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Abstract.  A two-step procedure to detect and quantify damages in structures from changes in curvature 
mode shapes is presented here. In the first step the maximum difference in curvature mode shapes of the 
undamaged and damaged structure are used for visual identification of the damaged internal-substructure. In 
the next step, the identified substructures are searched using unified particle swarm optimization technique 
for exact identification of damage location and amount. Efficiency of the developed procedure is 
demonstrated using beam like structures. This methodology may be extended for identifying damages in 
general frame structures. 
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1. Introduction 

 

Since last three decades vibration based damage identification methods are gaining considerable 

attention for identifying damages in structures. These methods are based on the fact that 

introduction of damage decreases the stiffness of the structure, which in turn changes vibration 

characteristics such as natural frequency, mode shape and damping of the structure. The main 

advantage associated with these methods lie in the global nature of vibration characteristics, due to 

which it is able to identify damages located in hidden or internal areas, where visual inspection is 

difficult to conduct.  

Thatoi et al. (2012) provides a comprehensive review of recent developments of vibration based 

damage identification techniques. In a damage identification problem usually two objectives are 

attained; (i) finding the location of the damage and then (ii) estimating its severity. To attend these 

objectives, most of the vibration based damage identification procedures follow more or less same 

approach. Firstly, a mathematical relationship is constructed between damage condition and 

changes in structural response due to this. Then an objective function is defined using vibration 

parameters identified from modal testing and corresponding values calculated from finite element 

simulation. Finally, an inverse problem is formulated using a suitable optimization technique to 
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optimize this objective function by changing the damage locations and severity.  

As the mathematical relationship between structural vibration response and the location and 

extent of damage is quite complex, nowadays computational intelligence techniques, such as 

genetic algorithm (Maity and Tripathi 2005, Mehrjoo et al. 2013), artificial neural network (Maity 

and Saha 2004, Bakhary et al. 2010, Sahoo and Maity 2007, Vallabhaneni and Maity 2011) and 

swarm based intelligence techniques such as ant colony optimization (Majumdar et al. 2012, Yu 

and Xu 2011) and particle swarm optimization (Nanda et al. 2012, Sayedpoor 2012) are widely 

employed to solve such problems. To construct suitable objective function for this purpose, most of 

the authors used natural frequency, mode shape or their derivatives. It is a well-known fact that, the 

complexity of damage identification algorithm increases with the dimension of search space or 

number of unknowns. In this context, curvature mode shapes (Pandey et al. 1991, Tripathi and 

Maity 2004, Al-Ghalib et al. 2011, Chandrashekhar and Ganguli 2009, Zhang et al. 2011) provide 

a visual indication of damaged members, as maximum change in curvature mode shapes are 

localized to the damaged regions. This property of curvature mode shapes can suitably be used to 

construct an improved two step damage identification procedure. In the first step, substructures 

containing the probable damage location can be visually identified by observing the changes in 

curvature mode shapes.  In the next step, the identified substructures can be searched using 

optimization technique for exact identification of damage location and its amount. This two-step 

procedure not only reduces the complexity of the problem but also improves the accuracy of 

prediction. 

Particle swarm optimization (PSO) (Kennedy Eberhart 1995) is a swarm based computational 

intelligence technique, well known for its ability to find the global optima quickly even in case of 

complex engineering problems. However in its original form, PSO has low exploration ability due 

to which, the particles may converge to some local optima and thereby it may end up in prediction 

of wrong results. Many alternations and variations are proposed to the original PSO algorithm to 

improve its efficiency (Banks et al. 2007, 2008). Moreover, from literatures it is found that refined 

versions of PSO algorithm are generally used for solving damage assessment problems (Perera et 

al. 2010, Liu et al. 2011, Nanda et al. 2012, Kang et al. 2012, 2013, Guo and Li 2013). Here, an 

improved version of the PSO technique called unified particle swarm optimization (UPSO) 

(Parsopoulos and Vrahatis 2010), which is well known for providing better exploration and 

exploitation capability simultaneously, is proposed for solving such problem. In this study, a 

numerical procedure is developed which can detect and assess the state of damage in a structure 

using curvature damage factor and unified particle swarm optimization. Numerical models of 

undamaged and damaged structures are simulated for estimation of damaged curvature damage 

factor (CDF). Several numerical simulations are carried out to demonstrate the efficacy of the 

proposed procedure  

 

 

2. Theory and formulation 
 

A brief review of theoretical formulations for modeling the undamaged and damaged structures, 

procedure for damage identification and brief description of UPSO algorithm is presented in this 

section.  

 

2.1 Damage formulation 
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For the present study, damage is assumed as reduction in stiffness without any appreciable 

changes in mass of the structure. This is usually incorporated by using a parameter called, “Stiffness 

Reduction Factor (SRF)”. The SRF value corresponds to the factor by which stiffness of 

undamaged element is reduced in damaged element. It ranges from 0, 1 where 0 signifies no 

damage in the element and 1 means the stiffness is completely lost for the element. 

Mathematically 

  d,i ik 1 ki                                                               (1) 

Where     denotes the stiffness reduction factor, [  ]     [     ]  denotes the undamaged and 

damaged elemental stiffness matrices for     element. Considering [  ]      [ ]  as the global 

stiffness and mass matrix for the damaged element, the eigen equation for the damaged structure 

can be written in the form:  

       2

dK 0i

di dM                                                       
(2) 

Where,            represents the     natural frequency and mode shape respectively.  

 

2.2 Curvature damage factor 
 

Curvature is the rate of change of slope per unit length. Mathematically it is given by 
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From the displacement mode shape, the curvature mode shape may be obtained by central 

difference approximation as 

1 1

2

2i i i
i

v v v
v

h

  
                                                              (4) 

Where h is the length of the element and    s are the transverse displacement. Curvature damage 

factor (CDF) is defined as “mean of the absolute difference between modal curvatures of 

undamaged and damaged structure”. Mathematically 
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(5) 

Where, N is the number of modes considered for damage identification,    
          

    denotes the 

curvature mode shapes for the undamaged and damaged structures respectively for the     node. 

 

2.3 Sub-structural Identification 
 

The number of unknown parameters for damage identification increases with the increase in the 

size of the structure. This increases the complexity of the problem due to which it becomes 

computationally expensive and sometimes practically impossible to identify damages in large 

structures. However, in most of the cases, it is expected that the damages are occurred in some 

critical locations of the structure. The damage identification may be carried out only at those  
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Fig. 1 Substructuring for local identification 

 

 

locations which can ease the complexity of the problem to a great extent. Due to its simplicity, the 

sub-structuring method proposed by Yun and Bahng (2001) is used for the present study. Here, the 

substructure to be identified is called the internal substructure and the others are called the external 

substructures, as shown in Fig. 1. As maximum changes in curvature mode shapes are localized to 

the damaged regions, appropriate substructure for damage identification is selected by visual 

identification. Then, these identified substructures are searched using some optimization technique 

for assessment of exact damage location and amount.  

 

2.4 Unified particle swarm optimization 
 

The particle swarm optimization (PSO) algorithms, first proposed by Kennedy and Eberhart 

(1995), are inspired by “swarm behavior”, the collective motion of insects and birds trying to reach 

an unknown destination. In a flock of birds, each bird looks in a specific direction and then, when 

communicating together, they identify the bird present at the best position at a particular time. 

Accordingly, each bird moves towards the best bird with a velocity proportional to its current 

position. Each bird, then, searches for a new direction from its new local position and the process 

repeats until the flock reaches a desired destination. Hence, the entire process involves both social 

interaction and intelligence so that birds learn from their own experience and also from the 

experience of others around them. This process of social interaction and social learning is achieved 

by the formation of neighborhoods. Two general types of neighborhoods has been defined as, the 

global best (Where each particle shares information with each member of the swarm) and the local 

best (Where each particle shares information with its immediate neighbors according to certain 

topology rules). 

The global variant of PSO converges faster since all particles are attracted by the same best 

position and hence promotes exploitation. On contrary, this too makes global variant more prone to 

get trapped into a local maximum or minimum. On the other hand, the local variant has better 

exploration properties, since the information regarding the best position of each neighborhood is 

gradually communicated to the rest of the particles through their neighbors. Thus, the attraction 

towards a specific point is weaker, preventing the swarm from getting trapped in suboptimal 

solutions. For an effective optimization, it is desirable to have good exploration ability during early 

stages of the optimization, whereas during later stage it should have good exploitation ability. 

Unified particle swarm optimization (UPSO) is a scheme to harness these abilities by combining 

both global and local variants of PSO algorithms respectively (Parsopoulos and Vrahatis 2010) 

using a factor u that balances the influence of the global and local search directions. 

Numerically, for a swarm of P-particles in S-dimensional search space, let    
   and    

   denotes 

the velocity update of      particle in global and local variants of PSO respectively for (   )   
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iteration as given by 

   1

1 1 2 2

t t t t

ij ij ij ij ij ijG v c r pbest x c r gbest x      
 


                               

(6) 

and 

   1

1 3 2 4

t t t t

ij ij ij ij ij ijL v c r pbest x c r lbest x      
 


                                

(7) 

Where,                       in above equations denotes the best position explored by 

individual particle, any particle in the swarm and in the neighborhood of individual swarm 

respectively.    denotes the constriction factor whose value equals to 0.72984. Further, all   terms 

denote the acceleration terms and all   terms correspond to random numbers between  [   ] . 

Combining Eqs. (6) and (7), the aggregate velocity of the search directions is defined as 

   
         

    (   )    
                [   ]                                        (8) 

Where, u is called unification factor and the value of u increases linearly from 0 to 1 throughout 

the iterations. The new position of the particles for (   )   iteration is 

   
       

     
                                                                  (9) 

 

2.5 Damage identification procedure 
 

A two stage damage assessment procedure is developed based on the outlined theoretical 

formulations. Maximum changes in curvature mode shapes are localized to the damaged regions. 

Hence, the substructures containing the probable damage location is visually identified by 

comparing curvature mode shapes of numerical undamaged structure and measured damaged 

structure. In the next step, the probable damaged substructures are searched using UPSO algorithm 

for locating and quantifying the actual damaged elements. The sum of differences between the 

measured CDF value and the numerical CDF value is used for constructing objective function. 

Mathematically 

1

N

m c

i

F CDF CDF


 
                                                           

(10) 

Where,      denotes the CDF value measured for the damaged structure and      denotes the 

CDF value estimated for the structure for a probable damage scenario generated during the process 

of optimization. The CDF value for the actual structure is estimated by experimentally. Then the 

optimization technique is employed to search some pairs of SRF value for which the CDF value for 

the numerical structure exactly match with that of the measured CDF value. The SRF values for 

which this match occurs provides the actual damage scenario. Fig. 2 shows flow chart for the two 

stage procedure for structural damage assessment using curvature damage factor. 

 

 

3. Results and discussions 
 

3.1 Damage identification in a simply supported beam 
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A steel beam with simply support conditions is considered for the demonstration purpose. The 

length of the beam is considered as 1000 mm, cross sectional area as 360 mm
2
, moment of inertia as 

6750 mm
4
. The Young’s modulus and material density of the beam element is considered as 210 

GPa and 7800 kg/m
3 

respectively. The beam is modeled with 20 equal Euler-Bernoulli beam 

elements. Fig. 3 represents the sketch of the beam used for finite element model. Modal  analysis  

of  the  beam  is carried out  by  generalized  eigen  value  analysis. The damage condition is 
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Fig. 2 Two stage procedure for structural damage assessment using curvature damage factor 
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Fig. 3 Finite element model of simply supported steel beam 
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simulated by reducing stiffness of the entire beam element by an amount proportional to SRF. Fig. 

4 represents first three mode shapes and corresponding natural frequencies of the numerical beam.  

 

3.1.1 Single element damage identification 
For the demonstration purpose, a single element damage problem with 15% damage at element 5 

is considered. For numerical simulation purpose the stiffness of element 5 is reduced by 15% (SRF 

= 0.15). Curvature mode shapes are calculated for both undamaged and damaged structure and then 

the changes in curvature mode shapes are calculated as shown in Fig. 5. Normally distributed 

random noise up to 10% standard deviation is added to numerically estimated curvature mode 

shapes to simulate real experimental conditions. In general, lower modes of curvature mode shapes 

provide better visualization of damaged elements than higher modes. Whereas, it is observed from 

Fig. 5 that, the magnitude of changes in curvature mode shapes is less in lower modes than those of 

the higher modes. Hence for a better visualization of lower modes, the changes in curvature mode 
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Fig. 4 First three mode shapes of the simply supported beam 

 

 

Fig. 5 Changes in first three curvature mode shapes for single element damage 
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Fig. 6 Normalized changes in curvature mode shapes for single element damage 

 

 
(a) Damage identification with 5% noise in CDF value 

 
(b) Damage identification with 10% noise in CDF value 

Fig. 7 Single element damage identification result 

 

 

shapes for all these modes are normalized to unit value as is shown in Fig. 6 wherein it is observed 

that, the maximum change in curvature mode shapes are localized within nodes 5 and 6, 

corresponding to element 5. This implies that element 5 has the maximum probability of being 

damaged. Hence elements near to element 5 should be included in internal sub-structure. Apart 

from these elements, few minor peaks are also observed in other nodes such as, node 13 and node  
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Damage assessment from curvature mode shape using unified particle swarm optimization 

 
Fig. 8 Progress of objective function with iteration for single element damage case 

 

 

17. Logically elements connected to these nodes should be included in internal sub-structure, as the 

exact damage scenario is still unknown. Considering all these aspects the internal substructures can 

effectively be reduced to elements [4, 5, 6, 12, 13, 17 and 18]. 

The actual damaged element and corresponding damage percentage are estimated by employing 

UPSO algorithm. A comparison is made among UPSO with global and local variants of standard 

PSO algorithms to understand their performance in solving present problem. The maximum swarm 

size is considered as 30 and the maximum iteration is limited to 1000 for both USPO, global and 

local variants of PSO. Each experiment is executed for five times and the damage scenario which 

corresponds to minimum objective function is considered as actual damage scenario. First three 

modes are considered for damage identification in this case. The uncertainties associated in test 

results are simulated numerically by adding up to 10% normally distributed random noise in 

analytical CDF value. Fig. 7 presents the results of damage identification considering noise in CDF 

as 5% and 10%.  

 It is observed from Fig. 7 that, performance of this two-way procedure is quite impressive. 

Further the effect of addition of noise on the algorithm is not so significant. In other words, the 

procedure has a good immunity to the noise. Furthermore, in comparison to UPSO, the 

performances of other two algorithms are poor. In particular, when the noise level in estimation of 

CDF is 10% it is observed that the other two algorithms take longer time to converge. For a clear 

comparison on convergence of the three algorithms, the progress of objective function for the 

problem with noise free CDF value is provided in Fig. 8. It is observed that, the UPSO based 

algorithm converges faster than other two. In addition, few more single element damage assessment 

problems are simulated considering 5%, 10%, 20% and 30% damages at elements 5 and 10 

respectively. These problems and corresponding results are summarized in Table 1.   

For evaluating the performance of the present algorithm with severely noisy environment, up to 

20% noise is added to the numerically simulated CDF value. A study is carried out to evaluate the 

robustness of the proposed algorithm with different noise conditions. Each experiment is conducted 

for five times considering different starting seeds and different noise amounts. These are then 

solved using UPSO and global and local variants of standard PSO algorithms. The performances of 

these algorithms are measured in terms of success rate, mean error and standard deviation in 

damage identification results. Success rate indicates ratio of number of times the algorithm is able  
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Table 1 Single element damage identification results 

Noise 

Level 

Damage 

Id 

Actual 

Damage 

Global PSO Local PSO UPSO 

Success 

Rate 

Error in Damage 

Identification 

 (in %) 
Success 

Rate 

Error in Damage 

Identification 

 (in %) 
Success 

Rate 

Error in Damage 

Identification 

(in %) 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

5% Noise 

C1 5%@5 0.60 1.60 0.10 1.00 0.20 0.10 1.00 0.20 0.09 

C2 10%@5 1.00 0.50 0.05 1.00 0.40 0.04 1.00 0.30 0.05 

C3 20%@5 0.60 0.05 0.29 1.00 0.30 0.18 1.00 0.00 0.23 

C4 30%@5 1.00 0.43 0.49 1.00 0.57 0.45 1.00 0.50 0.45 

C5 5%@10 0.40 2.00 0.01 0.80 1.20 0.16 1.00 0.20 0.15 

C6 10%@10 0.60 0.50 0.17 1.00 0.20 0.15 1.00 0.10 0.16 

C7 20%@10 0.40 0.95 0.58 0.80 1.95 0.32 1.00 1.30 0.22 

C8 30%@10 0.80 1.17 0.81 1.00 0.20 0.49 1.00 0.17 0.48 

10% 

Noise 

C1 5%@5 0.60 2.20 0.13 0.80 0.20 0.18 1.00 0.00 0.16 

C2 10%@5 1.00 0.60 0.52 1.00 0.60 0.52 1.00 0.50 0.47 

C3 20%@5 0.80 0.50 0.68 1.00 0.00 0.66 1.00 0.15 0.63 

C4 30%@5 1.00 0.33 1.19 1.00 0.60 1.20 1.00 0.47 1.15 

C5 5%@10 0.00* - - 0.80 0.20 0.17 1.00 0.60 0.19 

C6 10%@10 0.40 0.70 0.17 1.00 1.50 0.26 1.00 1.40 0.24 

C7 20%@10 0.60 1.95 0.84 1.00 1.50 0.56 1.00 1.35 0.57 

C8 30%@10 0.80 0.80 0.52 0.60 0.93 0.71 1.00 0.33 0.66 

15% 

Noise 

C1 5%@5 0.80 1.40 0.34 0.80 0.20 0.35 1.00 0.60 0.30 

C2 10%@5 0.80 0.60 0.42 1.00 0.70 0.52 1.00 1.20 0.57 

C3 20%@5 1.00 0.80 1.20 1.00 0.60 1.21 1.00 0.35 1.12 

C4 30%@5 0.80 0.07 0.91 1.00 1.63 1.06 1.00 1.73 0.98 

C5 5%@10 0.40 0.60 0.13 0.60 4.20 0.30 0.60 1.80 0.22 

C6 10%@10 0.20 5.90 0.00 1.00 0.40 0.67 1.00 0.50 0.67 

C7 20%@10 0.40 0.70 0.96 1.00 2.20 0.71 1.00 0.95 0.17 

C8 30%@10 0.40 2.37 0.89 1.00 1.83 1.38 1.00 1.77 1.37 

20% 

Noise 

C1 5%@5 1.00 1.20 0.41 1.00 2.00 0.40 1.00 1.85 0.37 

C2 10%@5 1.00 0.30 0.86 1.00 0.70 0.72 1.00 0.80 0.75 

C3 20%@5 1.00 0.20 2.18 1.00 0.20 1.92 1.00 0.20 1.90 

C4 30%@5 1.00 2.77 2.20 1.00 2.97 2.00 1.00 2.33 2.00 

C5 5%@10 0.60 2.80 0.15 0.80 2.40 0.19 1.00 2.40 0.16 

C6 10%@10 0.20 1.60 0.00 0.80 0.40 0.56 1.00 0.60 0.53 

C7 20%@10 0.40 0.30 0.78 0.80 0.45 1.25 1.00 0.00 1.10 

C8 30%@10 0.60 5.10 0.51 1.00 2.00 1.46 1.00 1.73 1.54 
*
Damage is detected at element number 9 

 

 

to identify correct damaged element to total number of experiments carried out. A success value 

equals to 1 means the selected algorithm could able to identify the correct damaged element for all 

runs (five for the present case) where as a value equals to 0 means it failed to identify the correct 

damaged element for all runs. It may be observed from the Table 1 that, for most of the cases, 
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UPSO algorithm is able to achieve the success rate of 1.0 which indicates its superior performance 

than other two variants of standard PSO.  

Further, the error in damage identification is measured for evaluating the robustness of the 

present algorithm. The error in damage assessment is measured in percentages from the difference 

of actual and predicted amounts of damage considered for simulation study and by dividing it with 

actual damage amount considered. The error is calculated for different runs are then averaged to 

obtain the mean error in damage identification. A lower value of mean error signifies better 

damage quantification results. Finally, the robustness of the damage quantification results are 

measured in terms of standard deviation in damage identification values. The standard deviation 

value signifies the variation of damage quantification result from the mean values. A standard 

deviation value provides a direct measure for robustness of the algorithm. It is clearly observed 

from the Table 1 that, the proposed method is able to identify the damaged element and damage 

percentage accurately with significant precession. It may be observed from Table 1 that, the 

maximum amount of error associated with damage assessment is 2.33% for C4 damage condition 

and 2.40% for C5 damage condition for a noise level of 20% which is quite acceptable considering 

the amount of noise associated with the CDF values. Moreover, the maximum value of standard 

deviation associated with the damage identification results is 2.0 for C4 damage condition for a 

noise level of 20%. This signifies the algorithm is robust enough to solve damage identification 

problems for the considered noise levels.  

 

3.1.2 Multiple element damage identification 
To verify the practicability of the proposed algorithm in multiple damage identification case, 

the simple support beam used in section 3.1.1 is considered. Multiple damage case is simulated by 

reducing stiffness of 5
th
 and 15

th
 element simultaneously by 10 % and 15 % respectively. Normally 

distributed random noise up to 10% standard deviation is added to numerically estimated curvature 

mode shapes to simulate real experimental condition. Similar to section 3.1.1, the curvature mode 

shape changes are normalized to unit value, as shown in Fig. 9, to estimate the internal 

substructure for second step of damage identification. 

It is observed from Fig. 9 that, maximum changes in curvature mode shapes are localized at 

element 14 to 16. Another peak is also observed at elements 4 to 7.  Hence, considering the aspects 

 

 

 

Fig. 9 Normalized changes in curvature mode shapes for double damage case 
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Fig. 10 Result of multiple element damage identification 

 
Table 2 Damage identification results for double element damage 

Damage 

Cases 

Actual Damage Damage Identification using 3 Mode Damage Identification using 5 Mode 

Element Amount 
Identified 

Damage 
Error (in %) Std. Dev. 

Identified 

Damage 
Error (in %) Std. Dev. 

10% Noise in CDF Values 

D1 
5 5 4.79 4.20 0.04 4.93 1.31 0.01 

10 5 4.73 5.48 1.41 5.07 1.34 0.01 

D2 
5 10 10.59@3

*
 - - 9.81 1.87 1.11 

10 20 20.18 0.88 0.46 19.71 1.47 0.04 

D3 
5 20 19.54 2.29 0.63 19.32 3.41 0.03 

10 20 18.40 8.00 4.34 19.44 2.82 0.02 

D4 
5 20 19.24 3.82 0.38 19.75 1.26 0.14 

10 30 29.03 3.24 0.06 29.52 1.59 0.03 

20% Noise in CDF Values 

D1 
5 5 5.16 3.20 0.12 4.82 3.60 0.30 

10 5 5.35 7.00 0.20 4.79 4.20 0.43 

D2 
5 10 10.85 8.50 0.11 9.41 5.90 0.94 

10 20 21.60 8.00 0.64 19.02 4.90 0.88 

D3 
5 20 20.01 0.05 0.94 20.21 1.05 0.95 

10 20 20.19 0.95 2.56 20.51 2.55 1.37 

D4 
5 20 19.99 0.05 2.02 19.43 2.85 1.14 

10 30 30.70 2.33 3.69 29.14 2.87 1.59 
*
Detected damage is 10.59% at element number 3. 

 

 

described in previous section, suitable internal substructure for second step of damage 

identification can be considered as [4, 5, 6, 7, 14, 15 and 16]. As from previous study, UPSO is 

found to be the best performing algorithm; the same is used for solving the present problem. All 

the parameters required for UPSO algorithm is kept similar to the previous section. First three and 

first five modes of vibration are used for damage identification. The results of damage assessment 

are shown in Fig. 10.   

318



 

 

 

 

 

 

Damage assessment from curvature mode shape using unified particle swarm optimization 

It is observed from Fig. 10 that, though the proposed procedure is able to detect damaged 

member correctly with first three modes, but it detects few false damage also. However, using first 

five curvature modes the correct damaged scenario can be achieved without any false damage. Few 

more double element damage identification cases are simulated as shown in Table 2. Random noise 

up to 20% is added to curvature mode shape for demonstration purpose. It is observed from the 

table that, using first three curvature mode shapes it is possible to detect and quantify the damage 

properly for most of the cases. However, for accurate determination of damaged element with 

damage extent, first five frequencies would be a better choice. Further, the number of false damage 

significantly reduces if first five curvature mode shapes are used for assessment purpose. By using 

first three modes, the algorithm is unable to identify correct damaged member for the case D3. But 

by using first five modes, it is possible to locate all damaged elements properly in all considered 

cases. Similarly, it is observed that, the mean error in damage identification and standard deviation 

associated with the damage identifications are quite less when first five modes are considered for 

damage identification. This proves the robustness of the present damage identification algorithm.  

 

3.2 Damage identification in a Cantilever beam 
 

A steel cantilever beam with dimensions similar to the simply supported beam taken in previous 

section is considered. Fig. 11 represents the sketch of the beam used for finite element simulation. 

Fig. 12 represents first three mode shapes and corresponding natural frequencies of the beam. 

 

 

1 2 2019

L = 1000 mm

(E = 210 GPa, I = 6750 mm4, A = 360 mm2 and ρ = 7800 kg/m3)

 

Fig. 11 Finite element model of cantilever steel beam 
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Fig. 12 First three mode shapes of the cantilever beam 
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Fig. 13 Normalized changes in curvature mode shapes for a double damage case 

 
Table 3 Damage identification results for cantilever beam 

Damage 

Cases 

Actual Damage 
Damage Identification using 3 

Mode 

Damage Identification using 5 

Mode 

Element Amount 
Identified 

Damage 

Error (in 

%) 
Std. Dev. 

Identified 

Damage 

Error (in 

%) 
Std. Dev. 

10% Noise in CDF Values 

E1 5 5 5.46 9.20 0.00 4.94 1.20 0.01 

E2 8 10 
11.29 &  

9.41@6* 
- - 9.93 0.70 1.19 

E3 10 15 15.72 4.80 0.01 15.59 3.93 0.96 

E4 10 30 30.11 0.37 1.32 28.39 5.37 0.08 

E5 
6 10 9.39 6.10 0.01 9.63 3.70 0.00 

14 10 9.51 4.90 0.02 9.78 2.20 0.00 

E6 
5 5 5.42 8.40 0.00 5.08 1.60 0.02 

12 20 20.73 3.65 0.01 21.25 6.25 0.00 

E7 
5 5 5.08 1.60 0.12 4.96 0.80 0.04 

10 20 20.79 3.95 0.42 19.19 4.05 0.03 

E8 
5 20 19.48 2.60 0.12 20.26 1.30 0.06 

15 20 19.71 1.45 1.11 20.30 1.50 0.81 

20% Noise in CDF Values 

E1 5 5 5.33 6.60 0.43 4.80 4.00 0.11 

E2 8 10 9.90 1.00 0.65 10.02 0.20 0.89 

E3 10 15 14.71 1.93 1.71 15.10 0.67 0.81 

E4 10 30 31.73 5.77 2.58 29.86 0.47 2.25 

E5 
6 10 9.24 7.60 0.75 9.63 3.70 0.40 

14 10 9.26 7.40 0.11 9.78 2.20 0.03 

E6 
5 5 5.13 2.60 0.79 5.09 1.80 0.07 

12 20 20.97 4.85 0.09 20.53 2.65 0.38 

E7 
5 5 4.02 19.60 0.00 4.90 2.00 0.51 

10 20 19.72 1.40 2.27 19.55 2.25 1.08 

E8 
5 20 20.55 2.75 1.94 20.37 1.85 0.79 

15 20 20.49 2.45 1.84 20.29 1.45 0.80 
*
9.41 % damage is detected at element 6 along with 11.29% damage at element 8 

320



 

 

 

 

 

 

Damage assessment from curvature mode shape using unified particle swarm optimization 

Total eight damage cases which constitute both single and multiple damage case are considered 

in this study. Similar to simply supported beam, normally distributed random noise up to 20% is 

added to numerically estimated curvature mode shapes to simulate experimental condition. Similar 

comparison for damage assessment is made using first three and first five curvature modes. All the 

considered damage cases and the damage assessment results are shown in Table 3. The normalized 

changes in curvature mode shapes for multiple damage identification case with damages at 

locations 5 and 10 and damage amount 10% and 15% respectively, is presented in Fig. 13.  

A trend similar to previous two tables is observed in Table 3 wherein the present two stage 

damage identification method could successfully identify and quantify the damaged members. It is 

observed that, with first three modes the present algorithm has detected a false damage at location 6 

in E2 damage condition whereas with first five modes it could successfully capture the same. 

Further, the error associated with damage quantification is significantly less in case of five modes. 

Thus in conclusion, all these extensive studies show the robustness of the proposed methodology 

for damage assessment.  

 

 

4. Conclusions 
 

A simple but robust technique for detecting and quantifying damages in structures is presented 

in this paper. A two-step procedure is suggested for this purpose, where the maximum difference in 

curvature mode shapes of the undamaged and damaged structure is used for visual identification of 

probable damaged elements, and then an optimization technique called unified particle swarm 

optimization is used for final quantification of damages. The advantage of this two-step procedure 

is that it reduces the search space and hence reduces the associated computational cost and 

simultaneously improves the accuracy. Though the proposed procedure is demonstrated with few 

beam examples, it can easily be extended to identify damages in frame like structures. As indicated 

by the simulation results, the proposed method is able to detect and quantify the damage accurately 

using first three curvature mode shapes in case of single element damage case. Further, the 

procedure is able to assesses damages with a higher level of accuracy even in noisy environment. 

However, more number of curvature mode shapes will ensure its accuracy in predicting multiple 

damages especially in noisy environment.  
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