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Abstract.  This study presents a hunting search based optimum design algorithm for engineering 
optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of 
animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. 
However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the 
ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the 
automation of optimum design process, during which the design variables are selected for the minimum 
objective function value controlled by the design restrictions. Three different examples, namely welded 
beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved 
for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem 
having continuous design variables, steel frame and cellular beam design problems include discrete design 
variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC 
(Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the 
formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm 
for better search. For comparison, same design examples are also solved by using some other well-known 
search methods in the literature. Results reveal that hunting search shows good performance in finding 
optimum solutions for each design problem. 
 

Keywords:  structural optimization; cellular beams; steel frames; welded beam design problem; hunting 

search algorithm; Levy flights 

 
 
1. Introduction 
 

In last three decades, optimum design of steel structures has been an important issue for the 

structural designers. Several powerful optimization techniques have been introduced to achieve 

more efficient structural optimization techniques. In the optimum design of steel structures it is 

required to select appropriate design variables such that the structure has the minimum cost or 

weight while the behavior and performance limitations of the code are satisfied. Mathematical 

programming methods, such as linear programming, non-linear programming, integer 

programming, use gradient information to search the solution space near an initial starting point. In 

fact, they converge faster and reach the optimum point with higher accuracy. However, they fail to 
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satisfy the needs of practicing engineers. One of the reasons for this is the fact that most of the 

mathematical programming techniques developed are based on the assumption of continuous 

design variables while in reality most of the structural optimization design variables are discrete in 

nature. Although some mathematical programming techniques, such as branch and bound method 

and integer programming do allow design variables having discrete values, numerical applications 

indicate that they are not very efficient for obtaining the optimum solution of the large-scale 

design problems (Horst et al. 1995, Horst 1995). 

In recent years, as an alternative to mathematical programming based techniques, several meta-

heuristic or evolutionary algorithms have been developed, which combine transition rules and 

randomness by imitating natural phenomena, including the physical annealing process (simulated 

annealing) (Kirkpatrick et al. 1983), the musical process of searching for a perfect state of 

harmony (harmony search) (Lee and Geem 2004), biological evolutionary processes (evolutionary 

algorithm and genetic algorithms) (Keane 1995 and Goldberg 1989), swarm intelligence (particle 

swarm, ant colony) (Kennedy and Eberhart 1995, Camp 2004), breeding behavior of cuckoo 

species (cuckoo search) (Yang and Deb 2010). Main goal of researchers introducing these methods 

is to deal with shortcomings of traditional mathematical programming techniques in solving 

optimization problems. What makes these techniques quite robust and simple compared to other 

classical methods is the fact that they do need neither the gradient information nor the convexity of 

the objective function and constraint functions. The mechanisms used in search of the optimum 

solution are not deterministic but stochastic. They are not problem specific and proven to be very 

efficient and robust in obtaining the solution of practical engineering design optimization problems 

with both continuous and discrete design variables. The common features of these algorithms are 

that they all employ random number and incorporate a set of parameters that require to be adjusted 

initially. Their performance differs depending on the problem under consideration and the 

predefined values of these parameters. Metaheuristic techniques are widely applied in optimum 

design of steel structures (Hasancebi 2007, 2008, Saka 2009). The review of these applications is 

presented in (Saka 2009). After the successful applications of early meta-heuristic techniques in 

structural optimization, number of new meta-heuristic algorithms have been emerged which are 

even more efficient and robust than the earlier methods.  

One of the recent additions to these novel optimization algorithms is the hunting search 

algorithm (Oftadeh et al. 2010), which is inspired by group hunting of animals such as lions, 

wolves, and dolphins. Hunters involved in the hunting group encircle and catch their prey abiding 

by the certain strategies. For instance, wolves can hunt animals bigger or faster than themselves by 

relying on this kind of hunt. One prey is selected and the hunting group gradually moves toward it. 

The hunters avoid standing in the wind such that the prey senses their smell. This concept is used 

in the constrained problem to avoid prohibited regions. In structural optimization process, each of 

the hunters indicates one solution for a particular problem. Similar to animals cooperate to find 

and catch the prey, the optimum design process seeks to find the optimum solution. Originally, 

hunting search algorithm produces continuous numbers. Continuous design variables are used for 

many problems in the literature, such as welded beam design problem. However, they cannot be 

used in the optimum design problem of steel frames and cellular beams where the steel sections 

are to be selected from a steel profile list which consists of discrete values. Due to its ease in the 

implementation of computer code, rounding off method, where the real numbers are rounded off 

the nearest integer numbers, is used to accomplish the discrete solution. 
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2. Hunting search optimization with Levy flights 
 

A constrained optimum design problem in general can be expressed as follows 

Min.f(xi)   i=1,…..,n                                                          (1) 

Subject to 

gj(xi)≤0   j=1,…..,m 

xiX,   X={x1, x2,….xn}                                                       (2) 

where xi represents the discrete design variable i, which is to be selected from the set X that 

contains q number of values for these variables. n is the total number of design variables. f(xi) 

defines the objective function and gj(xi) shows the design constraint j. m is the total number of 

these constraints in the design problem. 

Hunting search algorithm is one of the recent additions to the meta-heuristic search techniques 

of combinatorial optimization problems, introduced by Oftadeh et al. (2010). This approach is 

based on the group hunting of animals such as lions, wolves and dolphins. The common part in the 

way of hunting of these animals is that they all hunt in a group. They encircle the prey and 

gradually tighten the ring of siege until they catch the prey. Each member of the group corrects its 

position based on its own position and the position of other members during this action. If a prey 

escapes from the ring, hunters reorganize the group to siege the prey again. The hunting search 

algorithm is based on the way as wolves hunt. The procedure involves a number of hunters which 

represents the hunting group are initialized randomly in the search space of an objective function. 

Each hunter represents a candidate solution of the optimum design problem. Originally hunting 

search algorithm produces continuous design variables. However, in addition to continuous 

variables, discrete design variables are also used in the present study. To be able to use the method 

for discrete design variables some adjustments are required to be carried out. Firstly the discrete 

values among which the values of design variables xi are to be selected in set {X} are arranged in 

ascending sequence. The sequence number of these values is then treated as design variable 

instead of xi itself. For example in a design set which consists of 272 values, the sequence numbers 

from 1 to 272 are the main design variables. At any stage of design cycle, once a sequence number 

is generated by the algorithm, then the real value of the design variable which corresponds to this 

sequence number is easily taken from the discrete set. The steps of the algorithm are given in the 

following: 

Step 1. Initialize the parameters: Algorithm has eight parameters that require initial values to 

be assigned. These are hunting group size (number of solution vectors in the hunting group, HGS), 

maximum movement toward the leader (MML), hunting group consideration rate (HGCR) which 

varies between 0 and 1, maximum and minimum values of arbitrary distance radius (Ra
max

 and 

Ra
min

), convergence rate parameters (α and β) and number of iterations per epoch (IE). 

Step 2. Initialize the hunting group: Based on the number of hunters (HGS), the hunting 

group matrix is filled with feasible randomly generated solution vectors. The values of objective 

function are computed for each solution vector and the leader is defined depending on these 

values. 

Step 3. Generate new hunters’ positions: New solution vectors x’={x1’, x2’,…., xn’} are 

generated by moving toward the leader (the hunter that has the best position in the group) as 

follows. 
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  n1,....,i  i
L
ii

'
i xxMML)(rxx                              (3) 

The MML is the maximum movement toward the leader, r is a uniform random number [0,1] 

and xi’ is the position value of the leader for the ith variable. If the movement of a hunter toward 

the leader is successful, it stays in its new position. However, if the movement is not successful, 

i.e., its previous position is better than its new position it comes back to the previous position. This 

results in two advantages. First, the hunter is not compared with the worst hunter in the group to 

allow the weak members to search for other solutions. They may find better solutions. Second 

advantage is that, for prevention from rapid convergence of the group the hunter compares its 

current position with its previous position; therefore, good positions will not be eliminated. 

Step 4. Position correction- cooperation between members: In order to conduct the hunt 

more efficiently, the cooperation among hunters should be modeled. After moving toward the 

leader, hunters tend to choose another position in order to conduct the `hunt' more efficiently, i.e., 

better solutions. Positions of the hunters can be corrected in two ways; real value correction and 

digital value correction. In real value correction which is considered in the present study, the new 

hunter’s position x’={x1’, x2’,…., xn’} is generated from HG, on the basis of hunting group 

considerations or position corrections, which is expressed in Eq. (4). For instance, the value of the 

first design variable for the jth hunter x1
j
’for the new vector can be selected as a real number from 

the specified HG(xi
1
,xi

2
,..,xi

HGS
) or corrected using HGCR parameter (chosen between 0 and 1). 

 











 )-1(bility with proba
'

bilitywith proba
'

'

Rax
j
i

j
i

HGS
i

2
i

1
i

j
ij

i

x

x,...,x,xx
x

HGCR

HGCR

HGS,....,1j

n,....,1i




           (4) 

In Eq. (4), HGCR is the probability of choosing one value from the hunting group stored in the 

HG. It is reported that values of this parameter between 0.1 and 0.4 produces better results. Ra is 

referred to as an arbitrary distance radius for the continuous design variable, which can be reduced 

or fixed during optimization process. Through the former assumption, Ra can be reduced by use of 

following exponential function. 

max min
minR ( ) R ( ) expi i

max

min

Ra
n it

Ra
a it a x x

itm

  
  

      
 
 
   

(5) 

Where it represents the iteration number, xi
min

 and xi
max

 are the maximum and minimum 

possible values for xi. Ra
max

 and Ra
min

 denote the maximum and minimum of relative search radius 

of the hunter, respectively and itm is the maximum number of iterations in the optimization 

process. 

In digital value correction, instead of using real values of each variable, the hunters 

communicate with each other by the digits of each solution variable. For example, the solution 

variable with the value of 23.4356 has six meaningful digits. For this solution variable, the hunter 

chooses a value for the first digit (i.e., 2) based on hunting group considerations or position 

correction. After the quality of the new hunter position is determined by evaluating the objective 

function, the hunter moves to this new position; otherwise it keeps its previous position. 
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Step 5. Reorganize the hunting group: In order to prevent being trapped in a local optimum 

they must reorganize themselves to get another opportunity to find the optimum point. The 

algorithm does this in two independent conditions. If the difference between the values of the 

objective function for the leader and the worst hunter in the group becomes smaller than a preset 

constant ε1 and the termination criterion is not satisfied, then the algorithm reorganizes the hunting 

group for each hunter. Alternatively, after a certain number of searches the hunters reorganize 

themselves. The reorganization is carried out as follows: the leader keeps its position and the other 

hunters randomly choose their position in the design space. 

)EN)(β()
i

x
i

x(rxx minmaxL
i

'
i                                 (6) 

Where, xi
L

 is the position value of the leader for the i
th
 variable, r represents the random number 

between 0 and 1, xi
min

 and xi
max

 are the maximum and minimum possible values for xi, respectively. 

EN counts the number of times that the hunting group has trapped until this step. As the algorithm 

goes on, the solution gradually converges to the optimum point. Parameters α and β are positive 

reals values which determine the convergence rate of the algorithm. 

Step 6. Generate hunter’s new positions using Levy flights. The algorithm generates a new 

solution for each hunter (Eq. (7)) by means of Mantegna’s algorithm (Mantegna 1994) as follows. 

 )xx(rxx L
iii

'
i                                                        (7) 

Where, β>1 is the step size which is selected according to the design problem under 

consideration, r is random number from standard normal distribution and λ is the length of step 

size which is determined according to random walk with Levy flights, which can be summarized 

as in the following. 

A Levy flight is a random walk in which the steps are defined in terms of the step-lengths 

which have a certain probability distribution, with the directions of the steps being isotropic and 

random. Hence Levy flights necessitate selection of a random direction and generation of steps 

under chosen Levy distribution. Mantegna (1994) algorithm is one of the fast and accurate 

algorithms which generate a stochastic variable whose probability density is close to Levy stable 

distribution characterized by arbitrary chosen control parameter α (0.3≤α<1.99). Using the 

Mantegna algorithm, the step size λ is calculated as 

1/

x

y


                                                                    (8) 

where x and y are two normal stochastic variables with standard deviation σx and σy which are 

given as 








/1

2/)1(2)2/)1((

)2/sin()1(
)( 














x    and   1)(  y   for α=1.5                       (9) 

in which the capital Greek letter Г represents the gamma function that is the extension of the 

factorial function with its argument shifted down by 1 to real and complex numbers. That is if k is 

a positive integer. )!1()(  kk  

Step7. Terminate the process: Steps 3-5 are repeated until maximum number of iterations is 

satisfied. 
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2.1 Constraint handling 
 

In this study fly-back mechanism is used for handling the design constraints which is proven to 

be effective in He et al. (2004). Once all hunter positions xi are generated, the objective functions 

are evaluated for each of these and the constraints in the problem are then computed with these 

values to find out whether they violate the design constraints. If one or a number of the hunter 

gives infeasible solutions, these are discarded and new ones are re-generated. If some hunters are 

slightly infeasible then such hunters are kept in the solution. These hunters having one or more 

constraints slightly infeasible are utilized in the design process that might provide a new hunter 

that may be feasible. This is achieved by using larger error values initially for the acceptability of 

the new design vectors and then reduce this value gradually during the design cycles and uses 

finally an error value of 0.001 or whatever necessary value that is required to be selected for the 

permissible error term towards the end of iterations. This adaptive error strategy is found quite 

effective in handling the design constraints in large design problems. 

 

 

3. Discrete optimum design problem of steel frames  
 

The design process of moment resisting steel frames necessitates selection of steel profile 

sections for its columns and beams from a standard steel section tables. This selection should be 

carried out in such a way that the frame with the selected steel sections satisfies the serviceability 

and strength requirements specified by the code of practice while the economy is observed in the 

overall or material cost of the frame. When the constraints are implemented from (LRFD-AISC, 

1999) in the formulation of the design problem the following discrete programming problem is 

obtained. 

Find a vector of integer values I (Eq. (10)) representing the sequence numbers of steel sections 

assigned to ng member groups. 

 ng21

T I,...,I,II                                           (10) 

to minimize the weight (W) of the frame 

 
 


ng

1k

nk

1i

ik LmW                                       (11) 

where mk symbolizes the unit weight of a steel section adopted for member group k. nk is referred 

to as the number of members and Li defines the length of member i. 

Subject to 

(a) Inter storey drift constraints of the multi-storey frame. 

ns1,....,j
ju

δ
j

h / 
1j

δ
j

δ 









                      (12) 

where; δj and δj-1 are lateral deflections of two adjacent storey levels. δju represents the allowable 

lateral displacement. hj is the storey height and ns is the total number of storeys and in the frame. 

(b) Displacement restrictions that may be required to include other than inter-storey drift 

constraints such as deflections in beams and top storey drift. 
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 nd1,....,i
iu
δ

i
δ                   (13) 

where; nd is the total number of restricted displacements in the frame. The horizontal deflection of 

columns is restricted due to unfactored imposed load and wind loads to height of column/300 in 

each storey of a building with more than one storey. 

(c) Shear capacity check for beam-columns. 

nφVuV                     (14) 

where; ϕ, Vu and Vn represent resistance factor in shear, required shear strength, and nominal shear 

strength, respectively. 

 (d) The local capacity check for beam-columns. 

nl1,...,il

ilil





























 0.2

nPcφ
uP

for1.0)
nxM

b
φ

uxM
(

9

8

nPcφ
uP       (15) 

0.2
nPcφ

uP
for1.0

nxM
b

φ
uxM

nPc2φ
uP






























ilil            

(16) 

where l denotes the load case and nl represents the number of load cases, Mnx and Mux are referred 

to as nominal flexural strength and applied moment, respectively. Similarly Pn is nominal axial 

strength, Pu is applied axial load, ϕc is resistance factor for columns if the axial force is in 

compression, ϕb is resistance factor in bending. It is apparent that computation of compressive 

strength ϕcPn of a compression member requires its effective length. Effective length factor and 

corresponding effective length of a compression member in a frame is determined by using 

Jackson and Moreland monograph given in McGuire (1968). 

(e) Serviceability constraints.  

The flange width of the beam section at each beam-column connection at joint j should be less 

than or equal to the flange width of column section. 

            
nj1,....,j 

jc
B

jb
B  

(17) 

where nj represents the total number of joints in the frame. 

Depth and the mass per meter of column section at storey joint s+1 at each column-column 

connection should be less than or equal to depth and mass of the column section at the lower 

storey joint s. 

           
nu1,.....,s 

 s
D

1s
D  

(18) 

                  s
m

1s
m 


 (19) 

where nu is the total number of column-column connection constraints. 

 

 

4. Discrete optimum design problem of cellular beams 
 

Cellular beams can be defined as steel sections with circular openings that are built up by 

cutting a rolled beam web in a half circular pattern along its centerline and re-welding the two  
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Fig. 1 Geometrical parameters of a cellular beam 

 

 

halves of hot rolled steel section as shown in Fig. 1. This circular opening results in an increase in 

the overall beam depth, thereby moment of inertia and section modulus, besides, a decrease in the 

overall weight of the beam. This consequently leads to approximately 40%-60% deeper and 40%-

60% stronger section. Cellular beams, as roof beams beyond the range of portal-frame 

construction, are generally used at office buildings, parking garages, shopping centers and any 

structure with a suspended floor and are the perfect solution for curved roof applications, 

combining weight savings with a low-cost manufacturing process. Cellular beams provide a very 

economical method of producing tapered members, which have been used extensively in sports 

stadiums. They can also be used as gable columns and wind-posts. 

Optimum design algorithm selects steel UB sections, optimum number of holes and the 

optimum hole diameter for a cellular beam in such a way that all the design constraints are 

satisfied and the weight of the beam is minimum. Design provisions are taken from The Steel 

Construction Institute Publication Number 100 and BS5950. The formulation of the design 

problem considering these limitations turns out to be a discrete programming problem. 

In the design of a cellular beam it is required to the select a UB beam from which the cellular 

beam is to be produced, to select circular hole diameter and the spacing between the centers of 

these circular holes or total number of holes in the beam. Therefore, the design variables in the 

optimum design problem of a cellular beam are selected as the sequence number of a universal 

beam sections in the standard steel sections tables, the circular hole diameter and the total number 

of holes. Optimum design algorithm proposed conducts a search from a design pool which consists 

of list of standard UB beam sections, a list of various diameter sizes and a list of integer numbers 

starting from 2 to 40 for the total number of holes in a cellular beam. After the consideration of 

design constraints based on the formulations of cellular beams given in (Erdal et al. 2011) in 

detail, the optimum design problem formulated yields the following mathematical model. 

Find a integer design vector I representing the design variables 

 321
T I,I,II                                                          (20) 

To minimize the weight (W) of the cellular beam 






















 NH

2

D
LAW

2

0                                                 (21) 

In Eq.(20), I1 denotes the sequence number of for the UB beam section in the standard steel 
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sections list, I2 is the sequence number for the hole diameter in the discrete set which contains 

various diameter values and I3 represents the total number of holes for the cellular beam. 

In Eq. (21) W is the weight of the cellular beam, ρ denotes the density of steel. A is referred to 

as the total cross-sectional area of the universal beam section selected for the cellular beam, L 

represents the span of the cellular beam, D0 and NH are the diameter of holes and the total number 

of holes in the cellular beam, respectively. 

Following fourteen equations represent the geometrical and behavioral restrictions of cellular 

beams. These constraints must be satisfied depending on the values of hole diameters, spacing 

between the hole centers and the final depth of the beam determined. 

0SD08.1g 01                                                         (22) 

0D60.1Sg 02                                                        (23) 

0HD25.1g S03                                                      (24) 

0D75.1Hg 0s4                                                      (25) 

Where; S denotes the distance between centers of holes and Hs is the overall depth of cellular 

beam. 

0MMg pu5                                        (26) 

Eq. (26) implies that the maximum moment, Mu, under applied load combinations should not 

exceed the plastic moment capacity Mp of the cellular beam for a sufficient flexural capacity. 

Following three constraints guarantee that the shear stress Vsmax computed at the supports are 

smaller than allowable shear stresses Pv, the ones at the web opennings Vomax are smaller than 

allowable vertical shear stresses Pvy and finally, the horizontal shear stresses Vhmax  are smaller than 

the upper limit Pvh. 

0PVg Vmaxs6                                         (27) 

0PVg vymaxo7                                        (28) 

0PVg vhmaxh8                                         (29) 

It is also required that the web post flexural and buckling capacity of a cellular beam should be 

at least an allowable value Eq. (30). 

0MMg maxW9                                        (30) 

Where Mw is the maximum moment determined at a section of the beam and Mmax represents 

the maximum allowable web post moment. 

Interaction between the secondary bending stress and the axial force for the critical section in 

the tee is checked by inequalities (31) and (32). 

0P5.0Vg vyT10                                       (31) 

01
M

M

P

P
g

pu

o
11                                                      (32) 
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Table 1 Parameter set for optimization methods 

Optimization method Parameter set 

Hunting Search Algorithm (HuS) 

Number of hunters=40, MML=0.005, HGCR=0.3, Ramax=0.01, 

Ramin=0.0000001, α=1.2, β=0.02, 

Maximum number of iterations in one epoch = 25 

Big bang- big crunch (BBBC) Number of particles=40, α=1 

Firefly Algorithm (FF) Number of fireflies=40, α=1, βmin=0.02, β=1, γ=1 

Cuckoo Search Algorithm (CS) Number of nests = 40 ,Pa=0.1 

Particle Swarm Algorithm (PS) Number of Particles = 40 , c1=2, c2=2, w=0.08, Vmax= 2 

Artificial Bee Colony (ABC) 
Total number of bees = 40, 

Limiting value for number of cycles to abandon food source = 10 

 

 

Where; VT represents the vertical shear on the tee at θ=0 of web opening, Po and M are the 

internal forces on the web section. The deflection constraint given in Eq. (33) is imposed such that 

the maximum displacement is limited to L/360, where ymax represents the maximum deflection. 

0
360

L
yg max12                                                        (33) 

 

 
5. Performance evaluation of hunting search algorithm with Levy Flights 
 

Above presented hunting search based optimum design algorithms are used to design three 

different examples. To make a better performance testing of the algorithm, these examples are 

selected in such a way that they are all different from each other in both geometry and structural 

behavior. Same parameters given in Table 1 are used for the solution of design problems. 

Solutions of each design problem obtained with hunting search method are compared with the 

ones obtained with some other well-known meta-heuristic search techniques in the literature. Each 

example is solved with each method ten times with different seed values in order to inquire the 

effect of random numbers to optimum solutions. Algorithms perform this by producing different 

random number in each iteration by using call random_seed(i) where i is the iteration number. 

 

5.1 Welded beam design problem 
 
A carbon steel rectangular cantilever beam design problem is taken from Deb (2000) and 

selected as first design example. The geometric view and the dimensions of the beam are 

illustrated in Fig. 2. The beam is designed to carry a certain P load acting at the free tip with 

minimum overall cost of fabrication. Design variables of the optimization problem can be listed as 

in the following. 

h= x1 :  the thickness of the weld 

l= x2 :   the length of the welded joint 

t= x3 :   the width of the beam 

b= x4 :  the thickness of the beam 

The optimization problem can be stated as follows: 

Minimize the cost function; 
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Fig. 2 Welded beam 

 

 

 

Subject to: 

    :  shear stress  

 :  bending stress in the beam  

        :  side constraint  

    :  side constraint  

      :  side constraint  

       :  end deflection of the beam  

     :  buckling load on the bar  
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The side constraints for the design variables are given as follows: 

1 2

3 4

0.1 2.0, 0.1 10,

0.1 10, 0.1 2.0

x x

x x

   

     
Best, worst and average runs obtained by each method are given in Table 2. The optimum 

designs produced by metaheuristic techniques are tabulated in Table 3. The optimum solution 

belongs the hunting search algorithm with Levy flights which is 1.724941. This is followed by 

simple hunting search algorithm with 1.724944, particle swarm algorithm finds the third best 

optimum design with 1.724956 and artificial bee colony method produces the fourth best value as 

1.72808. The design histories of each algorithm are shown in Fig. 3. It is clear from the figure that 

hunting search with Levy flights has the best convergence rate and the best objective function 

value obtained is 1.724941. 

 

5.2 Six storey, two bay steel frame 
 

Fig. 4 shows the geometry of a two-bay, six-storey steel frame which is considered as second 

design example. The frame consists of thirty members that are collected in eight groups as shown 

 

 
Table 2 Minimum weights (kg) obtained for welded beam 

 
Table 3 Optimum solution for welded beam design problem 

 

 HuS-L.F HuS PS ABC FF BBBC 

Best run 1.724941 1.724944 1.72495 1.72808 1.7312 1.73733 

Worst run 1.724941 1.724973 1.72495 1.75141 1.7794 1.73733 

Average run 1.724941 1.724955 1.72495 1.73508 1.7371 1,73733 

Var 

 Meta-heuristic Search Techniques    

HuS-L.F HuS PS ABC FF BBBC 
Coell 

Mont. 

Rags. 

Phill. 
Deb 

x1 0.205731 0.20573 0.20573 0.20466 0.2015 0.20203 0.2059 0.2455 0.2489 

x2 3.47112 3.47112 3.47107 3.49639 3.5621 3.56690 3.4713 6.1960 6.1730 

x3 9.036624 9.03663 9.03679 9.03407 9.0414 9.03085 9.0202 8.2730 8.1789 

x4 0.205730 0.20573 0.20572 0.20597 0.2057 0.20655 0.2064 0.2455 0.2533 

f 1.724941 1.724944 1.72495 1.72808 1.7312 1.73733 1.7282 2.3859 2.4331 
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Fig. 3 Design histories of algorithms for welded beam problem 

 

 
Fig. 4 Six storey two bay steel frame 

 
 
in the figure. In view of the design restrictions given in LRFD-AISC maximum allowable inter-

storey drift is assumed to be 1.17 cm while the lateral displacement of the top storey is limited to 

7.17 cm. The modulus of elasticity is 200 kN/mm
2
. Complete set of 272 W-sections starting from 

W100x19.3 to W1100x499mm as given in LRFD-AISC is considered as a design pool from which 

the optimum design algorithm selects W-sections for frame members. Once a sequence number is 
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selected, then the sectional designation and properties of that section becomes available from the 

section table for the algorithm. Consequently the design vector consists of integer numbers from 1 

to 272 which corresponds to the sequence numbers of W-sections in the discrete set. Parameter set 

given in Table 1 is used in the solution of design examples.  

Best, worst and average runs obtained by each method are given in Table 4. The optimum W-

section designations obtained by the hunting search algorithm with Levy flights are given in Table 

5. The minimum weight of the best design is 6450.7kg, which is obtained after 17000 cycles. The 

design history graph demonstrating the convergence rate of the problem is given in Fig. 5. The 

results indicate that in the lightest frame the drift constraint for the second floor was 1.024 which 

is close to its upper bound of 1.17 cm while the lateral displacement of top storey was 5.155 cm 

against its upper bound of 7.17 cm. The highest ratio among the combined strength constraints was 

1.00 which was attained in member 20 which is the outer column of third floor. This clearly 

indicates that strength constraints are dominant in the optimum design. The frame is also designed 

using simple hunting search algorithm, particle swarm algorithm, cuckoo search algorithm and big 

bang- big crunch algorithm developed for unbraced plane frames. Results indicate that second 

optimum design which is obtained by simple hunting search algorithm is 5% heavier than the one 

produced by hunting search algorithm with Levy flights modification. These designs are followed 

by cuckoo search, particle swarm and big bang- big crunch solutions with 6970.60kg, 7532.11kg 

and 7583.56kg, respectively. These designs are also illustrated in Table 5. 

 

 
Table 4 Minimum weights (kg) obtained for six storey two bay frame 

 
Table 5 Optimum section designations of six storey two bay frame 

Member 

Group No 

Meta-heuristic Search Techniques 

HuS-LF. HuS 
CS 

[Saka and Dogan] 

PS 

[Saka and Dogan] 

BBBC 

[Saka and 

Dogan] 

1 

2 

3 

4 

5 

6 

7 

8 

W610X82 W460X97 W460X82 W530X74 W460X106 

W460X52 W410X53 W410X53 W310X52 W410X60 

W200X35.9 W200X35.9 W310X38.7 W200X41.7 W250X49.1 

W410X67 W460X82 W610X82 W460X89 W360X64 

W410X53 W360X51 W530X66 W460X89 W360X64 

W360X44 W360X44 W150X29.8 W360X72 W200X41.7 

W460X52 W460X52 W460X60 W460X60 W460X60 

W460X52 W460X52 W460X52 W460X68 W460X60 

Max. Int. St. Dr. Ratio 0.88 0.92 0.77 0. 78 0.78 

Max. Strength Ratio 1.00 0.98 0.94 0.99 0.98 

Top storey drift (cm) 5.155 5.213 4.421 4.5325 4.654 

Min. Weight. kg 

(kN) 

6450.70 

(63.26) 

6789.50    

(66.58) 

6970.60 

(68.358) 

7532.11 

(73.865) 

7583.56 

(74.369) 
 

 HuS-L.F HuS CS PS BBBC 

Best run 6450.70 6789.50 6970.60 7532.11 7583.56 

Worst run 6979.98 7365.44 7207.79 9240.40 8195.59 

Average run 6703.54 6951.53 7098.71 8493.93 7902.15 
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Fig. 5 Design histories of algorithms for six storey two bay frame 

 

 

Fig. 6 10-m simply supported beam 

 

 

5.3 10-m spanned cellular beam 
 

The cellular beam with a span of 10m is designed such that it can carry a uniform dead load of 

6kN/m
2
 as well as uniformly distributed live load of 10kN/m

2
 as shown in Fig. 6. The maximum 

displacement of the beam under these loads is restricted to 27mm and the modulus of elasticity is 

taken as 205kN/mm
2
. Grade 50 steel is adopted for the steel which has the design strength 355 

MPa. Among the steel sections list 64 UB sections starting from 254×102×28 UB to 914×419×388 

UB are selected to compose the discrete set of steel profiles from which the design algorithm 

selects the sectional designations for the cellular beams (Steelwork design guide to BS 5950, 

1990). For the hole diameter, which is the second variable of the optimum design problem, 

discrete set is prepared that has 421 values which starts from 180 mm and goes up to 600 mm with  
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Table 6 Minimum weights (kg) obtained for 10-m cellular beam 

 
Table 7 Optimum solutions for 10-m cellular beam 

Variables 

Meta-heuristic Search Techniques 

HuS-LF HuS FF ABC 
HS 

Erdal (2011) 

PS 

Erdal (2011) 

Opt.UB-Section 

Designations 

UB 

305X102X25 

UB 

305X102X25 

UB 

305X102X25 

UB 

305X102X25 

UB 

305X102X25 

UB 

305X102X25 

Hole Diameter (mm) 386 379 375 375 361 358 

Total Number 

of Holes 
21 21 21 21 22 22 

Max. strength ratio 0.99 0.98 0.97 0.97 0.96 0.95 

Min. Weight (kg) 218.1 220.1 221.2 221.2 221.4 222.1 

 

 

Fig. 7 Design histories of algorithms for 10-m cellular beam 

 

 

the increment of 1mm. The third discrete set is arranged for the number of holes that contains 

numbers starting from 2 to 40 with the increment of 1.  

Best, worst and average runs obtained by each method are given in Table 6. Results of these 

four algorithms are presented in Table 7. Hunting search design algorithm with Levy flights selects 

305X102X25 UB section for the root beam. This optimum design can be obtained provided that 

the beam has 26 circular holes each having 386mm diameter. This design with the weight of 

218.1kg is recorded as the optimum solution for this example. It is followed by the one produced 

 HuS-L.F HuS FF ABC 

Best run 218.1 220.1 221.2 221.2 

Worst run 220.8 220.1 227.3 227.3 

Average run 218.8 220.1 224.2 225.5 
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with simple hunting search with the weight of 220.1kg. Producing a design with the weight of 

221.2kg, artificial bee colony algorithm shows the same performance with firefly algorithm. Erdal 

et al. (2011) solved the same example with particle swarm and harmony search (HS) algorithms. 

These results are also tabulated in Table 7. Design history curves representing the convergence of 

each method are given in Fig. 7.  

 
 
6. Conclusions 
 

In this study, it is shown that hunting search algorithm is an efficient and robust technique that 

can successfully be used in the solution of optimum design problems. Design algorithm is 

extended to cover the optimum solution of welded beam design problem, cellular beam design 

problem and unbraced steel plane frame. Further, in order to increase the chance of hunting, search 

procedure of the algorithm is modified by use of Levy flights. Dimensions of welded beam are 

treated as design variables of the first example. Sequence number of Universal Beam section, hole 

diameter and total number of holes in the beam are treated as design variables of cellular beam and 

sequence number of ready W-section list is treated as design variable of unbraced frame. In 

addition to hunting search, artificial bee colony, particle swarm, cuckoo search, big bang big 

crunch algorithms are used for the solution of each design problem. Program results are also 

compared with the ones taken from literature. Results reveal that hunting search algorithm finds 

better optimum solutions compare to the other optimum design methods. In addition, it is observed 

that Levy flights increases the performance of the algorithm. This increase is obtained especially in 

second example where 5% lighter frame is produced. In the first example, hunting search solutions 

are followed by particle swarm solution. Cuckoo search produces the third optimum steel frame in 

second example. In last example, third optimum cellular beam design belongs to firefly algorithm. 

One common drawback of meta-heuristic search methods is that the iteration process generally 

gets stuck in the local optima. In this study, it is observed that solutions with constant error 

strategy experience this fact. However, as can be seen from convergence rate graphs of each 

example, adaptive error strategy for constraint handling prevents this problem and provides an 

efficient search for each algorithm.  

 

 

References 
 
Adami, C. (1998), An introduction to Artificial Life, Springer Verlag Telos, London, UK. 

Arora, J.S. (2002), Methods for Discrete Variable Structural Optimization, Recent Advances in Optimum 

Structural Design, Ed. Burns, S.A., ASCE, USA. 

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999), Swarm Intelligence: From Natural to Artificial Systems, 

Oxford University Press, U.K. 

British Standards BS 5950 (2000), Structural Use of Steelworks in Building. Part 1. Code of Practice for 

Design in Simple and Continuous construction, hot rolled sections, British Standard Institution, London, 

U.K. 

Camp, C.V., Bichon, J.B. and Stovall, S.P. (2004), “Design of steel frames using ant colony optimization”, 

J. Struct. Eng., ASCE, 131(3), 369-79. 

Camp, C.V. (2007), “Design of Space Trusses Using Big Bang-Big Crunch Optimization”, J. Struct. Eng., 

ASCE, 133(7), 999-1008. 

Coello, C.A.C. (2002), “Theoretical and numerical constraint-handling techniques used with evolutionary 

367



 

 

 

 

 

 

Erkan Doğan 

algorithms: a survey of the state of the art”, Comput. Meth. Appl. Mech. Eng., 191, 1245-1287. 

Dionisio, M.C., Hoffman, R.M., Yost, J.R., Dinehart, D.W. and Gross, S.P. (2004), “Determination of 

critical location for service load bending stresses in non-composite cellular beams”, 17th ASCE 

Engineering Mechanics Conference, University of Delaware, Newark, DE. 

Deb, K. (1991), “Optimal design of a welded beam via genetic algorithms”, Am. Ins. Aeronaut. Astronaut. J., 

29, 2013-2015. 

Deb, K. (2000), “An efficient constraint handling method for genetic algorithms”, Comput. Meth. Appl. 

Mech. Eng., 186(2-4), 311-338. 

Doğan, E. and Saka, M.P. (2012), “Optimum design of unbraced steel frames to LRFD-AISC using particle 

swarm optimization”, Adv. Eng. Softw., 46(1), 27-34. 

Duran, O., Perez, L. and Batoccia, A (2012). “Optimization of modular structures using particle swarm 

optimization”, Exp. Syst. Appl., 39(3), 3507-3515. 

Erdal, F., Doğan, E. and Saka, M.P. (2011), “Optimum design of cellular beams using harmony search and 

particle swarm optimizers”, J. Construct. Steel Res., 67(2), 237-247. 

Erdal, F., Doğan, E. and Saka, M.P. (2013), “An improved particle swarm optimizer for steel grillage 

systems”, Struct. Eng. Mech., 47(4), 513-530. 

Erol, O. and Eksin, I. (2006), “A new optimization method: big bang-big crunch”, Adv. Eng. Softw., 37, 106-

111. 

Fioriti, M. (2014), “Adaptable conceptual aircraft design model”, Adv. Aircraf. Spacecraft Sci., , 1(1), 43-67. 

Hasançebi, O. (2008), “Adaptive evolution strategies in structural optimization: enhancing their 

computational performance with applications to large-scale structures”, Comput. Struct., 86, 119-132. 

He, S., Prempain, E. and Wu, Q.H. (2004), “An improved particle swarm optimizer for mechanical design 

optimization problems”, Eng. Optim., 36(5), 585-605. 

Karaboga, D. (2010), “Artificial bee colony algorithm”, Scholarpedia, 5(3), 6915. 

Keane, A.J. (1995), “A brief comparison of some evolutionary optimization methods”, Proceedings of the 

conference on applied decision technologies (modern heuristic search methods), Uxbrigde: Wiley. 

Kennedy, J. and Eberhart, R.C. (1995), “Particle swarm optimization”, Proceedings of IEEE International 

Conference on Neural Networks, NJ, Piscataway. 

Knowles, P.R. (1985), Design of Castellated beams, The Steel Construction Institute. 

Kochenberger, G.A. (2003), Handbook of meta-heuristics, Kluwer Academic Publishers, Norwell, USA. 

Lawson, R.M., Lim, J., Hicks, S.J. and Simms, W.I. (2006), “Design of composite asymmetric cellular 

beams and beams with large openings”, J. Construct. Steel Res., 62, 614-629. 

LRFD-AISC (1999), Manual of steel construction, Load and resistance factor design. Metric conversion of 

the second edition, Vol. I & II. AISC, USA. 

Mantegna, R.N. (1994), “Fast, accurate algorithm for numerical simulation of Levy stable stochastic 

processes”, Phys. Rev. E, 49(5), 4677-4683. 

McGuire, W. (1968), Steel structures, Prentice-Hall, Englewood, USA. 

Oftadeh, R., Mahjoob, M.J. and Shariatpanahi, M. (2010), “A novel meta-heuristic optimization algorithm 

inspired by group hunting of animals: Hunting search”, Comput. Math. Appl., 60, 2087-2098. 

Ragsdell, K.M. and Phillips, D.T. (1976), “Optimal design of a class of welded structures using geometric 

programming”, Am. Soc. Mech. Eng. J. Eng. Indus., 98, 1021-1025. 

Saka, M.P. and Doğan, E. (2012), “Design optimization of moment resisting steel frames using a cuckoo 

search algorithm”, Proceedings of The Eleventh International Conference on Computational Structures 

Technology, Dubrovnik, Croatia, September. 

Yang, X.S. (2009), Firefly Algorithms for Multimodal Optimization. Stochastic Algorithms: Foundations 

and Applications, SAGA, Lecture Notes in Computer Science, Cambridge, UK. 

Yang, X.S. and Deb, S. (2010), “Engineering optimization by cuckoo search”, Int. J. Math. Model. Numer. 

Opt., 1(4), 330-343. 

Ward, J.K. (1990), Design of composite and non-composite cellular beams, The Steel Construction Institute 

Publication, Steel Construction Institute, Ascot, UK. 

368




