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Abstract.  Four algorithms for damage detection of trusses are presented in this paper. These approaches 
can detect damage by using both complete and incomplete measurements. The suggested methods are based 
on the minimization of the difference between the measured and analytical static responses of structures. A 
non-linear constrained optimization problem is established to estimate the severity and location of damage. 
To reach the responses, the successive quadratic method is used. Based on the objective function, the 
stiffness matrix of the truss should be estimated and inverted in the optimization procedure. The differences 
of the proposed techniques are rooted in the strategy utilized for inverting the stiffness matrix of the 
damaged structure. Additionally, for separating the probable damaged members, a new formulation is 
proposed. This scheme is employed prior to the outset of the optimization process. Furthermore, a new tactic 
is presented to select the appropriate load pattern. To investigate the robustness and efficiency of the authors’ 
method, several numerical tests are performed. Moreover, Monte Carlo simulation is carried out to assess the 
effect of noisy measurements on the estimated parameters. 
 

Keywords:  damage assessment; updated matrix; Sherman-Morrison-Woodbury formula; truss structure; 
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1. Introduction 

 

Recently, damage diagnosis of structures has emerged as an active field in civil, mechanical 

and aerospace engineering, enabling the continuous inspection of the safety and integrity of 

structures. Damage identification includes three main levels: detection, localization and 

quantification. During the past few years, a large amount of damage diagnosis approaches has 

been presented. Some of these techniques are based on finite element method. The basic idea of 

them is that structural responses and modal parameters, notably stress, strain, displacement, natural 

frequencies and mode shapes are the functions of physical properties of the structure (stiffness, 

mass and damping). As a consequence, changes in physical characteristics lead to alteration in the 

aforementioned responses and parameters. These damage detection algorithms aim to update the 

FEM model to match the analytical and the measured data. In this way, physical parameters of the 
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damaged structure can be identified. Based on the type of the measured data, these strategies are 

divided into two categories, namely the static and dynamic techniques. In the latter group, modal 

parameters such as frequencies and mode shapes are applied, while responses such as 

displacements and strains are measured in static methods. It is worth mentioning; some of the 

damage identification schemes use both static and dynamic data to monitor the structures.  

Some researchers provided a summary of the literature pertaining to the dynamic methods 

(Mottershead and Friswell 1993, Doebling et al. 1996, Salawu 1997, Roeck 2003, Carden and 

Fanning 2004, Yan et al. 2007, Friswell 2007, Li and Chen 2013). In these surveys, the 

characteristics and the formulations of various dynamic approaches were described.  It should be 

reminded that the changes in modal properties are dependent on changes in the mass, stiffness and 

damping properties. It is worth emphasizing; these techniques are more complicated than static 

ones since static responses are only dependent on the stiffness characteristics. Furthermore, Shih et 

al. (2011) proposed a dynamic tactic for damage identification of truss bridges. Modal flexibility 

and modal strain energy changes were deployed in a companion with the natural frequencies in 

this scheme. Yun (2012) proposed a strategy for damage detection of structures under the ambient 

vibration loading. Moreover, the genetic algorithm was deployed in this procedure. Nobahari and 

Seyedpoor (2013) utilized the concept of flexibility matrix and strain energy to detect damage in 

structures. Majumdar et al. (2013) deployed ant colony optimization approach for damage 

assessment of beams. In this method, the natural frequencies were employed.  

Dynamic strategies have some drawbacks. In general, the frequencies of the structures will 

show low sensitivity to damage, unless the large levels of damage occur or very precise devices 

are utilized for measurements. Moreover, it is very difficult to measure the mode shapes of the 

structures. To obtain precise mode shapes, sufficient control of excitation is required, which is 

hard to achieve in the field. In addition, the effect of boundary conditions also has a crucial impact 

on measured vibration frequencies and mode shapes. 

In the following paragraph, the state- of- the- art of the static damage detection techniques will 

be summarized. Sheena et al. (1982) proposed a method in which the elements of the stiffness 

matrix were updated to minimize the difference between the actual stiffness matrix, and the 

analytical one subjected to the measured displacement constraints. Note that the displacements 

were measured in specific locations in this approach. In addition, it was assumed that the 

measurements were noise-free. Sanayei and Nelson (1986) were suggested a scheme to estimate 

the stiffness properties of structural elements. In this strategy, displacements were essential to be 

measured at the same location as the applied external loads. Consequently, this tactic was 

impractical. Hence, Sanayei and Onipede (1991) removed this drawback. In this technique, the 

applied force DOFs and measured displacement DOFs were not required to be totally overlapped. 

Sanayei and Saletnik (1996a, part I) identified damage in structures by measuring the strains. It 

should be added that there was no need to measure the strains of all the elements. Additionally, 

they evaluated the effect of noisy data on their methods (Sanayei and Saletnik 1996b, part II). In 

addition, Sanayei et al. (1997) constructed a small-scale frame model to prove the ability of their 

proposed approaches. Hajela and Soeiro (1990a, b) classified the existing parameter identification 

tactics into three categories, namely equation error, output error and minimum deviation strategies. 

Moreover, they utilized both dynamic and static responses to identify damage in structures. Banan 

et al. (1994a, Part I, 1994b, Part II) presented two algorithms for damage detection of structures, 

and they used recursive quadratic programming method for solving the damage identification 

problem. Hjelmstad and Shin (1997) proposed a scheme to detect damage by measuring the static 

responses. Note that this algorithm is based on the research carried out by Banan et al. (1994a, Part 
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I, 1994b, Part II). Liu and Chian (1997) suggested a damage detection technique for trusses by 

deploying a new formulation which separated the stiffness parameters of the stiffness matrix from 

other elements of this matrix. Chou and Ghaboussi (2001) assessed damage in structures by 

employing GA. Rezaiee-Pajand and Saliani (2004) developed the proposed method by Liu and 

Chian (1997). Their technique could identify damage in trusses by measuring displacements. In 

addition, they compared the capability of several existing damage detection tactics. Bakhtiari-

Nejad et al. (2005) used sequential quadratic programming (SQP) to estimate the location and 

severity of damage in structures. They applied an approximate formula based on the second-order 

approximation of Taylor series in their formulation. Shenton lll and Hu (2006) proposed a method 

employing dead load redistribution to detect damage in the structures. Kouchmeshky et al. (2007) 

presented a co-evolutionary algorithm for damage identification of structures. The problem of 

damage detection employing minimum test data was studied in their work. Rezaiee-Pajand and 

Aftabi Sani (2008) suggested a tactic to locate damage and estimate its severity. The related non-

linear programming was solved by applying a pseudo-dual simplex method. Due to the fact that 

the mentioned scheme worked with binary variable, the design variables were converted to the 

binary ones. Yang and Sun (2010) identified the location and severity of damage in structures by 

deploying the flexibility disassembly technique. This approach identified damage by applying a 

simple algorithm in which optimization methods were not required. Besides, Abdo (2012) 

analytically studied the relationship between damage properties (location and severity) and 

changes in static displacement curvature. Moreover, Seyedpoor and Yazdanpanah (2013) 

suggested a new damage indicator based on static strain energy. Recently, Rezaiee-Pajand et al. 

(2014) proposed a new algorithm for damage identification of 2D and 3D frames.  

In this paper, four algorithms for damage detection of trusses are presented. The suggested 

techniques identify the location and magnitude of damage in structures by minimizing the 

differences between the analytical displacements and the measured ones. In a common way, the 

damage is modeled as a reduction in the elements’ cross-sectional areas. Hence, these schemes are 

not able to localize concentrated damage. The formulation of the problem leads to a non-linear 

optimization problem which is then solved by successive quadratic programming. In each iteration 

of the proposed techniques, the stiffness matrix of the damaged structure is estimated and inverted. 

Recall that the harmed structure’s stiffness matrix is assumed to be the sum of the stiffness matrix 

of the undamaged structure and a perturbation matrix. The differences between the suggested 

strategies result from the algorithms deployed for inverting the estimated matrix. 

The first algorithm uses Cholesky decomposition to invert the estimated stiffness matrix. The 

second and third ways employ the formulas based on the first-order and the second-order 

approximation of the Taylor series to calculate the inversion of the estimated matrix, respectively. 

The last approach deploys Sherman- Morrison- Woodbury formula. The suggested methods have 

two stages. At the first one, the probable damaged members will be identified by utilizing a new 

procedure. Then, the cross-sectional areas of these members will be calculated. Both complete and 

incomplete measurements can be applied in these algorithms. Keeping in mind, it is not always 

possible to measure displacements of all the DOFs. In fact, measuring devices may have errors. In 

other words, errors may exist in measurements. In this case, the proposed algorithms can never 

converge to the exact solutions. To investigate the effect of the measurement errors on the 

estimated parameter, a Monte Carlo experiment is carried out in this work. It is important to note 

that the speed and the accuracy of the static damage detection methods rely on the applied load 

cases (Hajela and Soeiro 1990b, Liu and Chian 1997, Bakhtiari-Nejad et al. 2005, Kouchmeshky 

et al. 2007). Therefore, a new load calculation which produces equally stressed members in trusses 
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is proposed.  

This paper is organized as follows. Section 2 is devoted to introduce a new load pattern for 

static damage diagnosis. In Section 3, a method for identifying the probable damaged members is 

presented. Section 4 deals with the non-nonlinear constrained optimization problem required to be 

solved. In Section 5, four formulations for damage identification are proposed. The incomplete and 

noisy measurements are discussed in Section 6. Then, the capability and the efficiency of the 

suggested algorithms are evaluated by performing several numerical samples in Section 7. Finally, 

Section 8 summarizes the conclusions. 

 
 
2. Load case determination 

 

Characteristic properties of structural members such as Young’s modulus and cross-sectional 

areas are unknown in damage identification problems, and the static responses such as strains and 

displacements are known. The selection of the load cases which approximately have similar effects 

on all elements is an important problem in static damage identification techniques. Under a 

specific load case, limitation of the load path and slight contribution of some elements to the static 

response may lead to concealment of some harmed elements in the damage detection process.  

Usually, a load case which produces equally stressed members in structure is appropriate for 

damage detection. Utilizing this ideal load case increases the prospect of reaching to the exact 

solution (Hajela and Soeiro 1990b, Bakhtiari-Nejad et al. 2005). It should be reminded that the 

damage in members, which participate a little in the load-bearing process of the structure, may be 

concealed. 

In this section, a new technique for obtaining a load case which induces an equal stress 

distribution in trusses is proposed. The suggested approach uses the finite element method. 

Accordingly, the stress vector can be achieved as follows 

DBσ                                                                     (1) 

in which stress matrix, stress and displacement vector are denoted by B, D and σ, respectively. 

Note that the displacement vector has nd entries, and the number of the entries of the stress vector 

is nel. Additionally, the stress matrix is a nel×nd matrix. nd and nel are the number of degrees of 

freedom and number of members, respectively. The following relation can be written with the help 

of Eq. (1) and assuming that B
T
B is invertible 

DBBB
TT σ                                                              (2) 

Presuming an equal distribution of stress in the structure leads to the coming result 

σTT
BBBD

1)(                                                            (3) 

The corresponding nodal load vector is obtained as below 

DKF                                                                     (4) 

where F and K are the load and displacement vector, respectively. It should be mentioned that the 

proposed load case in this section is an ideal type of loading, and it is not always possible to utilize 

this load condition in a realistic structure (Hajela and Soeiro 1990b). 
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3. Identification of the probable damaged members 
 

In the damage detection problem of trusses, the unknowns are the cross-sectional areas of the 

structure. As a result, the number of unknowns is equal to the number of members. On the other 

hand, the responses of the damaged structure, such as displacements and strains, are known. In 

general, the number of unknowns is more than equations. Thus, the problem is under-determinate, 

and it has no unique solution. To solve this problem, the optimization techniques are utilized 

(Chou and Ghaboussi 2001). To reduce the effect of solution's non-uniqueness, two tactics are 

employed by researchers: 1- reducing the number of unknowns 2-increasing the related equations. 

By utilizing several load cases the number of equations will be increased, and the non-unique 

solution problem may be remedied (Kouchmeshky et al. 2007). However, using several load cases 

is not practical.   

In this section, a new technique to detect the undamaged members is presented. This method is 

based on the static nodal equilibrium of the structures. By deploying this approach, the number of 

the unknown parameters will be decreased. The equilibrium equation of the trusses has the coming 

appearance 

FKD                                                                     (5) 

where K is the stiffness matrix, D is the displacement vector, and F is the load vector. The number 

of DOFs is nd. It is clear that K is nd×nd matrix. D and F are nd×1 vector. It should be added that 

Eq. (5) includes the nodal equilibrium equations of truss. The stiffness matrix of the structure can 

be rewritten as the subsequent form (Doebling et al. 1998) 

T
APAK                                                                  (6) 

In the last relationship, A is a nd×nel matrix, which is named the stiffness connectivity matrix. By 

utilizing connectivity and geometrical data of the structure, A is established. The number of truss 

members is nel. P is a nel×nel diagonal matrix. The diagonal entries of this matrix are the stiffness 

parameters of the truss’ members. Utilizing Eq. (6) leads to the succeeding result 

FDPAA T
                                                              (7) 

Due to damage, the member's stiffness will be reduced. Hence, the static responses under the 

specific load case will be altered. Therefore, the equilibrium equation of the damaged structure 

will be changed to the below form 

FDK dd                                                                  (8) 

In this equality, Dd and Kd are the stiffness matrix and the displacement vector of the damaged 

structure, respectively. F is the load vector. Kd is a ndnd   matrix. Dd and F are the nd×1 vector. 

By utilizing Eq. (6), the next results will be found 

T
AδP)(PAK d                                                           (9) 

FDAδP)(PA  d
T

                                                       (10) 

where δP is a nel×nel diagonal matrix, and its main diagonal entries are the amounts of reduction 

in the stiffness parameters of the members. Dd is the displacement vector of the damaged structure. 
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It should be reminded that the amounts of reduction in the structural stiffness parameters are 

unknown, and the static responses are known. As it was mentioned so far, in this paper, damage is 

modeled as a reduction in cross-sectional areas of the members. This common way of modeling 

damage is not capable of detecting concentrated damage. Nevertheless, successively subdividing 

the members can remedy this limitation. Note that A doesn’t change due to damage. 

Obviously, Eqs. (5) and (8) are systems of equations. Each of them is a nodal force equilibrium 

equation in translational direction. Based on relations (7) and (10), equations associated with a 

specific node are dependent on the cross-sectional areas of the elements connected to the 

mentioned node. The cross-sectional areas are unknown in unhealthy structure. If the aforesaid 

parameters are estimated correctly, the system of nodal equilibrium equations of the damaged 

structure will be satisfied. In practice, damage leads to deterioration in only few members within 

the structure, and others remain unharmed. To identify the healthy ones, it is first presumed that all 

the members are undamaged. In other words, the cross-sectional areas of the unharmed structures 

are employed in Eq. (8). If all the members connected to the specific node are healthy, the nodal 

equilibrium equations of the mentioned node will be satisfied by inserting the unharmed cross-

sectional areas into Eq. (8). In this way, the nodes whose elements are healthy can be identified. 

Then, the undamaged members can be easily detected by finding the members related to these 

nodes. Obviously, the unharmed elements connected to two damaged nodes cannot be detected by 

using the presented tactic. Accordingly, employing this scheme leads to the division of the 

structural members into two groups: 1-probable damaged members 2- unharmed members. The 

cross-sectional areas of the members which belong to the first group are unknowns, and their 

cross-sectional areas are estimated through the optimization process. On the other hand, the cross-

sectional areas of the members included in the second category are known prior to the outset of the 

optimization procedure. This is because the category contains healthy members. Cross-sectional 

areas of these members do not change after the occurrence of damage. By utilizing this strategy, 

the number of unknown parameters will be reduced. Consequently, the effect of solution non- 

uniqueness decreases.  

 
 
4. Optimization based damage detection  

 

Some of the damage identification methods calculate the cross-sectional areas of the damaged 

members by minimizing the differences between the analytical responses and the measured 

responses. These techniques are named output error approaches (Hajela and Soeiro 1990b). As it 

was mentioned, the displacements of the structure are known, and the amounts of reduction in the 

cross-sectional areas are unknown in damage identification problem. As a result, the stiffness 

matrix of the damaged structure is unknown. To obtain the unknown parameters, some damage 

detection techniques minimize the difference between the measured displacements and analytical 

displacements. It is obvious that the strains and displacements of the structure are related. 

Therefore, the strains can be measured instead of displacements. To detect the severity and the 

location of damage in structures, the following error function is employed 

m
d

a
di DDR 

                                                      
(11) 

In this relation, the subscript i denotes the number of load cases, the measured displacement 

vector and the analytical displacement vector are shown by Dd
m
 and Dd

a
, respectively. These 

154



 

 

 

 

 

 

Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements 

 

vectors have nd entries. The objective function has the coming form 






nlc

i

iig
1

T
RR                                                              (12) 

In this formula, g denotes the goal function. Based on Eq. (9), the stiffness matrix of the 

damaged structure is a function of the unknown parameters. Consequently, the analytical 

displacements are a function of the amounts of reduction in the cross-sectional areas. It should be 

added; the number of load cases is nlc. By deploying the above-cited cost function, the non-linear 

optimization problem can be gained as below 





 0)(diag

))(diag(gMin

δP

δP
                                                      (13)  

where diag(δP) is a nel×1 vector, which contains the diagonal entries of δP. It should be reminded 

that the diagonal entries of δP are the amounts of reduction in the cross-sectional areas, which are 

the unknown parameters of the problem. It is important to note that the inequality constraints are 

applied to guarantee that the change in the stiffness matrix is always negative, because a positive 

change can never be induced by damage. 

In the following section, four algorithms for damage identification of trusses are presented. 

These approaches establish the discussed non-linear optimization problem to estimate the severity 

and location of damage. However, these tactics utilize four various formulations to construct the 

goal function in the optimization process. It is worth emphasizing; if the cross-sectional areas of 

the damaged members are calculated correctly, then Dd
a
 will be equal to Dd

m
. Consequently, the 

objective function will be zero. In this study, the successive quadratic method is applied to solve 

the optimization problem. Prior to deploying these techniques, the probable damaged members are 

identified by applying the proposed scheme in the third section. 

 
 
5. Damage identification methods 

 

Due to damage, the cross-sectional areas of the damaged members degrade. It is assumed that 

the stiffness matrix changes by the amount of ΔK. Consequently, the damaged stiffness matrix can 

be written as below 

ΔKKKd 
                     

(14) 

In this equality, ΔK is the perturbation matrix and has nd×nd entries. This matrix demonstrates 

the changes in the stiffness matrix of the undamaged structure. Utilizing Eqs. (6) and (9) results in 

the subsequent perturbation matrix 

T
AδPAΔK                                                              (15) 

It should be added that the probable damaged members are identified by employing the 

suggested method in the third section before the outset of the optimization procedure. Note that the 

severity of damage is estimated in the minimization process. After detecting the members, which 

belongs to the group of the undamaged members, the columns of A related to these members will 

be eliminated. Consequently, the number of columns of this matrix will be reduced. Am denotes the 
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new obtained matrix which has nd×nm entries. The number of members which pertains to the 

group of the probable damaged members is equal to nm. Moreover, the rows and columns of δP 

which are related to the category of the undamaged members will be omitted. As a result, a new 

matrix, which is named δPm, and has nm×nm entries, will be obtained. Then, A and δP are 

replaced with Am and δPm in the aforementioned formulas, respectively. Hence, Eq. (15) can be 

rewritten as the coming shape 

T
mmm AδPAΔK                                                           (16) 

According to the aforesaid equations, the analytical displacement vector of the damaged 

structure can be expressed in the succeeding shape 

FΔKKD
1

d )( 
a

                                                      (17) 

By deploying this formula, the next error vector is found 

m
d

1
i )( DFΔKKR  

                                                 (18) 

The objective function can be established by substituting Eq. (18) into Eq. (12). In 

minimization process, initial values are assigned to the design variables in the first iteration. Recall 

that design variables are the diagonal entries of δPm. Based on the optimization method, initial 

 

 

 

Fig. 1 The flowchart of the damage identification process 
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values are modified and assigned to the design variables in the subsequent iterations. By deploying 

Eq. (9), the stiffness matrix of the damaged structure is estimated in each iteration. It is worth 

emphasizing that the sum of the perturbation matrix and the stiffness matrix of the undamaged 

structure are inverted. After inverting this matrix, the analytical displacements and the value of the 

objective function are obtained in each cycle. This process is repeated until the objective function 

is minimized. The identification procedure is summarized in Fig. 1. 

It should be reminded; the successive quadratic algorithm is deployed in this work (Rezaiee-

Pajand and Sarafrazi 2005). Based on Eq. (18), it is obvious that the sum of the stiffness matrix 

and the perturbation matrix should be inverted to calculate the value of the goal function in each 

iteration. Various techniques can be used to invert the sum of two matrices. Accordingly, four 

strategies for constructing the objective function are presented in this section. The first scheme 

takes advantage of Cholesky decomposition for inverting the matrices. This strategy is named 

direct method. Briefly, it is denoted by DM. Recall that the inversion of the sum of two matrices 

can be exactly achieved with the help of Cholesky decomposition.  

Additionally, Taylor series can be employed for calculating the approximate inversion of the 

sum of two matrices. If the first two sentences of the Taylor series are deployed, the first-order 

approximation will be obtained. This approximate formula has the coming form 

1111)(   KΔKKKΔKK                                             (19) 

By substituting this relationship into Eq. (17), the analytical displacement vector of the 

damaged structure will be computed approximately as follows 

FKΔKKKDd )( 111  
a

                                                (20) 

The above relation can be rewritten in the subsequent shape 

DΔKKDDd
1

a
                                                       (21) 

By applying this equation, the error vector is obtained as below 

m
d

1
i )( DDΔKKDR  

                                                  (22) 

Substituting Eq. (16) into this equality will yield the next result 

m

dmmm DDAδPAKDR   )(
T1

i                                              (23) 

By employing Eq. (12), the objective function is established. Then, the cross-sectional areas of 

the damaged members will be calculated by minimizing the goal function.  

In another way, by utilizing the first three sentences of the Taylor series, an approximate 

formula will be obtained to invert the sum of two matrices. This second-order approximation is 

given below 

                              
1111111)(   KΔKKΔKKKΔKKKΔKK

 
(24) 

By substituting the last equality into Eq. (17), the succeeding analytical displacement vector 

will be derived 

                                  
FKΔKKΔKKKΔKKKD )( 111111  

a
d 

(25) 

157



 

 

 

 

 

 

M. Rezaiee-Pajand and M.S. Kazemiyan 

This relationship can be rewritten as the subsequent form 

DΔKKΔKKDΔKKDD
111  

a
d                                      (26) 

Introducing this equation into Eq. (11) results in 

m
d

111
i ) DDΔKKΔKKDΔKKDR  (                                (27) 

Inserting Eq. (16) into the last relation gives the succeeding formula 

m
d

T1T1T1
i ) DDAδPAKAδPAKDAδPAKDR  

mmmmmm(              (28) 

By substituting Eq. (28) into Eq. (12), the objective function will be established. To find the 

cross-sectional areas of the damaged structure, the goal function should be minimized. It should be 

reminded that the probable harmed members are detected prior to the outset of the optimization 

process. 

In the presented approximation approaches, the Eqs. (19) and (24) are applied to invert the sum 

of two matrices. These formulas calculated the inversion of the sum of two matrices by matrix 

multiplication. In this work, the first-order and second-order approximation of Taylor series, are 

denoted by FTM and STM, respectively. 

Also, Sherman- Morrison- Woodbury formula can be used to accurately invert the sum of two 

matrices; as a result, the sum of the undamaged structure’s stiffness matrix and the perturbation 

matrix can be inverted by utilizing this formula (Henderson and Searle 1981, Hager 1989). 

Therefore, the usage of this identity is helpful to set up the above-cited objective function. By 

minimizing the goal function, the cross-sectional areas of the damaged members can be calculated. 

As mentioned previously, the stiffness matrix changes due to damage. By applying the 

Sherman- Morrison- Woodbury formula, the inversion of the damaged matrix can be written as 

follows 

1T
m

11T
m

1
m

111T
m

1 )()()(   KAAKAδPAKKAδPAKΔKK mmmm     (29) 

It should be added that )( 1T

m

1

mm AKAδP
   is called the capacitance matrix. The capacitance 

matrix must be invertible. Note that the number of rows and columns of this matrix is dependent 

on the number of rows and columns of Am, Am
T
 and 1

mδP . It is obvious that δPm and K should be 

invertible. The stiffness matrix of the stable structure is always invertible. δPm is a diagonal 

matrix. Therefore, by inverting its diagonal entries, the inversion of this matrix will be obtained. It 

is worth mentioning that the proposed method in the third section sometimes identifies undamaged 

members as the probable damaged ones. Consequently, δPm will not be invertible in this case. To 

solve this problem, a lower bound, which is small relative to the undamaged cross-sectional areas, 

is always presumed for the unknown parameters. The lower bounds show a very small reduction in 

cross-sectional areas of the damaged members. By employing this technique, δPm is always 

invertible. 

On the other hand, being invertible is not essential for ΔK. In each iteration, the inversion of 

(K+ΔK) can be calculated by using Eq. (29). Obviously, the only matrix which is inverted is the 

capacitance matrix. If the rank of the perturbation matrix is less than the stiffness matrix, the 

number of columns and rows of the capacitance matrix will be less than the stiffness matrix. As a 

result, the sum of two matrices can be inverted faster. Note that Eq. (29) is an accurate formula for 
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calculating the inversion of sum of two matrices. 

In practice, only a few members will degrade due to damage. Thus, only the rows and columns 

of the perturbation matrix which are dependent on these members are not zero. Therefore, the rank 

of ΔK is less than the stiffness matrix; as a result, it is efficient to use Eq. (29) to invert the sum of 

the perturbation matrix and the undamaged structure’s stiffness matrix.  

Substituting Eq. (29) into Eq. (17) results in 

FKAAKAδPAKKD ))(( 1T
m

1
m

1T
m

1
mm

11a
d

                       (30) 

This equation can be rewritten in the subsequent form 

DAAKAδPAKDD
T

m
1

m
1T

m
1

mm
1a

d )(                                (31) 

By employing the above-cited relations, the error vector is obtained as follows 

m
d

T
m

1
m

1T
m

1
mm

1
i ))(( DDAAKAδPAKDR  

                       (32) 

By utilizing this equation, the objective function is established. To calculate the cross- sectional 

areas of the damaged members, the objective function should be minimized. To be brief, the 

proposed method in this section will be shown by SMWM. Note that Sherman- Morrison- 

Woodbury formula has other forms, which are mentioned in Appendix A (Henderson and Searle 

1981, Hager 1989). 

 
 
6. Incomplete and noisy measurements 

 

As previously remarked, nodal displacements of trusses should be measured to detect damage 

by using the aforesaid tactics. In most cases, it is not always possible to measure all the nodal 

displacements due to the economical and practical limitations. Hence, an appropriate formulation 

for damage assessment should be able to employ both complete and incomplete measurements. To 

achieve this purpose, Boolean matrix is deployed in this study (Banan et al. 1994a, Bakhtiari-

Nejad et al. 2005). By means of this matrix, the measured displacement can be extracted from the 

complete displacement vector. To this end, the analytical displacement vector is pre-multiplied by 

Boolean matrix. Afterwards, the error vector can be written in the following shape 

m
d

a
di DQDR                                                          (33) 

in which Q denotes Boolean matrix. Recall that Dd
m
demonstrates the measured displacements 

vector. When incomplete measurements are applied, this vector has nmd entries. The number of 

measured DOFS equals nmd. In cases that all the nodal displacements are measured nmd is equal 

to nd. It should be noted that the analytical displacement vector can be calculated by utilizing one 

of the proposed techniques. By deploying the aforementioned equation and the presented methods, 

the error vector and the objective function can be established. In other words, the discussed non-

linear optimization problem is set up and solved by measuring some of the nodal displacements.  

Selection of measurement locations plays a key role in damage detection with incomplete 

measurements. The selected locations should be sensitive to any change in the structural 

parameters. In addition, they should be insensitive to noise in measurements.  Extensive researches 

have been conducted to find the appropriate measurement locations (Sanayei et al. 1992, Sanayei 
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and Saletnik 1996b, Banan et.al 1994b, Bakhtiari-Nejad et al. 2005). This issue is not investigated 

in this study.  

In addition to incompleteness of measurements, the existence noise affects the accuracy of the 

obtained results. In an actual test or field experiment, no matter how accurate the measurements 

are, it is expected that there would be some errors due to the existence of noise in measurements. 

These errors influence the value of the estimated cross-sectional areas. Also, they may cause 

damage identification algorithms to diverge. To simulate the aforesaid errors in numerical 

samples, noise is simulated by adding a series of pseudo-random numbers on the theoretically 

computed displacements. In this work, it is presumed that the errors are proportional and 

distributed uniformly (Sanayei and Saletnik 1996b). Usually, Monte Carlo analysis is carried out 

to investigate the effect of input error on the estimated parameters (Sanayei et al. 1992,  Sanayei 

and Saletnik 1996b, Banan et.al 1994b, Liu and Chian 1997, Bakhtiari-Nejad et al. 2005).  

 
 
7. Numerical examples 

 

In this section, several numerical tests are performed to assess the accuracy and efficiency of 

the proposed algorithms. First, a damage scenario is presumed. Then, by using the structural 

analysis, the responses of the damaged structure are calculated. In other words, the structural 

analysis is used instead of static tests. By obtaining the displacement vector of the damaged 

structure, the damage identification procedure begins. To detect the magnitude and the location of 

damage in trusses, the four proposed techniques are employed. It is worth emphasizing; the 

conditions on the optimization problem are similar in all the methods. Both complete and 

incomplete measurements are used. Note that the selected measurement locations are the same for 

all the suggested algorithms.  

For comparing the ability of the presented schemes in damage identification with complete and 

incomplete measurements, the accuracy and the efficiency of the presented approaches are 

compared. As it was mentioned, the differences between the proposed methods result from the 

tactics used by each scheme to invert the stiffness matrix in each iteration. To compare the 

accuracy of the above-cited strategies an error index is employed. For the i-th scheme, this index is 

defined as below 










 
 

 )(

)()(1
100
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jPjP

nel
EI

Ex

EsEx
nel

j

i
                                      (34) 

where PEx and PEs denote  nel×1 vectors, which include exact and estimated cross-sectional area of 

the elements, respectively. In addition, the maximum and minimum percentage errors produced in 

estimating the cross-sectional areas are calculated. To compare the speed of the above-cited 

methods, a speed index is defined as follows 

100min 
i

i
T

T
FI                                                           (35)  

in which Tmin denotes the consumed time of the fastest method, and the consumed time of the i-th 

technique is shown by Ti. 

Note that only the time consumed during the optimization process is measured. It should be 

added that the estimated parameters are shown in tables. Also, the number of iterations, the values 
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of the objective function, error index and speed index are tabulated. Furthermore, the maximum 

and minimum percentage errors produced in estimating the cross-sectional areas are illustrated. 

Finally, to investigate the capability of the proposed strategies in detecting damage with the 

presence of noise, 1%, 2% and 3% proportional error distributed uniformly are applied to the 

measured displacements. Then, 100 Monte Carlo observations are performed for each example 

(Sanayei et al. 1992, Bakhtiari-Nejad et al. 2005). In other words, the number of observations, 

which is denoted by NOBS, is equal to 100. For each unknown parameter, NOBS values exist. 

Hence, nm×NOBS values are produced. For ease of comparison, it is essential to decrease this 

large number of values to single parameters. For this purpose, the grand mean percentage error 

(GM), and a grand standard deviation percentage error (GSD) are used (Sanayei and Saletnik 

1996b). These parameters are computed as below 

 
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In this equality, the k-th observation of the parameter j and the true values of this parameter are 

shown by Pk(j) and PEx(j), respectively. In fact, the above-mentioned parameters are system mean 

and standard deviation, respectively  

Furthermore, the mean of the estimated parameters are calculated by employing the coming 

equation 

                                                            

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k

kM
NOBS 1

1
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(39) 

In this relation, PM and Pk are nel×1 vectors. PM includes the mean of the estimated parameters. 

In addition, the entries of Pk are the estimated parameters in the k-th Monte Carlo test. To assess 

the ability of the proposed algorithms in the presence of the simulated measurement errors, the 

mean values compared with the obtained results from the noise-free measurements. Besides, the 

coefficients of variation of the Mont Carlo simulation are computed (Billinton and Li 1994). For 

each estimated parameter, this coefficient equals the standard deviation of the observed values to 

the mean of them. Finally, the error index is deployed to assess the ability of the authors’ 

techniques in presence of noise.  

It is worth emphasizing; the method proposed in the third section for identification of the 

probable damaged members is utilized prior to the outset of the optimization process. In this way, 

the number of unknowns may decrease. Note that any other strategies can be deployed for finding 

the probable unhealthy members such as the tactic presented by Seyedpoor and Yazdanpanah 

(2013).  

Keeping in mind, the suggested load case in the second section is employed during the damage  
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Fig. 2 Planar 25- members truss 

 
Table 1 The cross-sectional areas of the planar 25-members truss 

Element Cross- sectional area (cm
2
) 

1-6 18 

7-12 15 

13-17 10 

25-18 12 

 
Table 2 The applied loads of the planar 25- members truss  

Node Applied loads in the horizontal direction Applied loads in the vertical direction 

2 -10.05 18.86 

3 -0.33 23.52 

4 0.00 28.87 

5 0.33 23.52 

6 10.05 18.86 

7 23.24 0.00 

8 -6.46 -15.10 

9 1.64 -21.61 

10 0.00 -22.21 

11 -1.64 -21.61 

12 6.46 -15.10 

 

 

identification process. It should be reminded that the accuracy of the static damage identification 

tactics depends on the applied load pattern. Any other load cases can be applied in numerical 

samples. However, some damaged members may be concealed due to their slight contributions in 

structural responses, and the accuracy of the approaches may degrade. In other words, every load 

pattern which induces equal stress in all members can lead to appropriate results.  

 
7.1 Planar 25- members truss 
 

One of the trusses which is commonly used in bridges and roofs is shown in Fig. 2 (Rezaiee-

Pajand and Saliani 2004). This structure consists of twenty five elements, and its number of 

degrees of freedom is twenty one. Thus, this is an indeterminate truss. 
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The cross-sectional areas of the above-mentioned truss are listed in Table 1. It should be added 

that Young’s modulus is equal to 2×10
5 

kg/cm
2
. After the occurrence of damage, the cross-

sectional areas of elements 1-6 degrade. 

By using the proposed technique, the applied load vector is obtained. This load case produces 

the constant stress of value 800 kg/cm
2
 in all members. The applied loads are tabulated in Table 2. 

After determining the load case, the probable damaged members are specified by utilizing the 

suggested approach in the third section. The cross-sectional areas of these members are unknown, 

and they are estimated through optimization procedure. Applying this technique leads to the 

placement of members 1-6 in the group of the probable harmed members.  The cross-sectional 

areas of these members are calculated by employing the proposed methods. At this stage, all nodal 

displacements are used to detect damage in this structure. The damaged members’ cross-sectional 

areas are demonstrated in Table 3. Note that other members are undamaged and their cross-

sectional areas haven’t deteriorated. 

It is obvious that damaged members are identified correctly by the usage of the algorithm 

presented in the third section. The direct method accurately calculates the cross–sectional areas of 

these members. On the other hand, FTM and STM schemes are not able to obtain the correct cross-

sectional areas since they employ Taylor series to invert the sum of the perturbation matrix and the 

stiffness matrix. As it was expected, findings demonstrate that the second-order approximation of 

Taylor series is more accurate than the first-order approximation. As it was mentioned so far, 

SMWM technique uses an exact formula to invert the sum of two matrices called Sherman- 

Morrison- Woodbury formula. Therefore, this algorithm can converge to the correct solutions.  

Moreover, the efficiency and accuracy of the above-mentioned strategies are compared. The 

number of iterations, the value of objective function, the speed index and the error index of each 

method are presented in Table 4. Besides, the maximum and minimum percentage errors produced 

in estimating the cross-sectional areas are illustrated. 

Obviously, all the proposed approaches converge. It is worth emphasizing; SMWM and DM 

method calculates the cross-sectional areas correctly.  This is because they use accurate tactics to 

 

 
Table 3 The results of damage identification in planar 25-members truss 

Element 

Cross -

sectional area 

before damage 

Correct cross-

sectional area 

after damage 

Estimated Cross 

-sectional area 

by DM 

Estimated Cross 

-sectional area 

by FTM 

Estimated Cross 

-sectional area 

by  STM 

Estimated Cross -

sectional area by 

SMWM 

1 18 14 14 12.86 13.83 14 

2 18 14 14 12.97 13.85 14 

3 18 13 13 11.19 12.69 13 

4 18 13 13 11.17 12.69 13 

5 18 12 12 9.35 11.05 12 

6 18 9.5 9.5 1.90 7.74 9.5 

 
Table 4 The comparison of efficiency and accuracy of the proposed methods 

The value of 

objective function 

Maximum percentage 

error 

Minimum percentage 

error 
Error index 

Speed 

index 

Number 

of iterations 
Method 

1.22×10
-10

 0.00 0.00 0.00 30.55 40 DM 

1.22×10
-13

 80.05 0.00 5.83 100 26 FTM 

5.68×10
-10

 18.50 0.00 1.19 61.31 39 STM 

1.22×10
-10

 0.00 0.00 0.00 66.45 40 SMWM 
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Table 5 The results of damage identification in planar 25-members truss by using noisy measurements 

Estimated Cross 

-sectional area 

by SMWM 

Estimated Cross 

-sectional area 

by  STM 

Estimated Cross 

-sectional area 

by FTM 

Estimated Cross 

-sectional area 

by DM 

Correct cross-

sectional area 

after damage 

Cross -

sectional area 

before damage 

Element 

14.04 13.86 12.92 14.04 14 18 1 

13.52 13.32 12.19 13.53 14 18 2 

13.01 12.68 11.23 12.99 13 18 3 

12.92 12.62 11.10 12.94 13 18 4 

11.94 11.39 9.18 11.91 12 18 5 

9.40 7.59 1.54 9.41 9.5 18 6 

14.85 14.85 14.85 14.85 15 15 7 

14.85 14.85 14.85 14.85 15 15 8 

14.85 14.85 14.85 14.85 15 15 9 

14.85 14.85 14.85 14.85 15 15 10 

14.85 14.85 14.85 14.85 15 15 11 

14.82 14.84 14.83 14.84 15 15 12 

9.43 9.42 9.40 9.42 10 10 13 

9.21 9.21 9.17 9.20 10 10 14 

9.41 9.42 9.40 9.41 10 10 15 

9.47 9.45 9.48 9.44 10 10 16 

9.70 9.67 9.66 9.67 10 10 17 

11.88 11.88 11.88 11.88 12 12 18 

11.87 11.87 11.87 11.87 12 12 19 

11.88 11.88 11.88 11.88 12 12 20 

11.86 11.85 11.87 11.85 12 12 21 

11.88 11.88 11.88 11.88 12 12 22 

11.85 11.85 11.86 11.85 12 12 23 

11.87 11.87 11.87 11.87 12 12 24 

11.80 11.80 11.80 11.80 12 12 25 

 

 

invert the sum of two matrices. It should be added that SMWM algorithm needs less 

computational efforts than DM approach. Furthermore, the algorithms utilized Taylor series are 

approximate. In other words, they are unable to reach to the exact responses. It should be noted 

that STM method is more accurate than FTM technique. However, it is slower, in comparison to 

FTM scheme. Clearly, FTM tactic is the least accurate method. It should be added that the 

consuming times of the four aforesaid schemes are infinitesimal in this test. Nevertheless, the 

differences between the consuming times of the proposed strategies are tangible.  

Up to now, the noise-free measurements are utilized to identify damage in this truss. All the 

four presented methods converge. The obtained results are compared to investigate the capability 

of the suggested techniques. At this stage, it is presumed that the measurements are noisy. 1%, 2% 

and 3% proportional errors distributed uniformly are added to all the measurements, respectively. 

Firstly, the presented scheme in section three is applied to identify the probable harmed members. 

Then, the four proposed strategies are deployed, and 100 Monte Carlo observations are performed 

for each algorithm. Afterwards, the mean of the estimated parameters is calculated. For brevity, 

only the results of the case, in which 1% percent error is applied, are demonstrated in the following 
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table. The results corresponding to cases with 2% and 3% errors are shown in Appendix B. Also, 

the estimated parameters’ coefficients of variation of the Mont Carlo simulation are presented in 

the aforesaid appendix. 

It is obvious that all the members are identified as the probable damaged members. In other 

words, healthy members are mistakenly placed in the group of the probable harmed members.  

This is rooted in the fact that the existence of noise in measurements perturbs all the nodal 

equilibrium equations. Based on Table 5, it is obvious that the proportional errors produced in 

estimation of the cross-sectional areas of undamaged members are small. 

As it was expected, the suggested techniques cannot converge to the exact solution, when 

measurements are noisy. To be able to compare the accuracy of the suggested techniques in 

damage detection by utilizing the noisy measurements, error indices are calculated. Error index of 

SMWM and DM techniques equal 1.96 and 1.99, respectively. Error index of the FTM and STM 

tactic are 8.02 and 3.21, respectively. It is obvious that SMWM and DM schemes can estimate 

cross-sectional areas more accurately than FTM and STM strategies in the presence of noise on the 

measurements.  

To investigate the effect of noise percentage on the performance of the authors’ methods, the 

grand mean percentage error (GSDs) of the proposed techniques is used. GSDs are compared in 

the Fig. 3. 

Among the authors’ approaches, FTM method has the poorest performance in presence of 

noise. On the other hand, DM and SMWM tactics lead to more accurate results, in comparison to 

other strategies. Additionally, it is obvious that GSDs of DM approach is very close to SMWM 

algorithm. As it was expected, increasing the noise percentage results in more inaccurate results.  

 
7.2 Three-dimensional 26-members truss 
 

A three-dimensional truss which has twenty six members and twenty four degrees of freedom is 

shown in Fig. 4. Other researchers assessed damage in this structure (Yang and Sun 2010). The 
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Fig. 4 Three-dimensional twenty six members truss 

 
Table 6 The results of damage identification in 3D 26-members truss 

Estimated Cross 

-sectional area 

by SMWM 

Estimated Cross 

-sectional area 

by  STM 

Estimated Cross 

-sectional area 

by FTM 

Estimated Cross 

-sectional area 

by DM 

Correct cross-

sectional area 

after damage 

Cross -

sectional 

area before 

damage 

Element 

20 15.34 0.25 20 20 40 1 

30 29.47 26.75 30 30 40 2 

35 34.94 34.32 35 35 40 3 

38 38 37.90 38 38 40 4 

25 23.06 15.79 25 25 40 5 

40 40 40 40 40 40 14 

40 40 40 40 40 40 16 

 
 
cross-sectional areas of its members are 40 cm

2
, and Young’ modulus equals 2×10

5
 kg/cm

2
. The 

cross-sectional areas of members 1-5 are reduced because of being damaged. It should be noted 

that the damaged members are specified. 

To detect damage in this structure, a load case, which generates the equal stress with the value 

of 800 kg/cm
2
 in all members, is employed. Then, the horizontal displacements of the first story’s 

nodes in x and y directions are measured (xy plane is the horizontal plane, and the yz plane is the 

vertical one). In addition, the displacements of the second story’s nodes in x and z direction are 

measured. In fact, all the nodal displacements are not measured. 

By applying the proposed method in the third section, the members 1-5, 14 and 16 are placed in 

the group of the probable harmed members. As a result, their cross-sectional areas should be 

estimated by using the suggested approaches. The results of analysis are listed in Table 6. It should 

be added that the cross-sectional areas of other members are known prior to using the presented 

algorithms. Their cross-sectional areas do not alter due to damage. 

Clearly, FTM and STM algorithm are not accurate. In each iteration, these approaches calculate 

the inversion of the estimated matrix by using Taylor series. Therefore, they are unable to 

accurately estimate the cross-sectional areas of the members which belong to the category of the 

probable harmed members. When FTM method is used, the estimated cross-sectional area of 

member 1 is obviously far smaller than the correct value. It is important to note that this technique 
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Table 7 The comparison of efficiency and accuracy of the proposed methods 

The value of 

objective function 

Maximum 

percentage error 

Minimum 

percentage error 

Error 

index 

Speed 

index 

Number 

of iterations 
Method 

2.64×10
-10

 0.00 0.00 0.00 35.83 46 DM 

5.60×10
-16

 98.75 0.00 5.72 100 27 FTM 

2.64×10
-10

 23.33 0.00 1.27 63.55 41 STM 

2.64×10
-10

 0.00 0.00 0.00 74.56 46 SMWM 

 

 

produces more errors in comparison to others. Since STM tactic utilizes the second-order 

approximation of Taylor series, it is more accurate than the FTM method. SMWM and DM 

approach are precise; consequently, they are able to converge to the exact responses. It is obvious 

that these strategies calculate the unknown parameters correctly. To compare the accuracy and 

speed of the proposed methods, the error and speed indices are utilized. The findings are shown in 

Table 7. 

Note that DM and SMWM approach have no errors, while the others have. Although FTM 

algorithm is computationally less expensive than other methods, it has more errors than them. It is 

obvious that STM technique is more accurate than FTM tactic. Moreover, SMWM strategy needs 

fewer arithmetic operations than the DM scheme and converges faster. It should be added that the 

less the rank of the perturbation matrix is, the less arithmetic operations the SMWM method 

requires. It should be reminded; the consuming times of the presented techniques are infinitesimal 

in this numerical example. However, the differences between the consuming times of these tactics 

are tangible. 

At this stage, the capability of the suggested techniques in presence of noise is investigated. For 

this purpose, it is assumed that 1% proportional error distributed uniformly is added to all the 

measurements. Then, 100 Mont Carlo tests are performed, and the mean values of the parameters 

are computed. The error index of the SMWM, DM, STM and FTM techniques are 2.14 and 2.13, 

3.88 and 10.19, respectively. Obviously, FTM and STM method performed more weakly than the 

other two tactics in presence of noise.  It should be mentioned that the effects of  2% and 3% error 

on the obtained results were studied. In addition, GSDs of the proposed tactics were investigated. 

The findings were compatible with the results achieved in the previous sample. Hence, the results 

are not illustrated for brevity.    

 

 

8. Conclusions 
 

In this paper, four algorithms were presented to detect the magnitude and location of damage in 

trusses. These tactics are capable of damage identification by deploying both complete and 

incomplete measurements. The aforesaid approaches have two stages. At the first phase, the 

probable harmed members are separated from other members. The cross-sectional areas of these 

members are unknown. The author’s techniques were applied to estimate them. Note that the 

remaining members are healthy and their cross-sectional areas are known. Moreover, a new 

formulation for calculating a proper load case was suggested. This load case is an ideal one which 

produces equally stressed members. 

By investigating the results of numerical samples, the accuracy and efficiency of the proposed 

techniques were compared. Among the presented procedures, the direct tactic and the SMWM 
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approach utilize accurate inversion of matrices. As a result, they are able to converge to the exact 

solutions. The findings highlight that the damage detection based on Sherman- Morrison- 

Woodbury method is more efficient than the direct inversion. In other words, the SMWM 

technique is less computationally expensive than the direct one. It is worth emphasizing; the less 

the rank of the perturbation matrix is, the fewer arithmetic operations required by SMWM method. 

On the other hand, the other two ways are approximate approaches. In other words, they are not 

able to converge to the exact solutions. This is because the first and second-order approximations 

of Taylor series are applied in these schemes to invert a sum of two matrices. As any analyzer can 

expect, the strategy utilized the first-order  approximation of Taylor series has more errors in 

comparison to the other approaches, but it needs less computational efforts than the other 

suggested formulations, and it is the fastest tactic. 

To investigate the capability of the suggested approaches in presence of noise in measurements, 

Mont Carlo test was carried out. Based on the findings, it is proven that SMWM and DM method 

perform more accurately, in comparison with the other two schemes, when noisy measurements 

are used.  
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Appendix A: Sherman-Morrison-Woodbury formulas 
 

The presented formulas in this section are applied to invert a sum of two matrices. It is 

important to note that these equations calculate the inversion of a sum of two matrices accurately. 

They are named Sherman- Morrison- Woodbury formulas. In this article, the third one is utilized. 

                                       
111111 )(][   VAUVAIUAAUVA (1.A) 

In this relation, A is n×n matrix, and matrix U has mn entries. Furthermore, V is a m×n 

matrix. I is a m×m identity matrix. If matrix U is a column vector, and matrix V is a row vector, 

the last equation will have the below shape 
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(1.A) 

By generalizing Eq. (A.1), it can lead to the coming form 

1111111 )(][   VAUVADUAAVUDA
                                      

(1.A) 

In this formula, matrix U has mn  entries, and matrix V has m rows and n columns. As it was 

mentioned so far, Eq. (A.3) is utilized in this article.  

 
 
Appendix B: The results obtained from Mont Carlo analysis 
 

For the first numerical sample, the mean of the estimated parameters is calculated for 2% and 

3% proportional error. Also, the corresponding coefficients of variation of the Mont Carlo 

simulation are presented. 

 

 
Table B.1 The results of damage identification in planar 25-members truss, 2% proportional error  

Estimated Cross 

-sectional area 

by SMWM 

Estimated Cross 

-sectional area 

by  STM 

Estimated Cross 

-sectional area 

by FTM 

Estimated Cross 

-sectional area 

by DM 

Correct cross-

sectional area 

after damage 

Cross -

sectional area 

before damage 

Element 

14.06 13.88 12.95 14.06 14 18 1 

13.49 13.30 12.12 13.50 14 18 2 

13.03 12.67 11.22 13.02 13 18 3 

12.90 12.62 11.10 12.93 13 18 4 

11.95 11.34 9.10 11.96 12 18 5 

9.37 7.55 1.40 9.35 9.5 18 6 

14.85 14.85 14.85 14.85 15 15 7 

14.85 14.85 14.85 14.85 15 15 8 

14.85 14.85 14.85 14.85 15 15 9 

14.85 14.85 14.85 14.85 15 15 10 

14.80 14.81 14.82 14.83 15 15 11 

14.73 14.72 14.68 14.68 15 15 12 

9.39 9.36 9.34 9.41 10 10 13 
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Table B.1 Continued 

9.17 9.17 9.07 9.19 10 10 14 

9.32 9.31 9.27 9.36 10 10 15 

9.35 9.28 9.31 9.39 10 10 16 

9.59 9.53 9.49 9.53 10 10 17 

11.88 11.87 11.88 11.88 12 12 18 

11.84 11.84 11.83 11.84 12 12 19 

11.86 11.86 11.86 11.86 12 12 20 

11.81 11.80 11.82 11.80 12 12 21 

11.84 11.83 11.82 11.83 12 12 22 

11.80 11.80 11.83 11.79 12 12 23 

11.80 11.80 11.80 11.79 12 12 24 

11.71 11.72 11.73 11.69 12 12 25 

 
Table B.2 The results of damage identification in planar 25-members truss, 3% proportional error  

Estimated Cross 

-sectional area 

by SMWM 

Estimated Cross 

-sectional area 

by  STM 

Estimated Cross 

-sectional area 

by FTM 

Estimated Cross 

-sectional area 

by DM 

Correct cross-

sectional area 

after damage 

Cross -

sectional area 

before damage 

Element 

14.08 13.89 12.97 14.07 14 18 1 

13.44 13.25 12.02 13.46 14 18 2 

13.03 12.65 11.20 13.02 13 18 3 

12.88 12.61 11.09 12.93 13 18 4 

11.96 11.31 8.93 11.98 12 18 5 

9.34 7.49 1.33 9.30 9.5 18 6 

14.85 14.85 14.85 14.85 15 15 7 

14.85 14.85 14.85 14.85 15 15 8 

14.84 14.85 14.84 14.85 15 15 9 

14.83 14.83 14.85 14.83 15 15 10 

14.72 14.77 14.75 14.79 15 15 11 

14.63 14.56 14.54 14.51 15 15 12 

9.31 9.25 9.23 9.35 10 10 13 

9.06 9.05 8.92 9.10 10 10 14 

9.18 9.17 9.09 9.24 10 10 15 

9.20 9.10 9.12 9.26 10 10 16 

9.48 9.39 9.33 9.38 10 10 17 

11.87 11.86 11.86 11.86 12 12 18 

11.80 11.80 11.78 11.79 12 12 19 

11.83 11.81 11.82 11.82 12 12 20 

11.76 11.74 11.78 11.75 12 12 21 

11.79 11.76 11.75 11.76 12 12 22 

11.76 11.75 11.78 11.74 12 12 23 

11.71 11.70 11.70 11.70 12 12 24 

11.63 11.65 11.66 11.59 12 12 25 
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Table B.3 The coefficients of variation of the Mont Carlo simulation for 25 planar truss  

3% proportional error 2% proportional error 1% proportional error  

SMWM STM FTM DM SMWM STM FTM DM SMWM STM FTM DM Element 

0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 1 

0.03 0.03 0.05 0.02 0.01 0.02 0.04 0.02 0.01 0.01 0.02 0.01 2 

0.04 0.05 0.08 0.04 0.01 0.03 0.06 0.04 0.01 0.02 0.03 0.01 3 

0.06 0.07 0.13 0.06 0.02 0.05 0.09 0.06 0.02 0.02 0.04 0.02 4 

0.08 0.11 0.25 0.08 0.03 0.08 0.17 0.08 0.03 0.04 0.09 0.03 5 

0.04 0.08 0.84 0.04 0.01 0.05 0.57 0.04 0.01 0.03 0.26 0.01 6 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9 

0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 10 

0.02 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 11 

0.04 0.03 0.04 0.04 0.01 0.01 0.02 0.04 0.01 0.00 0.00 0.00 12 

0.06 0.05 0.06 0.06 0.03 0.04 0.05 0.06 0.03 0.02 0.03 0.02 13 

0.07 0.07 0.08 0.07 0.03 0.05 0.06 0.07 0.03 0.03 0.03 0.02 14 

0.07 0.07 0.08 0.06 0.03 0.05 0.06 0.06 0.03 0.03 0.03 0.03 15 

0.08 0.09 0.10 0.08 0.04 0.07 0.07 0.08 0.04 0.04 0.04 0.03 16 

0.06 0.07 0.08 0.07 0.02 0.05 0.05 0.07 0.02 0.03 0.03 0.03 17 

0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 18 

0.02 0.01 0.02 0.02 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 19 

0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 20 

0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.00 21 

0.02 0.02 0.02 0.02 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 22 

0.02 0.02 0.02 0.03 0.01 0.01 0.01 0.03 0.01 0.01 0.00 0.01 23 

0.03 0.03 0.03 0.03 0.00 0.02 0.02 0.03 0.00 0.00 0.00 0.00 24 

0.04 0.04 0.03 0.04 0.01 0.03 0.02 0.04 0.01 0.01 0.01 0.01 25 
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