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Abstract.  Meshless local collocation method produces much better conditioned matrices than meshless 
global collocation methods. In this paper, the meshless local collocation method based on thin plate spline 
radial basis function and first-order shear deformation theory are used to calculate the natural frequencies 
and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and 
efficiency of present method are demonstrated. 
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1. Introduction 

 

The increased usage of laminated composite shells in the aerospace, pressure vessels, ship, 

building, and many other structures has generated much interest in free vibration behavior of 

composite shell.  

Reddy and Liu (1985) developed a higher-order shear deformation theory for bending and 

natural vibration of laminated shells under simply supported boundary conditions. Their theory 

was a modification of the Sanders’ theory and accounted for parabolic distribution of the 

transverse shear strains through thickness of the shell and tangential stress-free boundary 

conditions on the boundary surfaces of the shell. Toorani and Lakis (2006) studied the free 

vibrations of non-uniform composite cylindrical shells. Korhevskaya and Mikhasev (2006) studied 

the free vibrations of a laminated cylindrical shell subjected to nonuniformly distributed axial 

forces. Hu and Ou (2001) maximized the fundamental frequencies of laminated truncated conical 

shells with respect to fiber orientation by using a sequential linear programming method with a 

simple move-limit strategy. Timarchi and Soldatos (2000) studied the free vibrations of finite, 

closed, circular cylindrical shells, made of one or more monoclinic layers. Their study was based 

on the Love-type version of a unified shear-deformable shell theory. Ferreira et al. (2007) 

evaluated the natural frequencies of doubly curved cross-ply composite shells by the first-order  
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Fig. 1 Schematic of a shell 

 

 

theory of Donnell and a meshless method based on multiquadric radial basis functions. Ferreira et 

al. (2011a) performed the static and free vibration analysis of laminated shells by radial basis 

functions collocation and a sinusoidal shear deformation theory. Mantari et al. (2012) presented 

the bending and free vibration analysis of multilayered plates and shells by using a new accurate 

higher order shear deformation theory (HSDT). Ferreira et al. (2011b) computed the static 

deformations and the natural frequencies of doubly-curved composite shells by the first-order 

theory of Donnell and a meshless method based on wavelet collocation. Topal (2013) studied the 

Pareto optimum design of laminated composite truncated circular conical shells.  

Meshless methods based on collocation techniques include meshless global collocation method 

and meshless local collocation method. The meshless global collocation method approximates the 

solution of partial differential equations using all nodes in the problem domain. But global 

collocation method can result in fully populated coefficient matrices and only deal with the 

problem with regular geometry. Local collocation method constructs the approximation function 

using the nodes in the support domain of any data center and requires only inversion of matrices of 

small size which is equal to the number of nodes in the support domain. Lee et al. (2003) 

presented a truly meshless approximation strategy for solving partial differential equations based 

on the local multiquadric and the local inverse multiquadric approximations. Roque et al. (2012) 

used a higher-order shear deformation plate theory and a radial basis function-finite difference 

technique for predicting the transient behavior of thin and thick composite plates. Roque et al. 

(2011) used a higher-order shear deformation plate theory and a radial basis function-finite 

difference technique for predicting the static behavior of thin and thick composite plates. Xiang et 

al. (2011a) proposed a meshless local radial point collocation method based on multiquadric radial 

basis function to analyze the free vibration behavior of laminated composite plates. They studied 

the choice of shape parameter, effect of dimensionless sizes of the support domain on accuracy 

and convergence characteristics. Xiang and Kang (2012) focused for the first time on free 

vibration analysis of laminated composite plates by a meshless local collocation method based on 

thin plate spline radial basis function.  

According to the results of literature survey, the meshless local collocation method has not yet 

been utilized to predict the free vibration behavior of laminated composite shells. In the present 

paper, meshless local collocation method based on the thin plate spline radial basis function is 

used to discretize the governing equations and boundary conditions based on the first-order shear 

deformation shell theory. The singularity of thin plate spline radial basis function is eliminated by 

adding infinitesimal to the zero distance. The present results are compared with the available 

published results to demonstrate the numerical accuracy of present method. The aim of this paper 
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is to explore the potential of meshless local collocation method in the vibration analysis of 

laminated composite shells. 

 

 

2. Governing equations based on the first-order shear deformation theory 
  

The coordinate system and geometry of a shell are shown in Fig. 1. For the spherical shell, R1= 

R2=R. For the cylindrical shell, R1=R, R2=∞. 

The governing equations of laminated composite shells based on the first-order shear 

deformation theory are as follows 
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where u, v, w, ϕx and ϕy are the unknown displacement components of middle surface of the shell. 

Aij, Bij, and Dij are the stiffness components, Ii are the mass inertias. 
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where ρ denotes the material density, NL is total number of layer, zk and zk+1 are the lower and 

upper z coordinates of the kth layer, 
( )k

ijQ  are the transformed elastic coefficients. 
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where θ is the angle between 1-axis and x-axis, 1-axis being the first principal material axis, and 

the reduced stiffness components are given as 
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The boundary conditions for an arbitrary edge with clamped supported and simply supported 

are as follows 
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0x yu v w                                 (12) 

Simply supported 

0, : 0, 0, 0

0, : 0, 0, 0

y x x

x y y

x a v w N M

y b u w N M





     

     
                   (13) 

896



 

 

 

 

 

 

Meshless local collocation method for natural frequencies and mode shapes... 

11 12 11 12

1 2

yx
x

u w v w
N A A B B

x R y R x y

      
        

      
             (14) 

12 22 12 22

1 2

yx
y

u w v w
N A A B B

x R y R x y

      
        

      
             (15) 

11 12 11 12

1 2

yx
x

u w v w
M B B D D

x R y R x y

      
        

      
             (16)  

12 22 12 22

1 2

yx
y

u w v w
M B B D D

x R y R x y

      
        

      
             (17) 

                         

 

3. Local collocation method 
 

The solution of Eqs. (1)-(5) and corresponding boundary conditions can be approximated with 

a function U
h
(X) using the meshless local collocation method 

1 1
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i i j j
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Fig. 2 The solution domain and support domain of node i (αs=3) 
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where n is the number of nodes in the support domain, m is the number of terms of monomial, αi 

and βj are unknown coefficients, Ri is radial basis function, Pj is polynomial basis function. The 

size of support domain for node i is defined as 

s s cd d                                 (19) 

where αs is the dimensionless sizes of the support domain, dc is the nodal spacing. Fig. 2 shows the 

solution domain and support domain of node i.  

In the present paper, the thin plate spline radial basis function is utilized to approximate the 

solution of partial differential equations. The thin plate spline is defined as follows 

2 2( ( ) ( ) )2 2
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i i iR x x y y
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where xi and yi are coordinate of node i, k is shape parameter. 

The thin plate spline has the disadvantage of singularity when the distance between node i and 

node j is zero. when the distance between two nodes is zero, rij
2
=rji

2
+ς. rij is the distance between 

node i and node j, ς=1×10
-60

. The infinitesimal value is obtained by numerical experiments. When 

the infinitesimal value ς is less than 1×10
-60

, the eigenvalue can’t be obtained. 

Polynomial basis function used in this paper is as follows 

[1, , ]TP x y                                (21) 

The constraint condition is  
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Eq. (18) and Eq. (22) can be rewritten in matrix form by enforcing the interpolation passing 

through the value at all nodes in the supporting domain. 
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According to the Eq. (23), the following formulation can be obtained as 
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-1=G
0
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Substituting Eq. (27) into Eq. (18), we can obtain the following equation 

( ) s eU X U                               (28) 

where Φs is the shape function, Ue is the nodal displacement. 
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The shape function Φs obtained through the local collocation method possesses delta function 

properties.    

  

 

4. Discretization of governing equations and boundary conditions 
 

The displacement function at a point X can be approximated as 
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where N is the total number of nodes in the entire problem domain.  

The discretized governing equations can be obtained by substituting Eq. (31) and their 

derivatives into Eqs. (1)-(5). Corresponding boundary conditions can be discretized in a similar 

way. 

The discretized governing equations and boundary conditions can be expressed as: 
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Then  
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where L and B are the differential operator, 1/ω
2
 is eigenvalue, Un is eigenvector. Eigenvalue 1/ω

2
 

in Eq. (33) can be solved by a standard eigenvalue solver. 

 
 
5. Numerical examples 
 

The dimensionless sizes αs and shape parameter k have the important effect on the accuracy of 

local collocation method based on thin plate spline radial basis function. Xiang and Kang (2012) 

performed the free vibration analysis of laminated composite plates by a meshless local collocation 

method based on thin plate spline radial basis function. In their study, αs=5 and k=3 produced the 

better results. Therefore, αs and k of the present paper are the same as Xiang and Kang (2012).  

The relative material properties of a layer are as follows 

1 2 12 13 2 23 2 1225 , 0.5 , 0.2 , 0.25, 1E E G G E G E v         

The frequency is non-dimensionalized by Eq. (34) 

2

2( / ) /a h E                              (34) 

 

5.1 Convergence study 
 

Figs. 3-4 show the non-dimensional fundamental frequency of the laminated composite shells 

(0°/90°/90°/0°) as the grid distribution is increased from 13×13 to 21×21. Figs. 5-6 show the non- 

 

 

 

Fig. 3 Convergence study of non-dimensionalized fundamental frequency of simply supported 

laminated composite spherical shells (0°/90°/90°/0°) (a/h=10, R/a=5) 
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Fig. 4 Convergence study of non-dimensionalized fundamental frequency of simply supported 

laminated composite cylindrical shells (0°/90°/90°/0°) (a/h=10, R/a=5) 

 

 

Fig. 5 Convergence study of non-dimensionalized fundamental frequency of simply supported 

laminated composite spherical shells (0°/90°/0°) (a/h=10, R/a=5) 

 

 

dimensional fundamental frequency of the laminated composite shells (0°/90°/0°) as the grid 

distribution is increased from 13×13 to 21×21. Good convergence characteristics are observed for 

all considered problems. 

 

5.2 Comparison study 
 

According to the results of convergence study, the 21×21 regular grid pattern is adopted. The 
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non-dimensionalized fundamental frequencies of laminated composite spherical shells are listed in 

Tables 1-2 and compared with the results of Reddy and Liu (1985), Ferreira et al. (2007), Xiang et 

al. (2011b). 

The non-dimensionalized fundamental frequencies of laminated composite cylindrical shells 

are listed in Tables 3-4 and compared with the results of Reddy and Liu (1985), Ferreira et al. 

(2007), Xiang et al. (2011b). 

It is found from Tables 1-4 that present results are in good agreement with those of available 

published results. 

Fig. 7 shows the variation of non-dimensionalized fundamental frequency of simply supported 

laminated composite spherical shells under R/a (0°/90°/90°/0°, a/h=10). Fig. 8 shows the variation  

 

 

 

Fig. 6 Convergence study of non-dimensionalized fundamental frequency of simply supported 

laminated composite cylindrical shells (0°/90°/0°) (a/h=10, R/a=5) 

 
Table 1 Non-dimensionalized fundamental frequency of simply supported laminated composite spherical 

shells (0°/90°/90°/0°) 

a/h Method 
R/a 

5 10 20 50 100 

10 

Reddy and Liu (1985) 12.437 12.280 12.240 12.229 12.228 

Ferreira et al. (2007) 12.493 12.299 12.250 12.236 12.234 

Xiang et al. (2011b) 12.845 12.656 12.608 12.594 12.592 

Present 12.836 12.644 12.595 12.582 12.580 

100 

Reddy and Liu (1985) 31.079 20.380 16.638 15.426 15.245 

Ferreira et al. (2007) 31.296 20.422 16.601 15.363 15.173 

Xiang et al. (2011b) 31.645 20.714 16.993 15.704 15.522 

Present 31.647 20.893 17.150 15.943 15.763 
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Table 2 Non-dimensional fundamental frequency of simply supported laminated composite spherical shells 

(0°/90°/0°) 

a/h Method 
R/a 

5 10 20 50 100 

10 

Reddy and Liu (1985) 12.372 12.215 12.176 12.165 12.163 

Ferreira et al. (2007) 12.428 12.234 12.185 12.171 12.169 

Xiang et al. (2011b) 12.791 12.602 12.553 12.540 12.538 

Present 12.758 12.587 12.543 12.531 12.529 

100 

Reddy and Liu (1985) 30.993 20.347 16.627 15.424 15.244 

Ferreira et al. (2007) 31.214 20.393 16.594 15.362 15.177 

Xiang et al. (2011b) 31.595 20.723 16.871 15.644 15.493 

Present 30.850 20.605 17.055 15.916 15.746 

 
Table 3 Non-dimensional fundamental frequency of simply supported laminated composite cylindrical shells 

(0°/90°/90°/0°) 

a/h Method 
R/a 

5 10 20 50 100 

10 

Reddy and Liu (1985) 12.267 12.236 12.230 12.228 12.227 

Ferreira et al. (2007) 12.2943 12.2515 11.7827 12.2377 12.2373 

Xiang et al. (2011b) 12.646 12.605 12.595 12.592 12.592 

Present 12.605 12.585 12.581 12.579 12.579 

100 

Reddy and Liu (1985) 20.361 16.634 15.559 15.245 15.199 

Ferreira et al. (2007) 20.5928 16.6203 15.5093 15.1249 15.0754 

Xiang et al. (2011b) 20.881 17.108 15.820 15.526 15.474 

Present 19.525 16.646 15.938 15.741 15.712 

 
Table 4 Non-dimensionalized fundamental frequency of simply supported laminated composite cylindrical 

shells (0°/90°/0°) 

a/h Method 
R/a 

5 10 20 50 100 

10 

Reddy and Liu (1985) 12.207 12.173 12.166 12.163 12.163 

Ferreira et al. (2007) 12.2309 12.1871 12.1720 12.1730 12.1726 

Xiang et al. (2011b) 12.594 12.552 12.541 12.538 12.537 

Present 12.564 12.538 12.531 12.529 12.529 

100 

Reddy and Liu (1985) 20.332 16.625 15.556 15.224 15.198 

Ferreira et al. (2007) 20.6684 16.6494 15.5113 15.1331 15.0836 

Xiang et al. (2011b) 21.076 17.075 15.786 15.575 15.603 

Present 20.339 16.998 16.028 15.744 15.703 

 

 

of non-dimensionalized fundamental frequency of simply supported laminated composite 

cylindrical shells under R/a (0°/90°/90°/0°, a/h=10). According to the Figs 7-8, the non-

dimensionalized fundamental frequencies decrease with the increase of R/a.  
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The present method produces very stable and well defined mode shapes, as shown in Figs. 9-10. 

 

 

6. Conclusions 
 

Meshless local collocation method based on the thin plate spline radial basis function is used to 

discretize the governing equations and boundary conditions based on the first-order shear 

 

 

 

Fig. 7 Variation of non-dimensionalized 

fundamental frequency of simply supported 

laminated composite spherical shells under R/a 

(0°/90°/90°/0°, a/h=10) 

Fig. 8 Variation of non-dimensionalized 

fundamental frequency of simply supported 

laminated composite cylindrical shells under R/a 

(0°/90°/90°/0°, a/h=10) 

 

  
(a) First order (b) second order 

Fig. 9 First 4 mode shapes for spherical shell with a/h=100, R/a=10 (0°/90°/90°/0°) 
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(c) Third order (d) Fourth order 

Fig. 9 Continued 

 

 
(a) First order 

 
(b) second order 

 
(c) Third order 

 
(d) Fourth order 

Fig. 10 First 4 mode shapes for cylindrical shell with a/h=100, R/a=10 (0°/90°/90°/0°) 
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eformation shell theory. The singularity of thin plate spline radial basis function is eliminated by 

adding infinitesimal to the zero distance. The present results are compared with the available 

published result which demonstrates the potential of meshless local collocation method in the 

vibration analysis of laminated composite shells. 
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Notations 
 

u displacement in x direction 

v displacement in y direction 

w displacement in z direction 

ϕx rotations 

Aij, Bij, Dij stiffness components 

Ii mass inertias 

ρ material density 

NL total number of layer 
( )k

ijQ  transformed elastic coefficients 

θ the angle between 1-axis and x-axis 

n the number of nodes in the support domain 

Ri radial basis function 

Pj polynomial basis function 

αs dimensionless sizes of the support domain 

dc nodal spacing 

xi and yi coordinate of node i 

rij distance between node i and node j 

Φs shape function 

Ue nodal displacement 

ω natural circular frequency 
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