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Abstract.  The rational finite element method is different from the standard finite element method, which 
is constructed using basic solutions of the governing differential equations as interpolation functions in the 
elements. Therefore, it is superior to the isoparametric approach because of its obvious physical meaning 
and accuracy; it has successfully been applied to the isotropic elasticity problem. In this paper, the 
formulation of rational finite elements for plane orthotropic elasticity problems is deduced. This method is 
formulated directly in the physical domain with full consideration of the requirements of the patch test. 
Based on the number of element nodes and the interpolation functions, different approaches are applied with 
complete polynomial interpolation functions. Then, two special stiffness matrixes of elements with four and 
five nodes are deduced as a representative application. In addition, some typical numerical examples are 
considered to evaluate the performance of the elements. The numerical results demonstrate that the present 
method has a high level of accuracy and is an effective technique for solving plane orthotropic elasticity 
problems. 
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1. Introduction 

 

In elasticity, the solutions to most problems require numerical methods, except for a few 

problems with simple loads, regular domains and simple boundary conditions. A significant 

amount of research was done in the field after the presentation of the finite element method (FEM) 

(Turener et al. 1956). FEM establishes equations using the variation of the energy functional and 

the interpolation of piecewise polynomials.  

The finite element is divided into two components, i.e., a univariate element and a multivariate 

element, according to the number of field variable. Based on the idea of FEM and different 

requirements, new methods have been developed, such as the partition of unity finite element 

method (PUFEM, Melenk and Babuska 1996), the extended finite element method (XFEM, Areias 

and Belytschko 2005), the generalized finite element method (GFEM, Duarte et al. 2000, Simone 

et al. 2006), and the hybrid finite element method (HFEM, Xue 1985). To some extent, these 

methods are divided between mechanical problems and mathematical problems. For example, for 
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the standard FEM, the isoparametric element technology requires the generated shape function to 

satisfy the patch test, while for the GFEM, the grid and real physical domain are not the same.  

Hybrid-Trefftz element (Jirousek and Venkatesh 1992, Venkatseh and Jirousek 1995) uses 

Trefftz complete solution as the element interpolation function. Zhong and Ji (1996) proposed 

rational FEM (RFEM) in which the interpolation function is the linear combination of analytical 

solutions of the elastic problem, so the field variables can be formulated directly in the physical 

domain. This method considered the requirement of the patch test at the element level and 

adequately used the analytical solution from the mechanics problems (Zhong 1997, Zhong and Ji 

1997). Different from standard FEM, all of the solution processes of RFEM are in the physical 

domain, and the isoparametric transformation is avoided. Ji and Zhong (1997) derived plane 

RFEM with 4 and 5 nodes using the complete quadratic solution, and then presented a 

convergence proof for RFEM, which gives a firm theoretical foundation for RFEM. Ji et al. (2000) 

extended RFEM to an 8-node curve quadrilateral, and Wang and Zhong (2002, 2003) provided the 

formulation for 8-node and 20-node hexahedrons. Long et al. (2009) proposed the generalized 

conforming element method based on analytical trial function. According to the principle of 

minimum complementary energy, Fu et al. (2010) presented a new 8-node plane element ATF-Q8 

by taking the Airy stress function. Cen et al. (2011) established a plane hybrid stress-function 

element method for anisotropic materials. Cen et al. (2012) proposed a new high precision plane 

element US-ATFQ8, by introducing the analytical trial function method and the hybrid 

stress-function element method into the unsymmetrical FEM. 

Second only to the isotropic problem, the orthotropic problem is widely researched. In 

biomechanics (Hambli et al. 2012), rock mechanics, fracture mechanics (Bambill et al. 2009, 

Beom et al. 2012, Karihaloo and Xiao 2003), friction problems and other research fields, scientist 

pay close attention to the orthotropic problem for thermoelasticity, thermoplastic (Ozaki 2012), 

elastic-plastic and other constitutive models.  

This paper develops RFEM for the plane orthotropic problem by using the complete 

polynomial solutions of the mechanics equations. The number of element nodes N and the number 

of interpolation functions k are introduced for general analysis. The stiffness matrix when 2N=k 

and the condensation stiffness matrix when k>2N are given, and the specific matrixes for 4 and 5 

nodes are derived. The patch test is taken into account for RFEM, and the numerical results 

demonstrate the superiority of RFEM. 

 

 

2. The governing equations and their fundamental solutions 

 

In this paper, the plane orthotropic problem is discussed. In the rectangular coordinate system 

xoy, the relationship between strains εx, εy and γxy and stresses σx, σy and τxy can be described as 
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where Dij(i,j=1,2,6) and Dij(i,j=1,2,6) are the flexibility and stiffness coefficients, respectively. The 

compatibility equation between the strains and displacements u, v in the x, y
 
directions are 
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The equilibrium equations among stresses without body force are 
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Substituting Eq. (2) and Eq. (3) into the above equations, the equilibrium equations expressed 

by the displacements can be obtain as 
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Let displacements u and v be a set of n-order polynomial solutions 
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where
   n

i
n

i  ,  are undetermined coefficients and their number is 2(n+1). Substituting the above 

expressions into Eq. (5), the relationships for the coefficients 
   n

i
n

i  ,  can be obtained. Notice 

that in Eq. (6), u, v
 
are n-order polynomials, and the number of equations describing 

   n
i

n
i  ,   

should be 2(n−1). By arbitrarily choosing 4 coefficients to be an independent set, the other 

coefficients can be obtained. Of course, some solutions with definite physical meanings can be 

chosen as linearly independent solutions. Obviously, Eq. (5) is always valid when n≤1 and always 

has 4 solutions when n≥2. 

For example, when n=3, Eq. (6) can be written as 
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Substituting this into Eq. (5) produces two linear equations with six unknowns 
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Based on the arbitrariness of x, y, there are four equations for eight undetermined coefficients 
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then substituting the solutions into Eq. (7), the four linear independent solutions are 
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When n=0, 1 or 2, the fundamental solutions of Eq. (5) are listed in Table 1. Obviously, there 

are 2 linearly independent solutions when n=0, which implies rigid body translation in the x,y
 

directions. When n=1, there are 4 linearly independent solutions, which implies rigid body rotation 

and uniform tension along the x,y directions and constant shear force bending. When n=2, there are 

also 4 linearly independent solutions, which implies pure bending in the x,y
 
directions and a 

combination of bending and torsion along the x,y
 
directions. 

 

 
Table 1 Fundamental solutions of plane orthotropic elasticity with n≤2 

n u v σx σy τxy 

0 
1 0 0 0 0 

0 1 0 0 0 

1 

y −x 0 0 0 

D11x D12y 1 0 0 

D12x D22y 0 1 0 

D66y/2 D66x/2 0 0 1 

2 

D11xy (−D11x
2
+D12y

2
)/2 y 0 0 

(D12x
2
−D22y

2
)/2 D22xy 0 x 0 

D12xy [−(D12+D66)x
2
+ D22y

2
]/2 0 y −x 

[D11x
2
−(D12+D66)y

2
]/2 (D12x

2
−D22y

2
y)/2 x 0  −y 
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The fundamental solutions of plane orthotropic elasticity when n≥3 can be obtained in a similar 

manner. They are not listed because they do not appear in the equations in this paper.  

 

 

3. The construction of the rational finite element 
 

In the rational finite element method, the displacement field of the element is given by the 

following interpolation formulation 
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where ai are the generalized displacements, k is the number of interpolation functions, and ui, 

vi(i=1,2,…,k) are the fundamental solutions when they are arranged in an ascending about order n. 

Suppose the number of nodes of the constructing element is N/2 and there are two independent 

degrees of freedom of displacement on each node, that is, the total number of independent degrees 

of freedom in the element is N.  

First, k should satisfy k≥N. Second, in view of the completeness of the solution, all fundamental 

solutions for the proper n-order polynomial should be used completely. For example, k should be 6 

(n≤1), 10 (n≤2), etc. 

According to Eq. (11), the stress field of the element is given by 
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Therefore, the energy of deformation of an element occupying region Ω can be obtained as 
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and R is the generalized stiffness matrix between the generalized displacement a and the 

generalized force g 
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In the above expressions, A is the area of the element, and Qx, Qy, Ix, Iy, Ixy are first-order and 

second-order moments about the coordinate axes x,y 
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Obviously, R11 
corresponds to the linear displacement mode, while R22 corresponds to the 

quadratic displacement mode. If the origin of the local coordinates is chosen to be in the center of 

the element, Qx, Qy
 
in R11 vanish.  

Because R is the generalized stiffness matrix for the generalized displacement a for which the 

global stiffness matrix of the structure is assembled from the element stiffness matrices according 

to the node displacement, the element stiffness matrix K, which corresponds to the node 

displacement of element d, must be given, i.e. 

Kdd
T
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1
eU                              (19) 

Substituting the coordinate of the nodes into Eq. (11) gives the transformation matrix T between 

the generalized displacement a and the node displacement d 

Tad                                 (20) 

The column form of the matrix is 

 kkT φφφφ 121                         (21) 

The dimension of the column vector  kii ~1φ  is N. 

When k=N, in general, the transformation matrix T is an invertible square matrix; when k>N, 

the matrix T is invertible. This will be discussed based on the relationship between N and k. 

 

3.1 The case of N=k 
 

Substitute Eq. (20) into Eq. (19) gives the energy of deformation of the element 
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where 

1 RTTK
T

                              (23) 

is the stiffness matrix. The node force f can be given as 

Kdf                                   (24) 

and the relationship between the generalized force g and the node force f is  

gTf
T                                 (25) 

In general, the current stiffness matrix K cannot pass the patch test because the continuity of 

displacement and stress is destroyed in the boundary of the element. The matrix should be 

modified. 

Research has been conducted on an element patch that has at least one inner node. When the 

boundary nodes of the patch are imposed on the displacement corresponding to a uniform stress 

field, solving the global stiffness matrix equations gives the displacement of inner node(s). If the 

displacement of the inner nodes agrees with the uniform stress field, the element passes the patch 

test. 

This paper uses the technique to test the element. The result shows why the matrix K cannot 

pass the test and gives the modification of matrix. 

The one-element test is requested firstly when the node displacement involves rigid body 

translation or rotation; the stress of the element is zero. The second request occurs when a simple 

stress field σ is applied to the element. The generalized force vector g
(s)

 and the generalized force 

vector g
(t)

, which is corresponds to the exact displacement field, should be equal. The superscript 

(s) means simple, and the superscript (t) means theory. 

For the first request, if the node displacements are rigid displacements, according to the 

displacement interpolation formulation in Eq. (11), ai≠0(i=1~3) and aj=0(j=4~k). Therefore, the 

stress interpolation formulation in Eq. (12) is zero. That is to say, the matrix satisfies the first 

request of the patch test. 

In the second request, the so-called simple stress field refers to the element that has only the 

stress σx=1 or σy=1 or τxy=1. Take the element with just the simple stress field σx
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={1 0 0}
T
 as an 

example. This field corresponds to the following generalized displacement vector 
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The forth element of vector a is 1, and the others are 0. 

The generalized force vector corresponding to the exact displacement vector is 

     T,,111211 00000000 xkx

s

x

s

x hhADAD Rag    (27) 

where hi,x(i=11~k) are nonzero coefficients and hi,x=0(i=7~10). 

Because the boundary of the element is linear while the stress is uniform, the boundary force 

can contribute to the element node. The lumped node force vector is noted as fx
(t)

. The form of 

node force fx
(t)

 depends on the distribution of the nodes. Therefore, the generalized force vectors 

corresponding to the exact displacement are 
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Notice that φ1, φ2, φ3 
are derived from the rigid body displacements, so 

   3,2,10T  it

xi fφ                           (29) 

In addition, φ4, φ5, φ6 
are derived from the linear displacements, so 
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Compare gx
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 in the above equation and gx
(s)

 in Eq. (27): the transformation matrix T cannot 

ensure that the corresponding stiffness matrix will pass the test. 

Of course, the other two simple stress fields have similar formulations. For only y-direction 
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where hi,y(i=11~k) are nonzero coefficients and hi,y=0(i=7~10). fy
(t)

 is the exact node force. For only 

shear stress is applied to the element 
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where hi,xy(i=11~k) are nonzero coefficients and hi,xy=0(i=7~10). fxy
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 is the exact node force. 

Modify the 7
th
 to k

th 
column of matrix T. Let 

     
635241

~ φφφφφ
iii

ii                        (35) 

where ηj
(i)

(j=1~3)
 
are undetermined parameters. Respectively, transpose fx

(t)
, fy

(t)
, fxy

(t)
, multiply 

with the above equation, and compare with Eq. (27), Eq. (31) and Eq. (33) 
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Solve for ηj
(i)

(j=1~3)
 
and substitute them into Eq. (35). This new  kii ~7~ φ  should replace the 

column vector  kii ~7φ  of matrix T. Note the modified transformation matrix as 

 kφφφφφφφφT ~~~
7654321                  (37) 

The corresponding modified stiffness matrix is 

1T ~~~  TRTK                               (38) 
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This is the stiffness matrix of the N node element. It passes the patch test. 

 

3.2 The case of N<k 
 

When the number of node degrees of freedom of the constructing element is less than the 

number of interpolation functions, the transpose matrix T is a rectangular matrix that does not 

have an inverse matrix. So Therefore, Eq. (23) is a failure. 

The first and simplest approach uses fewer fundamental solutions. Deleting arbitrary m=k−N 
rows of matrix T gives a new transformation matrix T′, which is a square matrix. The modification 

process described in the previous section could be applied. The corresponding stiffness matrix that 

can pass the patch test is 

1T ~~~   TRTK                             (39) 

where R′ is a deleted square matrix. 

This will lead to a poor result because the completeness of the solution is lacking. The solution 

will be directionally correlated and could even be wrong. 

The second approach involves adding extra nodes and applying inner condensation in the 

element. By adding m/2 nodes to the element, the number of node degrees of freedom of the 

augmented element is m+N=k. Applying the modification process described in the previous 

section to the augmented element yields the modified stiffness matrix K
~

 and the transformation 

matrix T
~

. They are both k×k square matrices. 

Let the node displacement vector of the augmented element be 











m

N

d

d
d                                (40) 

where dN is the node displacement of the constructing element and dm is the augmented node 

displacement. 

Divide the stiffness matrix of the augmented element in the same way 
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The stress energy of this element is  
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Minimizing Ue yields 

NNmmmm dKKd ,

1

,

~~                             (43) 

Substituting the above equation into Eq. (42) yields 

NNeU dKd
T

2

1
                             (44) 
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Fig. 1 The model of Example 1 

 
Table 2 Results of Example 1 

 Tension Pure bending 

 EPL/h 12EPL/h
2 12EML

2
/h

3 

m*n uA
 

vA
 

uB
 

vB
 

uA
 

vA
 

uB
 

vB
 

2*4 0.489 0.501 0.000 0.016 0.000 0.249 -0.103 -0.101 

4*4 0.495 0.500 0.000 0.015 0.000 0.250 -0.101 -0.101 

Exact Solution 0.5 0.5 0 0.015 0 0.25 -0.1 -0.1 

 

 

where 

NmmmmNNN ,

1

,,,

~~~~
KKKKK

                         (45) 

which is just the stiffness matrix of the constructing element. There are N degrees of freedom. 

 

 

4. Numerical examples 
 

The following examples only use the orthotropic rational quadrilateral element with 10 

interpolation functions, i.e., k=10. Hence two different elements are used. The 5-node element is 

named ORQ5T, and the corresponding condensation element is ORQ4T, where T means the 

element passes the patch test. The usual quadrilateral isoparametric element with 4 nodes is 

denoted as Q4. 

Example 1 The rectangular plate shown in Fig. 1 is considered. The length L is much larger 

than the width h. The left boundary is clamped, and the other boundaries are free. The flexibility 

coefficients are D11=1/E, D12=−0.3/E, D22=3/E
 
and D66=5/E. Both the uniaxial tension P and the 

pure bending M are considered. 

Two different FEM meshes are used for this example. For the first type of mesh, the x and y 

axes are divided equally into n and m intervals, respectively, so the meshes are all rectangular. The 

numerical results for different values of n and m and the exact solutions are given in Table 2, 

which shows the validity of the present method. The second mesh is shown in Fig. 2, and only 

pure bending is considered. As shown in Fig. 2, different values of e and d give different meshes, 

and point B is always the element node. The relative error is defined as 
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Fig. 2 The model of the sensitivity analysis 

 

 

Fig. 3 Sensitivity analysis 

 

 

  uuu /                               (46) 

where u is the numerical result obtained using the proposed method and ū is the elastic theory 

solution. The relative error of point B for different values of e and d is given in Fig. 3, which 

shows that the method proposed in this paper has a better computational stability for a distorted 

mesh. 

Example 2 A square rule with l1=h1=10, l2=8, h2=2
 
and h3=8 is shown in Fig. 4, in which C is 

the middle point of the end. The flexibility coefficients are the same as those given in Example 1, 

and a uniform downward load is applied to the end of the square rule. The domain is divided into 

13 elements with 22 nodes (see Fig. 5), and ORQ4T, ORQ5T and Q4 are used to compute the 

displacement of A, B and C. A reference solution is also given by using Ansys, and the FEM mesh 

is shown in Fig. 6; the domain is divided into 1270 4-node plane elements. The relative errors for 

the displacement of points A, B and C are given in Table 3, in which the third, fourth, and fifth 

rows give the relative error obtained using ORQ4T, ORQ5T and Q4, respectively. The numerical 

results show that the algorithm proposed in this paper gives better results than the classic FEM for 

distorted elements. 
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Fig. 4 The model of Example 2 

 

 

 

Fig. 5 The mesh for the proposed method in 

Example 2 
Fig. 6 The mesh for Ansys in Example 2 

 
Table 3 The relative error of Example 2 

 A B C 

 uA vA uB vB uC vC 

ORQ4T 6.814% 0.9792% 0.9012% 0.9167% 1.197% 0.8753% 

ORQ5T 5.533% 0.8903% 0.9127% 0.8053% 1.216% 0.8146% 

Q4 11.82% 18.20% 19.83% 15.39% 14.38% 12.57% 

Ansys -0.6554 -3.436 0.6619 -4.768 -5.673 -4.4146 

 

 

Example 3 Cook beam is a skew cantilever under shear distributes force at the free edge, 

shown as Fig. 7. The thickness of the beam is 1.0, the material is isotropic and the Young's module 

and Poison ratio are E=1.0 and µ=1/3. Compute this beam by 2×2, 4×4 and 8×8 meshes with CQ4,  

934
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Fig. 7 The model of Example 3 

 
Table 4 The result of Example 3 

Element type 
vC

 
σAmax σAmin 

2×2 4×4 8×8 2×2 4×4 8×8 2×2 4×4 8×8 

CQ4 11.80 18.29 22.08 0.1217 0.1873 0.2242 -0.0960 -0.1524 -0.1869 

QAC-ATF4 24.36 23.84 23.89 0.2127 0.2277 0.2350 -0.1809 -0.1934 -0.2001 

ORQT4 23.21 23.77 23.88 0.2059 0.2284 0.2333 -0.1893 -0.1948 -0.1999 

CQ5 12.24 18.86 22.33 0.1039 0.1884 0.2253 -0.0551 -0.1410 -0.1858 

QAC-ATF5 23.06 23.83 23.94 0.2074 0.2101 0.2284 -0.1832 -0.1974 -0.2025 

ORQT5 23.31 23.80 23.94 0.2105 0.2311 0.2341 -0.1895 -0.1959 -0.2008 

Reference 

solution 
23.96 0.2362 -0.2023 

 

 

CQ5, QAC-ATF4 (Cen et al. 2009), QAC-ATF5 (Cen et al. 2009), ORQT4 and ORQT5. The 

results of CQ4, CQ5, QAC-ATF4 and QAC-ATF5 are all provided by Cen et al. (2009). The 

reference solution is provided by Long and Xu (1994) using element GT9M8 with 64×64 mesh. 

Table 3 gives the deflection at the middle point C of the free edge, the maximum principal stress at 

the middle point A of the lower edge, and the minimum principal stress at the middle point B of 

the upper edge. Table 3 shows that ORQT4 and ORQT5 gradually approach the reference solution 

when the meshes refined and so exhibit quite good convergence, that the deflection and stress of 

ORQT4 and ORQT5 are all quite better than conventional elements CQ4 and CQ5, and that the 

elements proposed in this paper have almost the same accuracy with QAC-ATF4 and QAC-ATF5.  

 

 

4. Conclusions 
 

Different from standard FEM, RFEM is formulated in the physical domain using the analytical 

solutions of elastic problems. In this framework, for different materials and element 
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characteristics, the interpolation functions can change automatically. Numerical examples 

demonstrate that compared with standard FEM, RFEM produces more reliable numerical results, 

and the efficiency and stability of the present method are better. For distorted elements, the method 

produces more stable results. The method is valuable for the extension of RFEM to plane or 3D 

general anisotropy problems. 
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