolghadr (2012). This will generally result in 

relatively lighter structures. It could be seen that the proposed algorithm has obtained the best 

results so far among the methods which have used E=6.89×10
10

 Pa. Also, the proposed method 

finds a lighter design than original PSO (Gomes 2011) in spite of using a smaller value of modulus 

of elasticity. The mean weight and standard deviation of 20 independent runs of the proposed 

algorithm are 539.20 kg and 3.841 kg, respectively. The mean weight of the results and the 

standard deviation are reported as 540.89 and 6.84 kg respectively in Gomes (2011). This means 

that the proposed algorithm performs better than the original PSO in terms of best result found, 

mean value and standard deviation of the results. Table 3 presents the natural frequencies of the 

optimized structures obtained by different methods. 

Fig. 3 shows the convergence curve of the best run of the proposed algorithm for the ten-bar 

planar truss. 
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(a) 10

th
 iteration 

 
(b) 25

th
 iteration 

 
(c) 50

th
 iteration 

 
(d) 100

th
 iteration 

Fig. 4 Particles position history for PSRO and PSO 
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(e) 150

th
 iteration 

 
(f) 200

th 
iteration 

Fig. 4 Continued 

 

 

The better performance of the proposed algorithm in comparison to the original PSO can be 

attributed to its better exploration/exploitation balance. In fact the algorithm's agents do not rush to 

converge to a suboptimal solution in the first stages of the optimization process. Instead, they 

explore the search space more thoroughly and this makes them capable of finding better results. As 

the optimization process proceeds, agents converge to a final solution gradually. This concept is 

illustrated graphically using the Particles Position History i.e., the values for the variables of all 

particles are depicted in different stages of the optimization process of a single run. In order to 

make a comparison, the same thing is done for PSO. Fig. 4 compares the Particles Position History 

of the two algorithms. In depiction of these figures, the parameters c1=c2=1.5 and χ=0.5 are 

utilized for PSO as utilized in (Gomes 2011).  

 Premature convergence of PSO is apparent in Fig. 4. It can be seen that as early as 10
th
 

iteration the particles of PSO are gathered together in a limited region of the search space. In the 

50
th
 iteration they are almost staying at the same exact point of the search space. On the other hand 

the proposed PSRO algorithm maintains a proper amount of exploration throughout the 

optimization process. Even in the 200
th
 iteration the algorithm's agents have not stopped searching 

and are not gathered in the exact same point. This is the feature that makes the algorithm capable 

of finding better results in comparison to original PSO. The same discussion holds for all of the 

examples, but, the figures are not presented for the sake of brevity.  
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Fig. 5 The 72-bar space truss 

 
Table 4 Material properties and frequency constraints for the 72-bar space truss 

Property/unite Value 

E (Modulus of elasticity)/ N/m
2
 6.89 × 10

10
 

ρ (Material density)/ kg/m
3
 2770.0 

Added mass/kg 2270 

Design variable lower bound/m
2
 0.645 ×10-4 

Constraints on first three frequencies/Hz ω1=4.0 , ω3≥6 

 

 

4.2 A 72-bar space truss 
 

The second numerical example is a 72-bar space truss as depicted in Fig. 5. The elements of the 

structure are grouped into 16 groups. Four non-structural masses of 2270 kg are attached to the 

uppermost four nodes. Like the previous example, the topology and the shape of the structure are 

kept unchanged during the optimization process and the only variables are cross-sectional areas. 

Material properties, variable bounds, frequency constrains and added masses are listed in Table 4. 

Table 5 presents the final cross-sectional areas for the 72-bar space truss found by different 

researchers together with the corresponding weights. The mean weight and standard deviation of 

20 independent runs of the proposed algorithm are 334.95 kg and 2.86 kg, respectively. It should 

be noted that a modulus of elasticity of E=6.98×10
10

 Pa is used in Gomes (2011), Kaveh and 

Zolghadr (2011, 2012). This will generally result in relatively lighter structures. Using 

E=6.98×10
10

 Pa, the proposed algorithm finds a structure weighted 325.75 kg which is lighter than  
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Table 5 Optimal cross-sectional areas for the 72-bar space truss (cm
2
) 

Group 

number 
Elements 

Konzelman 

(1986) 

Sedaghati 

(2002) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Kaveh and 

Zolghadr 

(2012) 
Proposed 

algorithm 
Standard 

CSS 

Enhanced 

CSS 
CSS-BBBC 

1 1-4 3.499 3.499 2.987 2.528 2.252 2.854 3.840 

2 5-12 7.932 7.932 7.849 8.704 9.109 8.301 8.360 

3 13-16 0.645 0.645 0.645 0.645 0.648 0.645 0.645 

4 17-18 0.645 0.645 0.645 0.645 0.645 0.645 0.699 

5 19-22 8.056 8.056 8.765 8.283 7.946 8.202 8.817 

6 23-30 8.011 8.011 8.153 7.888 7.703 7.043 7.697 

7 31-34 0.645 0.645 0.645 0.645 0.647 0.645 0.645 

8 35-36 0.645 0.645 0.645 0.645 0.646 0.645 0.651 

9 37-40 12.812 12.812 13.450 14.666 13.465 16.328 12.136 

10 41-48 8.061 8.061 8.073 6.793 8.250 8.299 8.839 

11 49-52 0.645 0.645 0.645 0.645 0.645 0.645 0.645 

12 53-54 0.645 0.645 0.645 0.645 0.646 0.645 0.645 

13 55-58 17.279 17.279 16.684 16.464 18.368 15.048 17.059 

14 59-66 8.088 8.088 8.159 8.809 7.053 8.268 7.427 

15 67-70 0.645 0.645 0.645 0.645 0.645 0.645 0.646 

16 71-72 0.645 0.645 0.645 0.645 0.646 0.645 0.645 

Weight (kg) 327.605 327.605 328.823 328.814 328.393 327.507 329.80 

 
Table 6 Natural frequencies (Hz) obtained by various methods for the 72-bar space truss 

Frequency 

number 

Konzelman 

(1986) 

Sedaghati 

(2002) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Kaveh and 

Zolghadr 

(2012) 
Proposed 

algorithm 
Standard 

CSS 

Enhanced 

CSS 
CSS-BBBC 

1 4.000 4.000 4.000 4.000 4.000 4.000 4.000 

2 4.000 4.000 4.000 4.000 4.000 4.000 4.000 

3 6.000 6.000 6.000 6.006 6.004 6.004 6.000 

4 6.247 6.247 6.219 6.210 6.155 6.2491 6.418 

5 9.074 9.074 8.976 8.684 8.390 8.9726 9.143 

 

 

that of the original PSO.   

 Table 6 presents the first five natural frequencies for the optimized structures found by 

different methods. It could be seen that all of the frequency constraints are satisfied. 

Fig. 6 shows the convergence curve of the best run of the PSRO algorithm for the 72-bar planar 

truss.  

 

4.3 A simply supported 37-bar planar truss 
 

A simply supported 37-bar Pratt type truss, as depicted in Fig. 7 is considered as the third  
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Fig. 6 The convergence curve of the best run of the PSRO algorithm for the 72-bar planar truss 

 

 

Fig. 7 A simply supported 37-bar Pratt type planar truss 

 

 

example. The elements of the lower chord are modeled as bar elements with constant rectangular 

cross-sectional areas of 4×10
-3

 m
2
. The other members are modeled as bar elements. These 

members which form the sizing variables of the problem are grouped in a symmetrical manner. 

Also, the y-coordinate of all the nodes on the upper chord can vary symmetrically to form the 

shape variables. A non-structural mass of 10 kg is attached to all free nodes on the lower chord. 

The first three natural frequencies of the structure are considered as the constraints. So this is an 

optimization on shape and size with nineteen design variables (fourteen sizing variables + five 

shape variables) and three frequency constraints. Material properties, frequency constrains and 

added masses are listed in Table 7. 

Optimal cross-sectional areas and node coordinates found by different methods together with 

the corresponding weights are summarized in Table 8. It can be seen that the proposed algorithm 

has found the best result so far. The mean weight and standard deviation of 20 independent runs of 

the proposed algorithm are 362.65 kg and 1.30 kg, respectively. The mean weight of the results  
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Table 7 Material properties and frequency constraints for the 37-bar simply supported planar truss 

Property/unite Value 

E (Modulus of elasticity)/ N/m
2
 2.1×10

11
 

ρ (Material density)/ kg/m
3
 7800 

Added mass/kg 10 

Constraints on first three frequencies/Hz ω1≥20, ω2≥40, ω3≥60 

 
Table 8 Final cross-sectional areas and node coordinates for the 37-bar simply supported planar truss 

Variable initial 
Wang et al. 

(2004) 

Lingyun et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr (2011) 
Proposed 

algorithm Standard CSS 
Enhanced 

CSS 

Y3 , Y19 (m) 1.0 1.2086 1.1998 0.9637 0.8726 1.0289 1.0087 

Y5 , Y17 (m) 1.0 1.5788 1.6553 1.3978 1.2129 1.3868 1.3985 

Y7 , Y15 (m) 1.0 1.6719 1.9652 1.5929 1.3826 1.5893 1.5344 

Y9 , Y13 (m) 1.0 1.7703 2.0737 1.8812 1.4706 1.6405 1.6684 

Y11 (m) 1.0 1.8502 2.3050 2.0856 1.5683 1.6835 1.7137 

A1, A27 

(cm
2
) 

1.0 3.2508 2.8932 2.6797 2.9082 3.4484 2.6368 

A2, A26 

(cm
2
) 

1.0 1.2364 1.1201 1.1568 1.0212 1.5045 1.3034 

A3, A24 

(cm
2
) 

1.0 1.0000 1.0000 2.3476 1.0363 1.0039 1.0029 

A4, A25 

(cm
2
) 

1.0 2.5386 1.8655 1.7182 3.9147 2.5533 2.3325 

A5, A23 

(cm
2
) 

1.0 1.3714 1.5962 1.2751 1.0025 1.0868 1.2868 

A6, A21 

(cm
2
) 

1.0 1.3681 1.2642 1.4819 1.2167 1.3382 1.0704 

A7, A22 

(cm
2
) 

1.0 2.4290 1.8254 4.6850 2.7146 3.1626 2.4442 

A8, A20 

(cm
2
) 

1.0 1.6522 2.0009 1.1246 1.2663 2.2664 1.3416 

A9, A18 

(cm
2
) 

1.0 1.8257 1.9526 2.1214 1.8006 1.2668 1.5724 

A10, A19 

(cm
2
) 

1.0 2.3022 1.9705 3.8600 4.0274 1.7518 3.1202 

A11, A17 

(cm
2
) 

1.0 1.3103 1.8294 2.9817 1.3364 2.7789 1.2143 

A12, A15 

(cm
2
) 

1.0 1.4067 1.2358 1.2021 1.0548 1.4209 1.2954 

A13, A16 

(cm
2
) 

1.0 2.1896 1.4049 1.2563 2.8116 1.0100 2.7997 

A14 (cm
2
) 1.0 1.0000 1.0000 3.3276 1.1702 2.2919 1.0063 

Weight (kg) 336.3 366.50 368.84 377.20 362.84 362.38 360.97 

 

 

and the standard deviation are reported as 381.2 and 4.26 kg respectively in Gomes (2011). This 

means that the proposed algorithm performs better than the original PSO in terms of best results 
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found, mean value of the results and standard deviation. 

Table 9 presents the natural frequencies of the optimal structures obtained by different methods 

for the 37-bar truss. 

Fig. 8 shows the convergence curve for the best run of the proposed algorithm. The unhurried 

rate of convergence of the algorithm is visible in this figure. 

 

4.4 A 52-bar dome-like truss 
 

As of the fourth example, simultaneous shape and size optimization of a 52-bar dome-like truss 

is considered. Initial shape of the structure is depicted in Fig. 9. Non-structural masses of 50 kg are 

attached to all free nodes. Table 10 includes the material properties, frequency constraints and 

variable bounds for this example. The elements of the structure are grouped into 8 groups 

according to Table 11. All free nodes are permitted to move ±2m from their initial position in a 

symmetrical manner. This is a configuration optimization problem with thirteen variables (eight 

sizing variables + five shape variables) and two frequency constraints. 

 

 
Table 9 Natural frequencies (Hz) obtained by various methods for the 37-bar simply supported planar truss 

Frequency 

number 
initial 

Wang et al. 

(2004) 

Lingyun et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr (2011) 
Proposed 

algorithm Standard CSS 
Enhanced 

CSS 

1 8.89 20.0850 20.0013 20.0001 20.0000 20.0028 20.1023 

2 28.82 42.0743 40.0305 40.0003 40.0693 40.0155 40.0804 

3 46.92 62.9383 60.0000 60.0001 60.6982 61.2798 60.0516 

4 63.62 74.4539 73.0444 73.0440 75.7339 78.1100 75.8918 

5 76.87 90.0576 89.8244 89.8240 97.6137 98.4100 97.2470 

 

 

Fig. 8 The convergence curve of the best result for the 37-bar Pratt type planar truss obtained by 

the proposed algorithm 
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(a) Top view 

 
(b) Side view 

Fig. 9 A 52-bar dome-like space truss (initial shape) 
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Table 10 Material properties and frequency constraints and variable bounds for the 52-bar space truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m
2
 2.1× 10

11
 

ρ (Material density)/ kg/m
3
 7800 

Added mass/kg 50 

Allowable range for cross-sections/ m
2
 0.0001≤ A≤ 0.001 

Constraints on first three frequencies/Hz ω1≤ 15.916 ω2≥28.648 

 
Table 11 Element grouping 

Group number Elements 

1 

2 

3 

4 

5 

6 

7 

8 

1-4 

5-8 

9-16 

17-20 

21-28 

29-36 

37-44 

45-52 

 
Table 12 Cross-sectional areas and node coordinates obtained by different methods (the 52-bar space truss) 

Variable initial 
Liu et al. 

(1982) 

Lingyun 

et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Kaveh and 

Zolghadr 

(2012) 
Proposed 

algorithms 
Standard 

CSS 

Enhanced 

CSS 
CSS-BBBC 

ZA (m) 6.000 4.3201 5.8851 5.5344 5.2716 6.1590 5.331 6.252 

XB (m) 2.000 1.3153 1.7623 2.0885 1.5909 2.2609 2.134 2.456 

ZB (m) 5.700 4.1740 4.4091 3.9283 3.7093 3.9154 3.719 3.826 

XF (m) 4.000 2.9169 3.4406 4.0255 3.5595 4.0836 3.935 4.179 

ZF (m) 4.500 3.2676 3.1874 2.4575 2.5757 2.5106 2.500 2.501 

A1 (cm
2
) 2.0 1.00 1.0000 0.3696 1.0464 1.0335 1.0000 1.0007 

A2 (cm
2
) 2.0 1.33 2.1417 4.1912 1.7295 1.0960 1.3056 1.0312 

A3 (cm
2
) 2.0 1.58 1.4858 1.5123 1.6507 1.2449 1.4230 1.2403 

A4 (cm
2
) 2.0 1.00 1.4018 1.5620 1.5059 1.2358 1.3851 1.3355 

A5 (cm
2
) 2.0 1.71 1.911 1.9154 1.7210 1.4078 1.4226 1.5713 

A6 (cm
2
) 2.0 1.54 1.0109 1.1315 1.0020 1.0022 1.0000 1.0021 

A7 (cm
2
) 2.0 2.65 1.4693 1.8233 1.7415 1.6024 1.5562 1.3267 

A8 (cm
2
) 2.0 2.87 2.1411 1.0904 1.2555 1.4596 1.4485 1.5653 

Weight (kg) 338.69 298.0 236.046 228.381 205.237 197.337 197.309 197.186 

 

 
Table 12 includes the final cross-sectional areas and node coordinates obtained by different 

methods together with the corresponding weight for the 52 bar space truss. Again, it can be seen 

that the result obtained by the proposed algorithm is the best so far. The mean weight and standard 

deviation of 20 independent runs of the proposed algorithm are 213.42 kg and 10.11 kg, 

respectively. The mean weight of the results and the standard deviation are reported in Gomes  
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Table 13 Natural frequencies (Hz) obtained by various methods (The 52-bar space truss) 

Frequency 

number 
initial 

Liu et al. 

(1982) 

Lingyun 

et al. 

(2005) 

Gomes 

(2011) 

Kaveh and Zolghadr 

(2011) 

Kaveh and 

Zolghadr 

(2012) 
Proposed 

algorithms 
Standard 

CSS 

Enhanced 

CSS 
CSS-BBBC 

1 22.69 15.22 12.81 12.751 9.246 11.849 12.987 12.311 

2 25.17 29.28 28.65 28.649 28.648 28.649 28.648 28.648 

3 25.17 29.28 28.65 28.649 28.699 28.659 28.679 28.649 

4 31.52 31.68 29.54 28.803 28.735 28.718 28.713 28.715 

5 33.80 33.15 30.24 29.230 29.223 29.192 30.262 28.744 

 

 

Fig. 10 The convergence curve for the best run of the proposed algorithm for the 52-bar dome-like truss 

 

 

(2011) as 234.3and 5.22 kg, respectively. This means that the proposed algorithm performs better 

than the original PSO in terms of best results found and mean value of the results. 

Table 13 presents the first five natural frequencies of the optimized structure. It can be seen that 

none of the constraints are violated. 

Fig. 10 shows the convergence curve for the best run of the proposed algorithm for the 52-bar 

dome-like truss.  

 

4.5 A 120-bar dome truss 
 

The 120-bar dome truss depicted in Fig. 11 is considered as the fifth example. This problem has 

been investigated by Soh and Yang (1996) as a shape and size optimization problem with static 

constraints. It has been solved later as a sizing optimization problem by Lee and Geem (2004), 

Kaveh and Talatahari (2010b). The authors used the problem as a size optimization problem with 

frequency constraints in (Kaveh and Zolghadr 2012). Non-structural masses are attached to all free 

nodes as follows: 3000 kg at node one, 500 kg at nodes 2 through 13 and 100 kg at the rest of the  
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Fig. 11 A 120-bar dome truss 

 
Table 14 Material properties and frequency constraints and variable bounds for the 120-bar dome truss 

Property/unite Value 

E (Modulus of elasticity)/ N/m
2
 2.1× 10

11
 

ρ (Material density)/ kg/m
3
 7971.810 

Added mass/kg m1=3000, m1=500, m2=100 

Allowable range for cross-sections/ m
2
 0.0001≤ A≤ 0.01293 

Constraints on first three frequencies/Hz ω1 ≥ 9  ω2 ≥ 11 
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Table 15 Optimal cross-sectional areas for the 120-bar dome truss (cm
2
) 

Element group Kaveh and Zolghadr (2012) 
Proposed algorithm 

Standard CSS CSS-BBBC 

1 21.710 17.478 19.972 

2 40.862 49.076 39.701 

3 9.048 12.365 11.323 

4 19.673 21.979 21.808 

5 8.336 11.190 10.179 

6 16.120 12.590 12.739 

7 18.976 13.585 14.731 

Weight (kg) 9204.51 9046.34 8892.33 

 
Table 16 Natural frequencies (Hz) obtained by various methods (the 120-bar dome truss) 

Frequency number 
Kaveh and Zolghadr (2012) 

Proposed algorithm 
Standard CSS CSS-BBBC 

1 9.002 9.000 9.000 

2 11.002 11.007 11.000 

3 11.006 11.018 11.005 

4 11.015 11.026 11.012 

5 11.045 11.048 11.045 

 

 

Fig. 12 The convergence curve of the best run of the proposed algorithm for the 120-bar dome-like truss 

 

 

nodes. Material properties, frequency constraints and variable bounds for this example are 

summarized in Table 14. 

Table 15 presents a comparison between the results gained by different algorithms for this 

example. It can be seen that the proposed algorithm has obtained the best results so far. The mean 

weight and standard deviation of 20 independent runs of the proposed algorithm are 8921.3 kg and 
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18.54 kg, respectively. Table 16 includes the first five natural frequencies of the optimized 

structures obtained by different methods. All of the constraints are satisfied.  

Fig. 12 shows the convergence curve of the best run of the proposed algorithm for the 120-bar 

dome-like truss.  

 

 

5. Conclusions 
 

A hybridized Particle Swarm Ray Optimization (PSRO) algorithm is presented in this paper for 

shape and size optimization of truss structures. The algorithm is a population-based meta-heuristic 

which combines some features of two already existing algorithms namely Particle Swarm 

Optimization and Ray Optimization. The hybridization is intended to induce some diversification 

tendency into original PSO and therefore to prevent the unwanted premature convergence of the 

original PSO. The algorithm maintains an appropriate amount of exploration effort in the first 

stages and converges gradually as the optimization process proceeds. This makes it capable of 

finding the best results so far in most of the numerical examples under consideration.  

The Particles Position History of a single run is defined and used here as a pictorial means of 

evaluating an algorithm's exploration/exploitation balance. This measure is depicted for both the 

proposed algorithm and the original PSO. The results emphasize that unlike PSO which 

convergences to suboptimal solutions very soon in the optimization process, the proposed 

algorithm explores the search space more thoroughly in order to find lighter structures till the final 

iterations.  

Five numerical examples are examined in order to evaluate the algorithm's capability. The 

results emphasize that the proposed algorithm performs better than some other methods in the 

literature of its rivals in four of the studied examples. In all these examples, the proposed 

algorithm performs better than the original PSO. Comparison of the mean values and standard 

deviations shows that the proposed algorithm is also more stable and robust than original PSO. 
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