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Abstract.  The article presents the methodology for finding material damping capacity at higher frequency 
and at relatively lower amplitudes. The Lamb wave dispersion theory and loss less finite element model is 
used to find the damping capacity of composite materials. The research has been focused on high frequency 
applications materials. The method was implemented on carbon fiber reinforced polymer (CFRP) and glass 
fiber reinforced polymer (GFRP) plates. The Lamb waves were generated using ultrasonic pulse generator 
setup. The hybrid method has been explored in this article and the results have been compared with 
bandwidth methods available in the literature. 
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1. Introduction 

 

The damping capacity of a material is the fundamental property for designing and 

manufacturing structural components in dynamic applications. Materials with high damping 

capacity are very desirable to suppress mechanical vibration and transmission of waves, thus 

decreasing noise and maintaining the stability of structural systems. Experimental and analytical 

characterization of damping is not easy, even with conventional structural materials, and the 

anisotropic nature of composite materials makes it even more difficult. Experimental approaches 

range from laboratory bench-top methods to portable field inspection techniques, whereas 

analytical techniques vary from simple mechanics-of-materials methods to sophisticated three-

dimensional finite-element approaches. This article presents a combined Lamb wave and finite 

element method for finding damping capacity of a material using ultrasonic pulse generator 

experimental setup. 

Damping in composites involves a variety of energy dissipation mechanisms that depend on 

vibrational parameters such as frequency and amplitude and these are studied with nondestructive 

evaluation. In fiber-reinforced polymers, the most important damping mechanisms have been 

studied by Chen et al. (2003). 

The nondestructive evaluation (NDE) techniques such as radiography, acoustic emission, 
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thermal NDE methods, optical methods, vibration damping techniques, corona discharge and 

chemical spectroscopy, have also been applied to characterize the fiber-reinforced composites by 

Summerscales (1987). Among these techniques, the vibration damping method, which is based on 

energy dissipation theory, has been increasingly used for measuring damping capacity. The 

principle of the method is based on the theory of energy dissipation. According to the theory, 

quality of interfacial adhesion in composites can be evaluated by measuring the part of energy 

dissipation contributed by the interfaces, assuming that the interface part can be obtained by 

separating those of matrix and fiber from the total composites. The energy dissipation of a material 

can be evaluated by the damping of the material. 

Nowick et al. (1972) summarized the techniques currently used for measuring vibration 

damping of materials and structures. The techniques for the measurement of damping often deal 

with natural frequency or resonant frequency of a system. In general, all apparatus for the 

investigation of vibration can be categorized as free vibration (or free decay) and forced vibration. 

Free vibration is executed by a system in the absence of any external input except the initial 

condition inputs of displacement and velocity, Botelho et al. (2006). For example, it is possible to 

have a wire sample gripped at the top, and have a large weight hanging freely at the bottom; this 

system can be set either into longitudinal or torsional oscillation. The latter represents the well-

known “torsion pendulum”, developed by Ting-Sui K, in which the strain at any point can be 

expressed in terms of the angular twist of the inertia member. For a forced vibration, a periodic 

exciting force is applied to the mass. When the resonant frequency is achieved, the loss angle is 

obtainable directly from the width of the resonance peak at half-maximum in a plot of (amplitude) 

versus frequency. Gibson (1992) presented typical forced vibration techniques include the free-

free beam technique and the piezoelectric ultrasonic composite oscillator technique (PUCOT) 

(Marx 1951, Harmouche et al. 1985, Gremaud et al. 2001). These techniques have been applied to 

dynamic mechanical analysis (DMA) which is a widely used technique in polymer studies, and has 

attracted even more attention for interface characterization. However, the instrument is relatively 

expensive and cannot be operated at a high frequency which can reflect more information from the 

tested materials. 

Ultrasounds are one of the classical ways used to examine and characterize materials. As far 

composite materials are concerned, the acoustic propagation through anisotropic multilayered 

media has become the subject of intensive study because of their application to nondestructive 

evaluation, geophysics, etc.  

The damping of fiber reinforced composite materials has been studied extensively by (Guan et 

al. 2001, Mu et al. 2006). All of the published results for continuous fiber reinforced composites 

show that when strain levels are low the damping characteristics do not depend on strain amplitude 

but are dependent on fiber orientation, temperature, moisture absorption, frequency, and matrix 

properties. Fiber properties have only minimal effects. However, for discontinuous fiber reinforced 

composites it has been shown that the damping characteristics in the fiber direction are much 

greater than that obtained continuous fiber reinforced composites. It is commonly accepted that the 

main sources of damping in a composite material come from microplastic or viscoelastic 

phenomena associated with the matrix and slippage at the interface between the matrix and the 

reinforcement. 

Composite materials fall into two categories: fiber reinforced and particle (or whisker)  

reinforced composite materials. Both are widely used in advanced structures. Among the various 

kinds of composites, glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer 

(CFRP) composites have become more and more important in engineering applications because of  
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Fig. 1 Schematic representation of experimental setup 

 

 

their low cost, light weight, high specific strength and good corrosion resistance. 

This paper will emphasize viscoelastic damping, which appears to be the dominant mechanism 

in undamaged polymer composites vibrating at small amplitudes. The bandwidth method using 

ultrasonic acoustic emission was able to find the damping properties to the maximum range of 

frequency but it has a problem with overlapping of modes and it is difficult to identify them.  To 

overcome this problem a hybrid method is developed by combining finite element and Lamb wave 

dispersion theory. The damping capacity of composite material found in the bandwidth method has 

been validated with the developed hybrid method at various critical modes of frequency. 

 
 
2. Experimental setup 
 

2.1 Ultrasonic pulse generator  
 

In this work carbon fiber/epoxy (CFRP) and glass fiber/epoxy (GFRP) were tested for their 

damping properties. The specimens of dimensions 120×30×2 mm were fabricated by the standard 

process, Michael 1998. The laminate consists of 12 plys and each ply consisting of woven fiber 

mat with epoxy layer of thickness 0.2mm. A schematic diagram of the experimental setup is 

shown in Fig. 1. The test specimen is clamped at one end on a cantilever support. The transducers 

were placed on the test specimen at a distance of 80 mm from each other. The shear wave 

transducer was coupled to the specimen using a honey glycerine couplant made by Panametrics. 

The couplant was able to provide transmission of a normal incident shear wave to the specimen. 

We used the pitch-catch radio frequency (RF) test method, which uses dual-element sensors (DIC–

0408) with a 1 KHz to 4 MHz frequency range. A point-contact sensor (DIC–0408) with an 8 mm 
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diameter was used in the test setup where one element transmits a burst of acoustic waves into the 

test piece, and a separate element receives the sound propagated across the test piece between the 

transducer tips as shown in Fig. 2. Both the actuation and the data acquisition were performed 

using a portable Panametrics NDT™ EPOCH 4PLUS and a laptop PC running Scanview plus 

software as a virtual controller. 

 

2.2 Calibration of ultrasonic pulse generator for optimal lamb wave generation 
 

The Panametrics-NDT™ EPOCH 4PLUS is capable of producing ultrasonic sound waves and 

is equipped with four channels i.e., Device, Pulser, Receiver and Waveform. Each channel is 

having editable parameters tabulated below. 

 

Channels Editable Parameters 

Device Unit Angle Thickness   

Pulser Mode Energy Wave Type Frequency  

Receiver Gain Broad band Low pass High pass By pass 

Waveform Range Rectification Offset   

 

The optimal driving frequency for different specimens is obtained by varying different editable 

parameters shown in the above table. Fig. 3 shows the calibration of ultrasonic pulse generator for 

test specimens based on its fitted peak value and similarly it is calibrated for various materials. 

Curves have been plotted between pulser frequency and signal amplitude at receiver for different 

materials to find optimal driving frequency and it is shown in Fig. 4. A Histogram representation 

of percentage amplitude of waveform at constant gain which is used to attain a trend line for 

optimal driving frequency for different materials is shown in Fig. 4 and the % amplitude of the 

waveform at various pulser frequencies is taken as Bin range (0-820 kHz) at constant gain 55 (db)  

 
 

 
Fig. 2 Experimental setup 
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Fig. 3 Optimal driving frequency selection for different materials 

 

 

Fig. 4 Histogram representation of % amplitude of waveform at constant gain 

 

 

for different materials.  

The frequency of the transducer to be used is proportional to the acoustic impedance of the 

layer. Materials such as graphite or fiberglass with low impedance require lower frequency 

transducers than metal skin layers. It is observed that the frequencies in the range of 100 KHz to 

460 kHz have been useful in most of the testing. The higher frequencies are used for thinner and 

metallic layers.  

 

2.3 Material properties calculated using experimental setup 
 

The basic material property Young’s modulus is obtained from the ultrasonic pulse generator 
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experimental setup. The instrument finds the Acoustic Emission (AE) velocities travelling in the 

material which will be very useful for determining the material properties (Birt 1998, Ratnam et al. 

2009, McIntire 1991, Krautkramer et al. 1983). The Young’s modulus of the test specimen is 

determined using the relation given in Eq. (1). 
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(1) 

where VL and VT are longitudinal and transverse velocity of Lamb waves traveling in the material 

respectively, ρ is material density and      is Poisson’s ratio. Table 1 presents the material 

properties of the test specimens. 

 
 
3. Bandwidth method 

 

Damping in composites involves a variety of energy dissipation mechanisms that depend on 

vibrational parameters such as frequency and amplitude and these are studied with nondestructive 

evaluation. Damping in a system can be determined by noting the maximum response, i.e., the 

response at the resonance frequency as indicated by the maximum value of Rv. Fig. 5 illustrate the 

Bandwidth method of damping measurement where, damping in a system is indicated by the 

sharpness or width of the response curve in the vicinity of a resonance frequency r, designating 

the width as a frequency increment (i.e., Δω= ω2−ω1) measured at the “half-power point” (i.e., at a 

value (  √  )) and the damping ratio ζ can be estimated by using band width in the relation given 

by 

  
  

   
                                                                     (2) 

 

 

Fig. 5 Response curve showing bandwidth at “half-power point 
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For ith mode damping ratio is given by 

   
 

 

   

  
                                                                    (3) 

The differential equation of motion for the System with viscous damping when the excitation is 

a force           applied to the system, is given by 

                                                                                                                    (4) 

Eq. (4) represents the forced vibration of an undamped system and the resulting motion occurs 

at the forcing frequency . When the damping coefficient c is greater than zero, the phase between 

the force and resulting motion is different than zero which leads to the phase angle presented in 

Eq. (5) as a function of the frequency ratio r and for several values of the fraction of critical 

damping  , Blake 2010.  

             ⁄   

       
 ⁄         ⁄   

                                                  (5) 

                                 

 
4. Finite element model for free vibration analysis of a laminated composite plate 

 

The oscillatory motion is a characteristic property of the structure and it depends on the 

distribution of mass and stiffness in the structure. If damping is present, the amplitude of 

oscillations will decay progressively and if the magnitude of damping exceeds a certain critical 

value, the oscillatory character of the motion will cease altogether. On the other hand, if damping 

is absent, the oscillatory motion will continue indefinitely, with the amplitudes of oscillations 

depending on the initially imposed disturbance or displacement. The oscillatory motion occurs at 

certain frequencies known as natural frequencies or characteristic values, and it follows well 

defined deformation pattern known as mode shapes or characteristic modes. The study of such free 

vibration is very important in finding the dynamic response of elastic structures. 

By assuming the external force vector p


 to be zero and the displacement to be harmonic as: 

eQQ ti.                                                                  (6) 

and the free vibration equation is given by 

OQMk


 ]][][[ 2                                                             (7) 

where Q


 represents the amplitude of the displacement Q


 (mode shape or eigen vector) and ω 

denotes the natural frequency of  vibration. Eq. (7) is called a linear algebraic eigenvalue problem 

since neither [k] nor [M] is a function of the circular frequency ω, and it will have a nonzero 

solution for Q


 provided that the determinant of coefficient matrix ([k]−ω
2
[M]) is zero, i.e.  

0][][ 2  Mk                                                              (8) 

where [k] is stiffness matrix and [M] is mass matrix. As said above the oscillatory motion is a 

characteristic property of the structure and it depends on the distribution of mass and stiffness in  
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Fig. 6 Plate element with displacement degrees of freedom 

 

 

the structure, so the stiffness and mass matrix are derived as follows. 

The plate bending developed in this section is shown in Fig. 6 where x, y, and z describe the 

global coordinate of the plate and u, v, and w are the displacements. h is the plate thickness. The xy 

plane is parallel to the midsurface plane prior to deflection. 

The displacement of any point in the plate can be expressed as 

),,( zyxuu                                                                 (9) 

),,( zyxvv                                                               (10) 

),,( zyxww                                                              (11) 

That is the in plane displacement u and v vary through the plate thickness as well as with in the 

xy-plane while the transverse displacement w remains constant through the plate thickness (Owen 

et al. 1987, Kwon 1989). In order to interpolate the displacement using shape functions and nodal 

displacements, two different interpolations are needed: one interpolation within the xy-plane and 

the other in the z-axis. For the xy-plane interpolation, shape function Ni(x,y) are used where 

subscript I varies depending on the number of nodes on the xy-plane. On the other hand, shape 

function Hj(z) are used for interpolation along the z-axis, where subscript j varies depending on the 

number of nodes along the plate thickness. Because two inplane displacement are functions of x, y, 

and z, both shape functions are used while the transverse displacement uses shape functions 

Ni(x,y). Using isoparametric element with mapping of ξ, η-plane onto xy-plane and ζ-axis to z-axis, 

the three displacements can be expressed as 

ijj

N
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In which N1 and N2 are the number of nodes in xy-plane (ξ, η-plane) and z-axis (ζ-axis), 

respectively. In additional, the first subscript for u and v denotes the node numbering in terms of 

xy-plane (ξ, η-plane) and the second subscript indicates the node numbering in terms of z-axis (ζ-

axis). In the present study, N1=4 and N2= 2. That is four-node quadrilateral shape function are 

employed for the xy-plane (ξ, η--plane) interpolation and linear shape function are employed for 

the z-axis (ζ-axis) interpolation. Nodal displacement ui1 and vi1 are displacement on the bottom 

surface of the plate element and ui2 and vi2 are displacement on the top surface. As seen in Eqs. 

(12) through (14), there is no rotational degree of freedom for the present plate bending element. 

In the present formulation, both bending strain energy and transverse shear strain energy are 

included. The bending strains and transverse shear strain are expressed in terms of displacements. 
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Where {εb} is the bending strain and {εs} is the transverse shear strain. The normalstrain along 

the plate thickness εz is omitted here. 

Substitution of displacement, Eqs. (12) through (14), into the kinematic equations, Eqs. (19) 

and (20), with N1= 4 and N2= 2 expresses both bending and shear strain in the following way. 
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    e

ss dB                                                             (22) 

Where 

 ][][][][][ 4321 sssss BBBBB                                             (23) 
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The constitutive equation for the isotropic material is  
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For the bending components 
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Where Eq. (27) is the material property matrix for the plane stress condition as usually assumed 

for the plate bending theory and for a fibrous composite, the material property matrices is given by 
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Here, 1 and 2 denote the longitudinal and transverse directions of the composite, respectively. 

Further E is the elastic modulus, Gij the shear modulus of the i-j plane and υij is Poisson’s ratio for 

strain in the j-direction when stressed in the i-direction. There are five independent material 

properties for Eqs. (31) through (36) because of the reciprocal relation 
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where Ω is the plate domain. 

Similarly the mass matrix is given by 
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where A element area, t thickness of element  and ρ density of material. Using the above discussed 

method natural frequencies are computed for composite plates. The computation has been carried 

out using Mathematica
TH

 software and the inputs for the solution have been taken from the 

experimental data discussed in the previous sections. A finite element model was also developed in 

ANSYS to correlate with theoretical model. The modal analysis was carried out using Block 

Lancozs method for thirty subsets and shell-190 has been used as meshing element. Fig. 7 and Fig. 

8 shows the first and twentieth mode of natural frequency of the two materials, GFRP and CFRP 

respectively.  

 
 
5. Lamb wave model for laminated composite plate 

 

There are two groups of Lamb waves, symmetric and anti-symmetric, that satisfy the wave 

equation and boundary conditions for this problem and each can propagate independently of the 

other. In the following section, analytical models for Lamb wave propagation have been derived, 

which relate the velocity of the wave-front to the actuating frequency. 
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Fig. 7 GFRP specimen’s 1
st
 and 20

th
 mode of natural frequency 

 

 

Fig. 8 CFRP specimen’s 1
st
 and 20

th
 mode of natural frequency 

 

 

The most descriptive way to represent the propagation of a Lamb wave in a particular material 

is with their dispersion curves, which plot the phase and group velocities versus the excitation 

frequency given by Dalton et al. 2001. The derivation of these curves begins with the solution to 

the wave equation for the anti-symmetric Lamb wave formulated as seen in Eq. (40)  

 
       

       
 

(     )
 

     
                                                         (40) 

where     
  

  
         

  

  
           

 

      
 

For a laminated composite with the 1-axis defined as the fiber direction, the 2-axis transverse to 

the fiber, and the 3-axis being out of the plane of the plate, the stress-strain relationship in an 

individual laminate is given by Daniel et al. (1994). 
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]                                               (41) 

Where ζ and η represent the normal and shear stresses, respectively, and ε and ϒ represent the 

normal and shear strain, respectively. The Qij  are the reduced stiffness components and are defined 

in terms of the engineering parameters as 

                  

                  

                                                                         (42) 

where E1 and E2 are the Young’s moduli in the longitudinal and transverse directions, respectively, 

and      and      are the major and minor Poisson’s ratios, respectively. The Poisson’s ratios in 

Eq. (42) are not independent quantities and are related to each other by 

    
  

  
                                                                  (43) 

The in-plane stiffnesses for the entire plate, A11 and A22, are obtained by integrating the Qij 

through the thickness of the plate. These stiffness values are defined as 

    ∫     
   

   

    
                                                                   (44) 

where h is the plate thickness and the subscript k represents each lamina. The Q’ij are the 

transformed stiffness coefficients which take into account the orientation of each ply with respect 

to the wave propagation direction and are defined as  

   
                                

   
                                

   
                                                           (45) 

where m=cos(θ) and n=sin(θ). The angle θ is defined as positive for a counterclockwise rotation 

from the primed (laminate) axes to the unprimed (individual lamina) axes. From Eq. (5), the Q’ij  

for the 0° and 90° laminas are given by 

    
                            

             

    
                            

             

    
                            

                                                 (46) 

The velocity of the extensional plate mode can be related to the in-plane stiffness of a 

composite for propagation in the 0° and 90° directions, these stiffnesses are A11 and A22, 

respectively. The extensional plate mode velocity is related to the stiffness from Eq. (47) and Eq. 

(48), Prosser (1991).  

                                          √
   

  
                                  (47) 

                                             √
   

  
                                  (48) 
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The values for the inplane stiffnesses A11 and A22 can be calculated using Eqs. (42)-(46) if the 

engineering stiffnesses of the composite are known. Finally, Eq. (47) and Eq. (48) are substituted 

into Eq. (40) and it is solved numerically in Mathematica
TH

. For a given material, the Young’s 

Module in the propagation direction as E1, E2, Poisson Ratio υ12, and the density ρ are known, and 

the phase velocity (cphase) is the dependent variable being solved for the independent variable being 

iteratively supplied is the frequency-thickness product, where ω is the driving frequency in 

radians. The very useful plot is the group velocity dispersion curve, which is derived from the 

phase velocity curve using Eq. (49) 

f

c

c

f

c
k

k

c
cc

phase

phase

phasephase

phasegroup












.1

                                     (49) 

where f is the frequency in Hz.  

These dispersion curves are the key to describing and understanding the propagation of Lamb 

waves in a solid medium, and will be used in the  coming sections to find damping capacity of a 

material. 

 

 

6. Results and discussion 
 

In this work a methodology has been proposed for finding damping capacity of a material using 

combined finite element and Lamb wave method. Fig. 9 shows the process flow diagram for the 

dynamic mechanical analysis of the method. The relationship between the material properties of a 

specimen and the velocity of the propagating Lamb wave is quite complex, however an 

understanding is necessary to design an appropriate method for finding damping capacity of a 

material. In the Lamb wave equation the first order wave velocity increases with the square root of 

the modulus, i.e., an increase in modulus slightly speeds the wave velocity. An increase in the 

density would have the opposite effect slowing wave velocity, as it appears in all the same terms 

as the modulus but on the reciprocal side of the divisor.  

The AE velocities of the specimens are determined experimentally using ultrasonic pulse 

generator test setup and the Young’s modulus is calculated by using Eq. (1) and thus obtained 

Young’s modulus is substituted in Lamb wave model discussed in previous sections for finding 

dispersion characteristics and the same material properties are used for finite element model to 

determine natural frequencies. The group velocity (cgn) at natural frequency (fn) and thickness (h) 

is substituted in Eq. (50) to determine the phase shift and thus finding material damping capacity 

(Tanδ). Dynamic mechanical analysis can be carried out using the same procedure by getting the 

Eo value from group velocity dispersion at iteratively supplied frequencies.  

                                                                      (50) 

      
                                                                  (51) 

Damping is the term used in vibration and noise analysis to describe any mechanism whereby 

mechanical energy in the system is dissipated. The damping properties of so-called damping 

materials, such as elastomeric materials, are usually temperature and frequency dependent, so the 

experimental determination of damping material properties requires a long and repeating process. 
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Fig. 9 Process flow diagram for dynamic mechanical analysis by Lamb wave method 

 
 Table 1 Material properties calculated using experimental setup 

Material 
VT 

(m/s) 

VL 

(m/s) 
υ12 

E1 

(Gpa) 

E2 

(Gpa) 
υ21 

Density (ρ) 

kg/m
3 

GFRP 6439 3128 0.346 47.31 11.26 0.081 1853 

CFRP 8745 4628 0.307 77.74 21.73 0.086 1400 

 

 

Many researches carried damping measurements in temperature sweep mode but the present 

work involves frequency sweep since the damping is to eliminate the noise and vibrations resulting 

from natural frequencies in many industrial applications. In the present work damping 

measurements were carried out using combined finite element and Lamb wave method and the 

results were compared with bandwidth method. Both the methods were performed on same 

experimental setup and the materials properties of the test specimen obtained from experimental 

setup, reported in Table 1.  

The modal analysis was carried out using developed finite element model and it was correlated 

with ANSYS. The waveform from the instrument is processed through virtual controlling software 

and the continuous waveform is subjected to fast Fourier transform (FFT) which yield a single 

peak from the calibrated optimal driving frequency, however for a few finite cycles, the FFT 

appears as a Gaussian curve. The response curve of the materials being tested for damping 

capacity using bandwidth method is shown in Fig. 10. 
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Fig. 10 Response curve of GFRP and CFRP showing bandwidth 

 
Table 2 Damping capacity of the test specimens 

Material 
Natural frequency 

(Hz) 

Lamb wave method 

(Damping capacity) 

Mode 

frequency(Hz) 

Bandwidth method 

(Damping capacity) 

G
F

R
P

 172(1
st
) 0.0000493 8692 0.001394 

9970(10
th

) 0.0012204 11537 0.002427 

21606(20
th

) 0.0043671 19248 0.004251 

C
F

R
P

 223(1
st
) 0.0000646 8706 0.004569 

11023(10
th

) 0.0016254 20835 0.021765 

23158(20
th

) 0.0516527 23164 0.049638 

 

 

The Lamb wave dispersion curves have been obtained from the iterative supply of the 

frequency using Mathematica
TH

 code. The group velocity dispersion curve of the material used in 

this research is shown in Fig. 11. The group velocities and the natural frequencies obtained from 

modal analysis are used to determine damping capacity at the mode of interest. Table 2 presents 

the damping capacities of the tested materials by Lamb wave method and Bandwidth method in 

comparison at critical modes. In case of Lamb wave method natural frequencies at different mode 

shape has been considered and in case of Bandwidth method changes in peaks is considered as 

mode frequency. It is observed that the Lamb wave method can be compared with the Bandwidth 

method at higher mode of frequencies. Fig. 12 shows the damping capacities and dynamic storage 

modulus of the tested specimens with respect to their natural frequencies. The material GFRP and 

CFRP exhibits similar damping property to a certain range of frequency, and in between 2 kHz to 

8 kHz GFRP has better damping property among the two and at higher range of frequencies CFRP 

is found to be good in damping characteristics. 
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Fig. 11 Lamb wave dispersion curves of CFRP and GFRP 

 

 

Fig. 12 Damping capacity and dynamic storage modulus for CFRP and GFRP 

 

 

7. Conclusions 
  

Dynamic mechanical analysis is a technique used to study and characterize materials. It is most 

useful for studying the viscoelastic behavior of polymers. Combined finite element and Lamb 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5000 10000 15000 20000 25000

G
ro

u
p

 v
el

o
ci

ty
 (

m
/s

) 

Frequency (Hz) 

CFRP

GFRP

-2E+10

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

3.05E-05

6.10E-05

1.22E-04

2.44E-04

4.88E-04

9.77E-04

1.95E-03

3.91E-03

7.81E-03

1.56E-02

3.13E-02

6.25E-02

1.25E-01

2.50E-01

5.00E-01

1.00E+00

0 5000 10000 15000 20000 25000

T
a
n

 δ
 

Natural frequencies (fn) Hz 

CFRP GFRP

E' CFRP E' GFRP

E' 

1063

http://en.wikipedia.org/wiki/Viscoelastic
http://en.wikipedia.org/wiki/Polymers


 

 

 

 

 

 

B.S. Ben, B.A. Ben, S.H. Kweon and S.H. Yang 

 
 

wave method has been explored in this work and tests were carried out on CFRP and GFRP 

composite plates. The results of this method were compared with the results of the traditional 

bandwidth method and they were in close agreement. The main advantage of this method is that 

the materials can be tested in high frequency range, specifically at its natural frequencies and at 

relatively low amplitudes and in a non-distractive way.  
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