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Abstract.  We analyze the buckling of a thin elastic plate due to intrinsic stresses in thin films attached to 
the surfaces of the plate. In the case of cylindrical buckling, it is shown that for a plate with clamped edges 
compressive intrinsic film stresses can cause flexural buckling of the plate, while tensile intrinsic film 
stresses cannot. For a plate with free edges, film intrinsic stresses, compressive or tensile, cannot cause 
buckling. 
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1. Introduction 

 

It is well known that the material near the surface of a solid may behave differently from the 

bulk material by having its own effective material properties (Miller and Shenoy 2000, Shenoy 

2005, Tian and Rajapakse 2007, Guo and Zhao 2007, Mi et al. 2008, Dong and Pan 2011). 

Manufacturing processes may also affect the surface of a body, resulting in surface stresses, etc. 

When the body is large, its surface effects can usually be neglected. However, for small structures, 

the surface effects become more pronounced and have been extensively discussed (Streitz et al. 

1994, Liang et al. 2002, Cuenot et al. 2004, Yang 2004, Villain et al. 2004). A simple and direct 

way of studying surface effects is to treat the material near the surface of a body as a separate 

phase with its own physical properties. A general nonlinear theory for a material surface on a body 

was formulated by Gurtin and Murdoch (1975) which includes the effects of surface stresses. 

Specifically, during the deposition process of a thin film on a substrate, an intrinsic stress is 

generated in the film material, this film intrinsic stress will induces a state of stress in the plate 

called the residual stress in order that the entire structure (film plus plate) remain in equilibrium. 

To investigate the influence of combined intrinsic plus residual stress state on the resonant 

frequency of an electroded quartz resonator, Tiersten et al. (1981) derived the equations for small 

dynamic fields superposed on the static bias from the rotationally invariant equations of nonlinear 

elasticity. Actually, the stress equations of motion for the curved surface are equivalent to those 

obtained from the surface elasticity of Gurtin and Murdoch (1975). However, the latter theory does  
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Fig. 1 An elastic plate with two thin films and their thickness, stiffness, and intrinsic stress 

 

 

not consider the residual stress in the substrate induced by intrinsic stress, which is of the utmost 

importance for frequency calculation of quartz plate with electrode included. By means of a Taylor 

expansion, the two-dimensional equations for an elastic plate carrying thin films with intrinsic 

stresses were derived by Tiersten et al. (1981) by joining the extensional equations for the thin 

films to the extensional and flexural equations of elastic plates. 

Recently, due to the development of nano-scale structures, there have been growing interest and 

new derivations (Kornev and Srolovitz 2004, Lu et al. 2006, Wang and Zhao 2009) of 

two-dimensional equations for elastic plates carrying surface films with intrinsic stresses. It was 

predicted by Kornev and Srolovitz (2004) and Wang and Zhao (2009) that the intrinsic stresses in 

the surface films on an (simply-supported or free-standing) elastic plate can cause buckling of the 

plate.  

Motivated by existing works (Kornev and Srolovitz 2004, Wang and Zhao 2009), in this paper 

we examine the buckling of an elastic plate due to intrinsic stresses in surface films using the 

existing equations from Tiersten et al. (1981) (Hereafter, referred to Tiersten’s equations for 

brevity). Tiersten’s equations were derived under the assumption that the intrinsic stresses in the 

surface films are finite, but all other stresses induced by the film intrinsic stresses are infinitesimal. 

Therefore, in the equation for flexure in Tiersten et al. (1981), while the contribution to flexure 

from the film intrinsic stresses is considered, the contribution to flexure from the induced or 

residual stresses in the elastic plate is ignored. As a consequence, the equation for flexure in 

Tiersten et al. (1981) is not accurate for studying buckling from intrinsic film stresses in general, 

but it is valid when a plate has clamped edges with the film stresses balanced by the reactions at 

the edges without inducing any residual stresses in the elastic plate. 

 

 

2. Tiersten’s equations  
 

The notation in Tiersten et al. (1981) is complicated for more general applications than 

buckling. For our purpose we simplify the notation by removing certain superscripts and renaming 

the deflection function, bending and twisting moments, and shear forces, etc., using more common 

notations. Consider an elastic plate with two surface films as shown in Fig. 1. The two films were 

treated as different in Tiersten et al. (1981) but will soon be assumed identical in this paper. The 
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plate normal is along the X2 direction which will be called the vertical direction for convenience. 

X1 and X3 are the in-plane coordinates. The plate thickness is 2h. Its stiffness tensor after relaxing 

the plate thickness stresses is γABCD (the plane-stress stiffness tensor), where A, B, C and D are the 

in-plane tensor indices that assume values of 1 and 3 only but skip 2. The thickness and stiffness of 

the top surface film are 2h
t
 and γ

t
ABCD. The intrinsic stress in this film is γ

t
AB which may be 

anisotropic. The bottom surface film is similar, with a superscript b for its parameters. There are no 

other loads on the structure except the film intrinsic stresses. 

Let the deflection function of the middle plane of the plate be w(X1, X3). From Eq. (4.42) of of 

Tiersten et al. (1981), we have the flexural equation of equilibrium 

 
, 0AB ABM q     (1) 

where MAB are the bending and twisting moments given by the following plate constitutive relation 

or the moment-curvature relation (Eq. (4.49) of Tiersten et al. 1981) 
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 (2) 

In Eq. (1), q is the effective flexural or vertical load due to the finite film intrinsic stresses when 

the plate is deflected infinitesimally, which is given by Eq. (4.50) of Tiersten et al. (1981) plus an 

in-plane divergence operation as implied by Eqs. (4.42), (4.46) and (4.47) of Tiersten et al. (1981) 

as 

   ,2 t t b b

AC AC CAq h h w    (3) 

(Note that according to the notation of Tiersten et al. (1981) we have 
1 1

2, 2,

t b

A A A Aq k k  ). The total 

shear resultants or more precisely the total vertical forces over the plate cross sections including 

the contributions from the film intrinsic stresses when the plate is deflected are given by Eqs. 

(4.46), (4.47) and (4.50) of Tiersten et al. (1981) as 

  2 , ,2 t t b b

A BA B AC AC CQ M h h w     (4) 

with which Eq. (1) can be written as 

 
2, 0A AQ   (5) 

 

 

3. Cylindrical deformation of a plate with identical films 
 

Consider the case of cylindrical deformation independent of X3. We also assume that the top 

and bottom films are identical. Both the plate and the films are of isotropic materials. Let the 

Young’s modulus and the Poisson’s ratio of the plate be E and v, and those of the films be E
t
 and v

t
. 

Then the equations in the previous section reduce to 
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Substitution of (9) into (5) gives the equation for w(X1)  
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 (10) 

where  

 
3 22

4
3

t tE
D h E h h   (11) 

is the bending stiffness of the elastic plate with the films. We note that in Eq. (10) D is modified by 

the intrinsic stress γ
t
 in the films.  

 

 

4. Cylindrical buckling of a plate with clamped edges 
 

As an example consider a clamped plate within −L<X1<L. The general solution to Eq. (10) can 

be written as 

 1 1 2 1 3 1 4sin cosw A X A X A X A    
 (12) 

where Ai (i=1, 2, 3, 4) are undetermined constants and β must satisfy 

 
2 2( 4 ) 4 0t t t tD h h h      (13) 

Consider symmetric solutions first 

 2 1 4cosw A X A 
   (14) 

Eq. (14) needs to satisfy w(±L)=0 and w′(±L)=0 which imply that  
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 0sin L ,   L n  ,     n=1, 2, 3, … (15) 

and 

 4 2/ cosA A L 
 (16) 

Similarly, for antisymmetric solutions, we consider 

 1 1 3 1sinw A X A X 
 (17) 

The boundary conditions imply that 

 LL  tan    (18) 

and  

 3 1/ cosA A L  
   (19) 

Eq. (18) has a series of real and positive roots. The smallest one is L  4.493 which is larger 

than the smallest root in Eq. (15). Therefore the lowest buckling mode is symmetric, associated 

with βL=π from Eq. (15). 

With β determined from (15) or (18), from (13) we can determine the following 

dimensionless intrinsic stress for buckling 

 

2 2

2 2 2
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t th h
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
 (20) 

The γ
t
 in Eq. (20) is negative. This shows that films with compressive intrinsic stresses cause 

buckling. This can be explained as follows. According to Tiersten et al. (1981), the films produce  

an effective distributed vertical load 
1 1

2, 2,

t b

A A A Ak k  on the plate through the interactions between  

the films and the plate. This vertical load is stabilizing when γ
t
>0 (see Fig. 2 (a)) and is  

 

 

 
 

 
 

(a) (b) 

Fig. 2 A differential element showing film intrinsic stresses and interactions betweens the films and the 

plate (a) Tensile film stresses and stabilizing effects (b) Compressive film stresses and destabilizing effects 
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when γ
t
<0 (see Fig. 2(b)). In fact it is more direct to look at the vertical components of the film 

intrinsic stresses which are stabilizing when γ
t
>0 (see Fig. 2 (a)) and are destabilizing when γ

t
<0  

(see Fig. 2(b)). Basically films with compressive stresses will try to expand and are thus 

destablizing. Since β is inversely proportional to L, the critical buckling stress determined by Eq. 

(20) goes to zero for large values of L. Therefore compressive surface film stresses can cause 

buckling for sufficiently long plates. As a numerical example, consider an aluminum plate with 

copper films. L=100 mm, h=1 mm, h
t
=0.1 mm. For aluminum E=7.17×10

10
 Pa, and v=0.33. For 

copper E=11.9×10
10

 Pa, and v=0.326. The lowest compressive intrinsic stress causing buckling is 

found to be |γ
t
|=2.64×10

8
 Pa.  

 

 

5. A plate with free edges 
 

In the case of a free plate, there exist tensile or compresses residual stresses in the elastic plate 

induced by the intrinsic film stresses, as dictated by the free-edge conditions of vanishing total 

extensional resultant in the plate and the films together, and the equilibrium of the plate or any part 

of it. These residual stresses were treated as infinitesimal in Tiersten et al. (1981) and their 

contribution to the flexural equation when the plate is deflected infinitesimally was neglected. As a 

consequence Eq. (3) for q only has the contribution from the film intrinsic stresses, without the 

contribution from the residual stresses in the plate. If we still use this incomplete q for a free plate, 

it will lead to the conclusion that a free plate can buckle under compressive film intrinsic stresses. 

However, a more accurate analysis using a complete q also including the contribution from the 

residual stresses leads to a different conclusion as explained below.  

To analyze the case of a free plate or buckling of a plate carrying thin films with intrinsic 

stresses in general, Tiersten’s flexural equation in Tiersten et al. (1981) needs to be generalized to 

include contributions from not only the film intrinsic stresses but also all the induced stresses or 

the residual stresses in the elastic plate. Then the effective flexural load q in Eq. (3) takes the 

following form 

 
,AC CAq N w  (21) 

where NAC are the total in-plane extensional resultants of the plane-stress type including 

contributions from both the films and the plate. With the new q in Eq. (21), for the 

one-dimensional case we are considering, q=N11w,11 and Eq. (10) becomes 

 
2

,1111 11 ,11( 4 ) 0t tD h h w N w     (22) 

Since for a free plate the total extensional resultant N11 over a cross section including the film 

intrinsic stresses and the plate residual stresses is zero as required by equilibrium, its contribution 

to flexure when the plate is deflected infinitesimally is also zero. Therefore, in a free plate, the 

total effective vertical load q=0. There is no destablizing mechanism and buckling cannot happen.  

 

 

6. Conclusions 
 

Tiersten’s two-dimensional equations for elastic plates carrying thin surface films with finite 
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intrinsic stresses and infinitesimal induced stresses are insufficient for buckling analysis in general. 

For a clamped plate compressive intrinsic film stresses can cause buckling in a long plate while 

tensile intrinsic film stresses cannot. For a free plate film intrinsic stresses cannot cause buckling 

whether they are compressive or tensile.  
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