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Abstract.  This paper describes a formulation to predict optimum post-tensioning forces and cable 
dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to 
both dead and live load configurations, taking into account design constrains concerning serviceability and 
ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate 
the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, 
under live loads, for each cable elements, the lowest required cross-section area is determined, which 
verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and 
bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a 
progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning 
cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by 
using a refined formulation of the bridge components, taking into account of geometric nonlinearities 
involved in the bridge components. The results demonstrate that the proposed method can be easily utilized 
to predict the cable dimensioning also in the framework of long span bridge structures, in which typically 
more complexities are expected in view of the large number of variables involved in the design analysis. 
 

Keywords:  long span bridges/structures; numerical methods; structural design; finite element method 

(FEM); post-tension 

 
 
1. Introduction 

 

Cable-supported bridges are defined by an enhanced combination of the structural components, 

which lead to notable advantages such as easy erection, efficient utilization of the materials and 

reduced costs to overcome long spans. In this framework, self-anchored cable-stayed suspension 

bridges can be considered as an hybrid configuration, which combines the best properties of pure 

cable-stayed or suspension systems (Zhang et al. 2009, Gimsing and Georgakis 2012). In 

particular, such bridge typologies can be regarded as an extension of the Roebling or the 

Dischinger schemes, in which the coexistence of the two cable systems, namely suspension and 

cable-stayed, is able to improve the bridge stiffness, avoiding unstable erection procedures due to 

the free cantilever arms growing to the half-length of the main span. However, a brief literature 
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review denotes that most of the studies developed in the framework of cable supported bridges are 

mainly concerned to investigate the behavior of pure cable-stayed or suspension systems and only 

in rare cases hybrid cable-stayed suspension bridges (Bruno et al. 2009). As a consequence, the 

use of self-anchored cable-stayed suspension bridges is quite limited in practice and it still remains 

in the design proposal phase. 

An important task to be achieved in the bridge design concerns the evaluation of the target 

stress state and the initial geometrical configuration under service loads. In addition, a proper 

design analysis which quantifies the bridge components, taking into account displacement and 

stress prescriptions under live loads is much required. As a matter of fact, the design procedures 

should consistent with the performance based design (PBD), which means the best utilization of 

the weight utilized in the structure and thus the lowest possible costs in the bridge construction 

(Liang and Steven 2002). However, such task becomes quite complicated for large scale structures, 

such as cable-supported bridges, because of the large number of variables to be identified. 

Moreover, additional complexities arise in the case of self-anchored structures, because of the 

coupling behavior between the cable system and the girder, which may lead, in some cases, to 

dangerous instability phenomena especially during the construction phases (Zhang et al. 2005; 

Raftoyiannis 2013). In the literature, most of the existing studies are based on the use of simple 

design rules obtained by the experience and expertise of the designers, in which relationships 

typically adopted in the framework of pure cable-stayed or suspension configurations are utilized 

(Gimsing and Georgakis 2012, Günaydin et al. 2012). Refined techniques can be recovered in the 

framework of the zero displacement methods (ZDMs), where implicit or explicit constraint 

equations are introduced to achieve the initial configuration. In particular, during the erection 

procedure, such methods assess the post-tensioning forces under dead loading, enforcing the 

structure to remain practically undeformed (Greco et al. 2013, Liu et al. 2012, Ohkubo 1992, 

Wang et al. 2004). The governing equations are expressed as a function of the internal forces of 

the cable system and introduce a determinate equation system, in which the unknown quantities 

are obtained, prescribing, at discrete points of the structure, zero displacement conditions. 

Alternatively to ZDMs, force equilibrium methods (FQMs) consider as control variables to be 

solved, the internal forces, which are determined reducing bending moments and displacements of 

the girder, achieving a structural scheme of the girder approximately equivalent to a simply 

supported continuous beam (Chen 2000, Kim and Lee 2001). Previous models based on ZDMs or 

FQMs, are mainly developed in the frameworks of cable-stayed or suspension systems, in which 

typically, the optimum configuration is derived by solving a determinate system of equations. In 

such context, the main aims of the proposed methodologies are to evaluate mainly the initial post-

tensioning forced under dead loading. Alternatively to direct methods, models, developed in the 

framework of structural optimization (SO), are frequently adopted in the literature. In particular, 

the optimum configuration is reached by solving a constrained optimization problem, in which the 

minimization of an objective function can be defined in terms of norm of displacements (Hassan et 

al. 2012), weight of the materials (Lonetti and Pascuzzo 2014) or stress variables (Zhe et al. 2010, 

Pengzhen et al. 2014). Moreover, refined techniques concerning robust optimization procedures 

based neural networks can be recovered in (Barbero and Makkapati 2010). However, such models, 

especially in the cases of long span bridges, due to the presence of a large number of variables are 

affected by convergence problems in the solving procedure, which may lead to a local minimum of 

the objective function and unpractical results in the bridge definition. It is worth noting that, the 

models described above, developed in the framework of ZDM, FQM or SO, evaluate the initial 

cable forces directly on the final configuration. However, in the literature, several approaches can 
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be recovered, in which target stress state is predicted by means of step by step procedures based on 

the actual construction process going from the initial to the final configuration. In particular, 

computational procedures for the shape finding analysis based on a forward and a backward 

process are proposed (Behin and Murray 1992, Wang et al. 2004), in which different erection 

stages are investigated in the framework of the free cantilever method. Moreover, in this 

framework, the unit load model (ULM) developed by Janjic et al. (2003) evaluate the desired 

moment distribution in the final configuration, computing the post-tensioning strategy of the 

construction method by using additional constraint conditions. An extended and reviewed version 

of the ULM is proposed by Lee et al. (2008) also for asymmetric cable-stayed bridges, in which a 

two step scheme is proposed for the optimum evaluation of the initial cable forces.  

It is worth noting that most of the models presented above are concerned to investigate cable-

stayed and, only in rare cases, hybrid cable-stayed suspension bridges; in particular, none of those 

is involved in the description of self-anchored cable-stayed suspension bridges. Moreover, the 

optimization analysis is typically developed with the purpose to evaluate only the initial stress 

state and the corresponding cable forces under dead loads, without verifying if the cable 

dimensioning is consistent with the design code prescriptions on both stress or deflections, 

produced by the live load application. Therefore, in the present study, an hybrid model based on 

two different steps is proposed in which the analysis is developed on the basis of the results 

obtained by dead and live load configurations. In the former, cable forces are determined in such a 

way to verify the initial bridge profile. Subsequently the analysis is devoted to analyze the 

behavior under the action of live loads, enforcing an efficient use of the materials and thus the 

complete optimization of the material involved in the cable system. The final solution is 

determined by means of iterative procedure between the above referred steps. In the present 

formulation, the attention is devoted to analyze the optimum configuration of the elements 

involved in the cable system, without entering in the optimization of the pylons and girder. Such 

assumption appears to be quite reasonable especially in the case of long span bridge schemes, 

where the bridge behavior is mainly dominated by the cable system characteristics. The outline of 

the paper is as follows. In Section 2, the formulation of the design methodology, bridge modeling, 

together with the description of the iterative procedure is presented. In Section 3, numerical details 

of the design method are reported, whereas results on different bridge schemes are presented in 

Section 4. 

 

 

2. Formulation of the design model 
 

The structural scheme, reported in Fig. 1, is consistent with a self-anchored cable-stayed 

suspension bridge in which the cable system is based on the combination of suspension and cable-

stayed configurations. In particular, the cable-stayed system is based on discrete stays, which are 

mainly arranged in the region close to the pylons. Moreover, the suspension system, essentially 

formed by the hangers and main cable, is connected to the girder by the hangers in the central 

region of the main span length.  

The main aim of the proposed model is to evaluate optimum set of post-tensioning forces and 

cable cross-sections, which satisfy structural and design requirements in either dead and live 

configurations. In particular, under the action of dead loads (DL), the post-tensioning forces of the 

cables are calculated in such a way that the bridge should behave as a simply supported continuous 

beam, thus presenting reduced displacements of the girder and pylons (STEP1). Moreover, from  
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Fig. 1 Structural scheme of the self-anchored cable-stayed suspension bridge 

 

 

Fig. 2 Identification of the variables involved in the design procedure 

 

 

the design point of view, the cross-sections of the cable system elements should be designed 

consistently to the “maximum performance criterion”, which, basically, consists to verify, under 

the worst live load LL combinations, the equality condition between the maximum absolute or 

incremental applied stresses and the corresponding allowable strength values (STEP2). In the 

proposed formulation, such task is developed by means of an iterative procedure defined by a two-

step algorithm, based on the results arising from both DL and LL configurations.  

 

2.1 Analysis under the action of DL (STEP1) 
 
With reference to the bridge scheme reported in Fig. 2, the design variables are represented by 

the cross-sections (Ai
S
, Ai

H
 A

M
) and the post-tensioning forces of the cable system (Si

S
, Si

H
 S

M
), 

which are designed by means of the following relationships 

   1 1 1 12 2
,...., , ,..., , ,    ,..., , ,..., ,S H S H

S S H H M S S H H M

C N N N N
S S S S S S A A A A A A           (1) 

where N
S
 is the number of stays of the left or right pylons, N

H
 is the number of hangers and the 

superscripts S, H and M refer to the stays, hangers and main cable, respectively. The unknown 

quantities, reported in Eq. (1), are derived in the DL configuration by solving a set of constraint 

equations, which enforce the bridge to remain in the undeformed configuration or equal to an 

initial design profile. In particular, the constraint operators are defined through the following 

hypotheses, namely H.1 and H.2: 

• the displacements of girder and pylons must be zero, under the action of dead loads (H.1); 

• the internal stresses of the i-th stay, j-th hanger (with i=1..N
S
 and j=1..N

H
) and main cable 

should be equal to the corresponding initial design values, which are identified as Sgi
S
, Sgi

H
 and Sg

M
 

and are determined on the basis of the results obtained in the subsequent steps, i.e., STEP2, based 

on the live load analysis (H.2). 
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The constraint equations, which enforce hypothesis H.1, are expressed in terms of the 

incremental values of the internal cable tensions, i.e., ∆Si, measured from the converged ones 

obtained from the previous step, i.e., 1iS  or in the case of the first iteration by initial trial values 

(evaluated in section n.3) In particular, such relationships enforce zero displacement conditions for 

the following specific kinematic quantities: 

• horizontal displacements of the pylons and vertical displacements of the stays in the main 

cable at the girder connections, i.e., 
1 1

( )

1 2 1
, ,.., , ,.....,S S S

S T S S S S S

N N N
U U U U V V


 
 

; 

• vertical displacements of the hangers at the girder connections, i.e., 

( )

1 2, ,...., H

H T H H H

N
U V V V 

 
; 

• vertical displacement of the main cable at the midspan cross section, i.e., U
M

. 

Therefore, the required equations to verity the kinematic prescriptions are defined as 

 

 

 

1 1 2 2

1 1

,...., , 0,  

,...., , 0,  

, 0,  

S S

H H

S S S S S

S N N

H H H H H

H N N

M M M

M

L S S S S U

L S S S S U

L S S U

     
 

     
 

   
 

                    (2) 

where ,  and S H ML L L are multi freedom constraint operators referred to the stays, hangers and 

main cable variables, respectively. Similarly, additional equations are introduced to verify 

prescription provided by hypotheses H.2. In particular, the cross-sections of the stays, hangers and 

main cable elements, i.e., Ai
S
, Ai

H
 and A

C
 are changed from their previous estimated values, i.e., 

,  and 
S H M

i iA A A introducing additive incremental variables, i.e., ∆Ai
S
, ∆Ai

H
 and ∆A

C
, as a function 

of explicit constraint equations, which enforce the stresses in the cables to be equal to the initial 

design quantity 

 

 

 

, 0,               1,..,2 ,

, 0,             1,.., ,

, 0,            

S S S S S

S i i i gi

H H H H H

H i i i gi

M M M M

M g

C A A S S i N

C A A S S j N

C A A S S

     
 

     
 

    
 

                (3) 

where ,  and S H MC C C  are the constrain operators, which ensures that the stress variables of the 

cable elements, i.e.,  ,  and S H M

i jS S S , are equal to the prescribed values  ,  and S H M

gi gi gS S S .  

 

2.2 Analysis under the action of LL (STEP2) 
 
In this framework, the analysis is developed with the purpose to verify the bridge behavior 

under live loads taking into account ultimate, fatigue and serviceability limit states, i.e., ULS, FLS 

and SLS. In particular, the following conditions, concerning maximum and relative stresses and 

maximum absolute displacements should be verified 

, , , ,max ,  maxS H M S H M

i A i AULS FLS
S S S S                           (4) 
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G P

3 1max ,  maxG P

A A
SLS SLS

U U     
   

                     (5) 

where SA and ∆SA are the maximum or incremental allowable stress values of the cables, δA
G
 and 

δA
P
 are the maximum allowable displacements of the girder (vertical) and pylons (horizontal), 

respectively. Similarly, proposed formulation can be generalized in such a way to be consistent 

with respect to enhanced reliability formulations as the one reported for instance in (Barbero et al.  

2013). The initial stresses of the cable elements  , ,S H M

g g gS S S  are evaluated as a function of two  

sets of factors defined for each cable element, namely Фi and Ωi, which are introduced to verify 

code prescriptions reported in Eqs. (4)-(5). The basic idea for the definition of such quantities is 

related to the physical behavior of the cable-supported bridges, which typically can be associated 

to a continuous beam on multiple elastic supports; the stiffness of the supports is controlled by the 

mechanical characteristics of the cables, taking also into account the contributions arising from the 

geometrical nonlinearities of the elements. In light of such considerations, the factors Фi and Ωi are 

designed in such a way to modify, on the basis of the LL results, the stiffness of the cable system, 

enforcing the requirements on both strength and deformability of the bridge components. It is 

worth noting that the factors Фi and Ωi can be regarded as constant quantities, associated to the 

single element of the suspension system. In particular, the performance factors Фi modify the 

stress distribution in the cable system, by enforcing, consistently with the PBD, that the maximum 

values under live loads equal to allowable stress arising from the strength of material. On the 

contrary, the factors Ωi modify the stiffness of the cable system and thus the cross-section of the 

elements, by enforcing the pylons and girder to have lower displacements than the maximum 

permissible values. According to a secant approach, at the generic iteration step, the initial stresses 

are defined from the previously converged value by the following relationships 

           
1 1 1

, ,   
k k k k k kk k k

S S S S H H H H M M M M

gi g gi g g gi i i i
S S S S S S

  

                    (6) 

where the superscript k or k-1 refer to the current or the previous iteration step and the subscript i 

refers to the generic i-th cable element. In particular, the factors Фi concerning the stresses for the 

i-th stay, hanger or the main cable are be derived by the ratios between the allowable stress and the 

maximum value observed in the LL combinations 

 
 

 
 

 
 

,     ,      ,
max max max

k k k
S H MA A A

k k ki iS H M

LL LL LLi iLL LL LL

S S S

S S S
               (7) 

where SLL is the value of the stress observed during the LL combinations. Moreover, the definition 

of the factors Ωi is strictly connected to the following limit functions, which indicate the distance 

from the limit allowable values of the current displacement and stress quantities 

   

 
1 3

1

31

U U

1 3

g 1,   g 1,    1,      , ,
max max

k k k
i i Ai

k
jGP

AP G A iA

k k S
P G

A
LL LL

i i

S
g j S H M

SU U




           (8) 

As far as the kinematic functions, namely 
1U

g k
i

P  for the pylon and 
3U

g k
i

G for the girder, are 

negative, an increment of stiffness is required, since the displacements in the structure are 

expected to be larger than the allowable quantity. Similarly, when the allowable function 
AS

g is  
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Fig. 3 Synoptic representation of the factors Ωi and the variables Δi involved in the design procedure 

 

 

negative it means that the cable stiffness can be potentially reduced, since the stress is lower than 

allowable strength and thus a lower stiffness in the cable is permitted than the current value. As a 

results, the definition of the Ωi for a generic element is based on the following piecewise functions 

   

 

 

 

 

1

m a x

1

m a x

               if     g 0                    
max

                  if      0  and  g 0
max

1                                                  if     

k
Ai

k

A i

k
A

iLL

k k

i A i

Sk
A

iLL

S

S

S
g

S












 
 

  
 

 
 

 0  and  g 0k
AiS

g 










  


           (9) 

where Δmax and Δ are the allowable and maximum LL displacements, respectively, and gΔ the 

displacement limit function. It is worth noting that Eq. (9).1 is essentially utilized when the 

displacements are larger than the allowable quantity and thus an increment of stiffness is required;  

when gΔ>0 and 0 k
AiS

g  , namely in the case of Eq. (9).2, prescriptions on displacements are  

satisfied and thus the current allowable stress level of cable can be increased to enforce the 

equality with strength value (SA). Finally, the case defined by Eq. (9).3, is related to the condition 

in which values of the stress and the displacement limit functions are both positive and thus there 

is no need to modify the stiffness or the allowable stress level of the element, thus the factor is 

assumed to be equal to the unity. However, the quantities Δ and Δmax are different in each part of 

the bridge, since the elements of the cable system are differently related to the bridge 

deformability. As a matter of fact, the stay elements in the lateral spans are typically designed to 

reduce the horizontal displacements of the pylons, whereas the stays and the hangers in the main 

span or the main cable are dimensioned to reduce vertical deflections of the girder. Therefore, 

starting from such considerations, the following relationships identify the variables Δ, Δmax and gΔ 

introduced in Eq. (9) 

1
1 max U

,    ,    g   g k
i

P P P

AU         (Stays – lateral span)   (10) 

3
3 max U

,    ,    g  g k
i

G G G

AU         (Stays – central span)   (11) 

3
3 max U

,    ,    g  g k
i

G G G

AU           (Hangers)   (12) 
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   
3

3 max 3 U
max ,    ,    g  max g k

i

G G G

AU         (Main cable)   (13) 

A synoptic representation of the variables defined in Eqs. (10)-(13) is reported in Fig. 3. 

 

2.3 Convergence condition and iterative scheme 
 

The design analysis defined by the previous steps is based on an iterative procedure, in which 

the initial stresses of the cable elements, namely  , ,S H C

g g gS S S , are modified during the iterations. 

Therefore, once the new values of the stress levels in the DL configuration are evaluated by means 

of Eq. (6), the procedure goes back to find the prediction of the cross-sections and the post-

tensioning forces on the basis Eqs. (2)-(3). This procedure is repeated until achieving the 

convergence conditions of the algorithm defined on the basis of the following expression 

   

 

   

 

   

 

1 1 1

1 1 1
1 1

max , , .
S H

k k k k k k
S S H H M MN N
gi gi gi gi g g

k k k
S H M

i i
gi gi g

S S S S S S
toll

S S S

  

  
 

            
        

        (14) 

 

 

3. Numerical implementation 
 

The numerical algorithm was implemented by using an external subroutine, which interacts 

with the three-dimensional FE modeling created in Comsol Multiphysics (Comsol 2012) to 

calculate the optimum configuration. The iteration procedure is developed by using an external 

subroutine, which combines LivelinkTM for Excel package and Comsol Multiphysics (Comsol 

2012). The former is introduced to evaluate the design factor Фi, whereas the latter is required to 

calculate the current solution on the basis of the FE method. Therefore, both steps can be easily 

developed by using several computational frameworks, since they are based on quite standard and 

simple mathematical operations. 

In order to reduce the computational efforts in the numerical calculations, the FE model is 

based on beam elements for girder and pylons and truss elements for the cable system. 

Specifically, the bridge deck is replaced by a longitudinal spline with equivalent cross-section and 

material properties, whereas the pylons are composed by two columns linked at their top by 

horizontal beam elements. The bridge deck is connected to the suspension system by means of 

explicit constraint equations, which are imposed between the off-set nodes of the girder and those 

associated to the cable elements. The cable system, which is connected to the pylons and girder, is 

essentially defined by the combination of stays, hangers and main cable. In particular, the cable 

system is modeled according to the Multi Element Cable System (MECS) approach, in which each 

cable is discretized using multiple truss elements (Greco et al. 2013; Ren and Gu, 2010). Large 

deformations are reproduced by using Green Lagrange formulation and the axial strain is 

calculated by expressing the global strains in tangential derivatives and projecting the global 

strains on the cable edge. Additional details on the approach here adopted to model nonlinear 

behavior of the cable elements can be found in (Bruno et al. 2013; Lonetti and Pascuzzo, 2014). 

The subroutine utilized to calculate the optimum solution, is based according to Sec.3 on the 

following different steps, which are executed iteratively: 
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Fig. 4 Flow chart of design procedure 

 

 

• STEP 1: generation of the finite element model, evaluation of the initial post-tensioning forces 

and the cable cross-sections in the cable system by means of the optimization procedure; 

• STEP 2: calculation of the maximum stresses and displacements under live loads and 

prediction of the new set of the initial stress quantities on the basis of the performance factors. 

For the sake of brevity, the proposed formulation is presented with reference to the final 

configuration of the bridge. However, the algorithm can be easily applied during the erection 

procedure of the bridge for the definition of the current configuration at the k-th construction step 

just solving relationships concerning STEP n.1. In this contest, the unknown quantities are 

represented by the post-tensioning stresses of the cables, i.e., Eq. (1).1, whereas only constrain 

equations concerning the undeformed geometry, namely Eq. (2), must be considered.  

At first, only for the first iteration, the generation of the FE and its initial configuration is 

designed on the basis of practical design rules, typically, accepted in the framework of cable-

supported bridges (Gimsing and Georgakis 2012, Zhang et al. 2009). In particular, the initial cable  

cross-sections for stays  S

iA , hangers  H

iA , main cable CA  and the initial stresses  ,S H

g gS S   

are estimated from the equilibrium relationships based on the truss assumption of the cable stress 

distribution on the girder (Bruno et al. 2008, Gimsing and Georgakis 2012) 
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S S S g p 

 
   


          (15) 

where p is the per unit length live loads, αi is the angle between stay and girder, ϕ is the orientation 

angle formed by the main cable tangent at pylon intersection and the horizontal direction, Ht0 

horizontal axial force, with  0 1 0.25 ( ) 0.5t m mH f a q p L a        with am the projection 

length on the girder of the hanger position (see Fig. 1). It is worth noting that Eq. (15) are based on 

practical relationships obtained from an engineering point of view and provide reasonable values 

of the design variables, which are modified during the iterative procedure by the proposed 

numerical algorithm. Such quantities represent initial trial estimates, which helps the iterative 

procedure to have a better convergence behavior. More details on the definition and the 

assumptions of the relationships reported in Eq. (15) can be recovered in (Hui-Li et al. 2010). 

The evaluation of the post-tensioning forces and the optimum cable cross-sections is developed 

by solving the governing equations concerning equilibrium (EQ) and constrain equations, (CE) 

defined according to Eqs. (2)-(3), whose compact form can be expressed as follows 

 

S

,

C C C 0H S M H M

EQ K U U F

CE L L L

 

      
                    (16) 

where K  is the global stiffness of the structure, U is the global displacement vector, F is the  

external force vector associated to the dead loading configuration. It is worth noting that Eq. (16) 

introduce as a nonlinear constrained optimization problem, in which the unknown quantities are 

represented by displacements, cable dimensioning and post-tensioning forces. Once the 

configuration under dead loads is evaluated, the analysis is developed to determine maximum 

effects on the bridge components produced by the live loads in terms of stresses and 

displacements. However, since the bridge behavior is essentially nonlinear, the analysis under live 

loads should be considered as a continuation from the previously converged configuration under 

the dead load. In particular, all the variables involved in the solving procedure or in the definition 

of the structural elements of the bridge are taken from the last converged solution, i.e. under dead 

loads. At this point, the solving procedure is defined by a restarting analysis, in which the initial 

values are scaled as a function of the current solution (Comsol 2012). The solution is performed 

for a fixed number of loading conditions, i.e., N
LL

, which collect, for all bridge components, 

maximum stress and displacement effects 

  0-          i=1,..,NLL

i iK U U G P                       (17) 

where P0 is the vector of nodal point forces corresponding to the increment in element  

displacements and stresses from the dead load to the live load configurations, U  are the  

incremental displacement vector and Gi is the live load vector force of the i-th loading 

configuration. From the loading combinations defined by Eq. (17), the new estimates of initial 

stresses are derived on the basis of Eq. (6) by using Eq. (7) and Eq. (9). Subsequently, 

convergence conditions, defined by Eq. (14), are checked and if they are not satisfied, the analysis 

goes back to evaluate the configuration of the bridge under dead loading with the new values of 

the initial stresses. Such procedure can be handled by using an external subroutine whose 

flowchart is reported synoptically in Fig. 4. 
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4. Results 

 
Results are presented to validate the proposed model in terms of convergence of the solution 

during the iterations steps and efficiency of the formulation to predict the cable system 

dimensioning and post-tensioning stresses of the cable elements. The analysis is developed with 

respect to two different bridge schemes, characterized by a different scale length. In particular, the 

first example refers to a case of a bridge with a small central span and a reduced number of 

elements, in which severe working conditions in terms of design requirements are considered. 

Moreover, the second case is presented with respect to a typical long span bridge scheme, in which 

more complexities are expected in relationship to the large number of variables involved in the 

analysis. However, for both cases, the geometry and the characteristics of the structure as well as 

the distribution on the girder of both stays and hangers are defined by means of dimensionless 

parameters, commonly accepted, in the literature, for self-anchored schemes, (Zhang et al. 2009), 

which are summarized as follows: 

• the ratio between rise span of the cable and main span length, i.e., f/L, is between 0.1 and 0.2; 

• the ratio between height of the pylon (H) and length of the cable segment length (cL), i.e., 

H/cL, is larger than 0 and lower than 0.5. 

Without loss of generality, in both analyses only live loads concerning traffic loads are 

considered, which are combined with dead loading by using factored or unfactored loading 

combinations equal to 1.2DL+1.7LL or to DL+LL in cases of ULS or SLS, respectively. However, 

the generalization of the proposed model to consider also the effects of seismic or wind forces, can 

be easily developed just introducing additional loading combinations to the ones concerning live 

loads. 

At first, results are developed with reference to a bridge structure with central span (L) and total 

length (LT) equal to 100 m and 180 m (Fig. 5), whose aspect ratios f/L and H/cL are equal to 0.12 

and 0.45, respectively. The main purpose is to present a benchmark analysis, involving a low 

number of the stays and hangers having a large spacing step. In such configuration, it is quite 

difficult to verify prescriptions on girder and pylon deformability or in terms of maximum or 

incremental cable strength. The cable system consists of a double layer formed by only 10 stays 

and 3 hangers and the main cable, whose elements present an allowable stress (Sa) equal to 

6.4×10
8 
Pa. The displacement limits of both girder and pylons are assumed to be equal to 1/600 of 

the corresponding lengths. The girder and pylons present steel rectangular single box sections, 

whose data are reported in Table 1. Moreover, the dead loads on the girder (QDL) include 

contributions arising from the weight of structural and non-structural elements, which are equal to 

44.15 kN/m and 60 kN/m, respectively. Moreover, the ratio between live and dead loads, i.e., 

QDL/QLL, is equal to 0.57. Such value is consistent with specification reported in (AASHTO 2013, 

Yoo and Choi 2009) in which approximately a number of six uniform traffic lanes are considered. 

Finally live loads are applied on the structure to produce maximum effects in terms stresses or 

displacements by using the loading combinations reported synoptically in Fig. 5. 

Results concerning the cross-section area distribution of all cable elements are reported in Fig. 

6, whereas the convergence behavior of the predicted solution is reported in Fig. 7. The analysis 

denotes that with respect to the initial values, essentially based on preliminary design rules 

summarized in Sec.3, the cross-section areas are strongly modified. In particular, in the cable-

system, the anchor stays and the main cable are dimensioned with larger values than the remaining 

elements. The convergence of the solution toward the optimum solution is reached with a 

relatively low number of iterations especially for the internal cable elements, i.e., from cable 2 to 5,  
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Fig. 5 Synoptic representation of the structural scheme 

 
Table 1 Bridge parameters of the girder and pylons 

 
Cross sectional area [m

2
] Second moment of cross section [m

4
] 

Girder 0.57 0.024 

Pylon (vertical strut) 0.30 0.24 

 

  

Fig. 6 Cross-section distribution: initial and final 

evaluations 

Fig. 7 Convergence behavior of the cross-

sections as a function of the iteration number 

 

 

whereas for the anchors stays and the main cable a larger number of iterations is required to verify 

prescriptions on maximum displacements. 

In Figs. 8, 9 results in terms of bridge deformability under DL and LL are presented for both 

girder and pylons. In particular, in Fig. 8, the analysis shows that under DL the deflections of the 

girder are practically negligible in comparisons to those observed in the case of LL. The initial 

configuration, predicted by the proposed model in terms of the cable forces, is able to constraint to 

zero the displacements of the girder at the connections with the cables. Moreover, in Fig. 9, the 

bridge deformability is presented in terms of convergence behavior to evaluate the optimum  

858



 

 

 

 

 

 

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges 

 

 

Fig. 8 Envelope of the girder deflections under 

DL and LL 

Fig. 9 Comparisons between initial and final 

evaluations of the girder deflections, convergence 

behavior of the top pylon horizontal displacement 

and midspan vertical deflections 

 

  

Fig. 10 Stress and displacement optimization 

factors: initial and final prediction 

Fig. 11 Distribution of the initial stresses (SI) under 

DL and convergence behavior of the values observed 

in the main cable as a function of the percentage 

value of the iteration steps (nIT%) 

 

 

solution. Such results show how the maximum value of the normalized girder displacements, 

which is equal to -0.003 in the initial configuration, is reduced to a value almost close to its half 

and thus in agreement with design prescriptions on girder deflections. Moreover, the analysis 

denotes that the iterative procedure is based on a quite convergent and stable behavior, without 

jumps or singularities of the solution toward the final configuration.  

The distribution of the optimization factors Ωi and Φi for all elements of the cable system from 

the initial to the final configurations is reported in Fig. 10, whereas the initial stresses under DL 

for each cable element are analyzed in Fig. 11. It is worth noting that factors Φi have the role to 

constrain the equality of the stresses with the allowable quantity, whereas the factors Ωi are  
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Fig. 12 Distribution of the maximum stresses under LL and convergence behavior of the 

maximum stresses as a function of the iteration percentage number (nIT%) 

 

 

Fig. 13 Structural model of the long span cable-stayed suspension bridge 

 

 

responsible of the prescriptions regarding bridge deformability. Both of them during the iterations, 

modify the stiffness of the cables, reducing or increasing the quantity of material involved in the 

cable system. During the iterative procedure, the internal cables, namely from 2 to 6, present 

increasing values of the factors Φi and Ωi, except for the anchor stays and the main cable, since 

both of them are directly responsible of the midspan girder deflections and the horizontal top 

pylon displacements. Therefore, in order to verify prescriptions on bridge deformability, sin such 

elements lower values than the unity of Ωi are predicted by the iterative procedure.  

Similarly, the initial stresses presented in Fig. 11, are modified from the initial distribution, in 

such a way that the anchor stays and main cable during the iterations are forced to have lower 

post-tensioning forces, larger stiffness and cross-section than the remaining elements. In particular, 

in such cables, the maximum allowable stresses are modified from the standard value arising from 

the material characteristics, i.e., SA, introducing lower thresholds under live loads. Such behavior 

can be also discussed on the basis of the results presented in Fig. 12, in which the distribution of 

the maximum stresses under LL for all cable elements is considered. In particular, during the 

iterations the most of the elements of the cable system are designed consistently with PBA, since 

the ratio between actual and allowable stresses, i.e., max(SLL)/SA, is close to the unity; contrarily 

for that elements with values lower than one, in order to verify design constrains on bridge 

deformability, larger values of cross-sections than the remaining elements are predicted. 
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Table 2 Bridge parameters of the girder and pylons 

 
Cross sectional area [m

2
] Second moment of cross section [m

4
] 

Girder 1.60 4.96 

Pylon (vertical strut) 2.72 49.64 

 

  
Fig. 14 Fig. 15 

Figs. 14-15 Normalized cross-sections distribution (AiSA/gL) and initial stresses (S/SA) in the cable-

system as a function of the normalized position on the girder projection (X/LT) 

 

 

Additional results are presented for a long span bridge structure, similar to the one proposed in 

(Wang et al. 2013), whose main span length (L) and total length (LT) are equal to 800 m and 1337 

m, respectively (Fig. 13). Moreover, the aspect ratios f/L and H/cL are equal to 0.12 and 0.46. The 

stays and the hangers present a distance equal to 12.5 m and an allowable stress (Sa) equal to 

6.4×10
8
 Pa, whereas the geometrical properties of girder and pylons are reported in Table 2. Dead 

loads of the girder including also the permanent contributions are equal to QDL=γsAs+60=2.06E5 

kN/m, whereas live loads, according to bridge design specifications reported in (AASHTO 2013, 

Yoo and Choi 2009), consist of eight uniform traffic lanes with a value equal to QLL=76.2 kN/m. In 

the analysis, the displacement limits of both girder and pylons are assumed equal to 1/800 and 

1/600 of the corresponding lengths. From the mechanical and geometric characteristics defined 

above, dimensionless parameter concerning the ratio between stiffness of the girder (G) and the  

cable system, i.e., 22 / LHEI t
G  and )/()/()/8( 22

t
CC

e HAELLLf  , are equal to 

092.02   and 2232  , where EI
G 

is the bending stiffness of the girder and Ht is the dead  

load horizontal component of the cable tension. Such values are consistent with data available 

from the literature, whose range, obtained on existing cable-supported bridge structures are equal  

to  
2

30.5 10 10    and  
2

170 800    (Luco and Turmo 2010).  

Results in terms of cross-sections of the cable and post-tensioning stresses as a function of the 

normalized positions on the girder projection are reported in Fig. 14 and Fig. 15, respectively. The 

analysis denotes that the design procedure defines a cross section distribution, whose maximum 

values are observed in the main cable and anchor stays. Moreover, the remaining stays present 

their largest values at the extremities of the cable-stayed system. Finally, the hangers are affected 

essentially by a constant distribution of the cross-sections. Such dimensioning predicted by the  
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Fig. 16 Fig. 17 

Figs. 16-17 Normalized girder  3

GU L and pylon  1

GU L  displacements produced by live loads; 

convergence behavior of the cross-sections and the displacements as a function of the percentage value 

of the iteration steps (nIT%) 

 

 

proposed modeling can be assumed quite reasonable from the structural and physical viewpoints. 

In particular, the high values of the cross-section in the anchor stays are due to the development of 

the internal force arising from the main cable, which carries out most of the loading contributions 

arising from the central span. For this reason, in self-anchored schemes, the cross-sections of both 

anchor stays and main cable should be comparable. Moreover, the reduced values of the cross-

sections of the stays located close to the pylons can be explained by the fact that in such regions 

the elements present their maximum efficiency in terms of loss stiffness due to sag effects. In 

addition, the prescriptions on girder or pylon displacements are not restrictive as the ones at the 

midspan girder cross-section, because such cables are placed in proximity to the girder support. As 

a consequence, a low cable dimensioning is required.  

In Figs. 16-17, results concerning bridge deformability are presented. In particular, girder 

deflections or horizontal displacements of the pylons are reported as function of the percentage 

number of iterations to obtain the final configuration. Moreover, in the same figure the evolution 

of the cross-sections of the main cable and the anchor stays are analyzed. The results denote that 

the anchor stays are mostly responsible of the horizontal displacements of the pylons, which is 

reduced as far as the cross-sections of such cable elements increase. Moreover, the girder 

deformability of the central span at the midspan cross-section is mostly affected by the stiffness of 

the main cable. Actually, the hangers have the role to transfers the loads from the girder to the 

main cable, without providing any important contributions in terms of stiffness improvement; the 

stays, which are the most stiffness elements in combined cable-stayed suspension bridge schemes, 

are far from the midspan and thus their effect on the girder deformability is negligible. In both 

cases, the results show that during the iterations the solutions is strongly modified from the initial 

trial solution. In particular, the cross-sections of the cable elements are increased to verify 

prescriptions on bridge deformability. Such behavior can be also analyzed by the envelope of 

maximum displacements reported in the same figures, which show how all the displacements at 

the final step are below the corresponding allowable limits typically adopted for design purposes. 
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Fig. 18 Fig. 19 

Figs. 18-19 Normalized maximum tensile stresses   max /LL AS S  under live loads and evolution as 

a function of the percentage value of the iteration steps (nIT%) 

 

 

Additional results are presented in Fig. 18, in which tensile stresses in the cables resulting from 

the ULS combinations are reported as function of the iteration steps. In particular, consistently 

with the PBA, during the iterations, maximum cable stresses are forced to reach the equality with 

the allowable strength value. Such condition cannot be reached in the first iterations since initially 

the conditions regarding the bridge deformability are more restrictive than the ones related to the 

cable strength. However, once a number of iterations is developed, the cable dimensioning as well 

as the post-tensioning forces are calibrated to verify such proscriptions. Finally, in Fig. 19, the 

convergence behavior of the solution is investigated, by means of the relationships between the 

maximum stresses of some cable elements and percentage number of iterations developed by the 

iterative procedure. Except for the main cable, whose dimensioning is quite constrained by the 

displacements prescriptions on bridge deformability, all the cables after a low number of iterations 

present a stress rate equal to the allowable strength value, reaching, consistently with the PBA, the 

optimum design.  

 

 

5. Conclusions 
 

A new design procedure to evaluate post-tensioning forces and cable dimensioning for self-

anchored cable-stayed suspension bridges is proposed. In particular, a two-step numerical 

algorithm is able to evaluate the optimum solution, taking into account design prescriptions of the 

bridge based on strength and deformability limits. The model is validated by means of parametric 

studies on different bridge schemes. At first, analyses on short span bridges under extreme loading 

and deformability conditions are carried out to verify the consistency of the proposed model. 

Subsequently, a long span bridge scheme involving more complexities in relationship to the large 

number of variables is investigated. From the analyses, it is possible to drawn the following 

conclusions: 

• The results have shown that the proposed model can be considered as an useful tool in the 

design procedure, since it is able to provide the optimum design solution, giving a quantification 
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on cross-sectional areas and post-tensioning forces, which satisfy stress and displacement 

constraints. 

• The proposed algorithms is based on a simple procedure, which can be easily handled on the 

basis of data available by using standard commercial FE software packages.   

• The solution presents a stable and convergent behavior, without singularities or jumps in its 

evolution. Moreover, a low number of iterations is required to obtain the optimum configuration.  

• The results show that the cables which require the largest values of steel quantity than the rest 

of the elements are those associated to the anchor stays, the longest stays in the main span and the 

main cable. Such cables have an important role to reduce longitudinal deformability of the pylon 

and vertical displacements of the girder. 

• The proposed model is able to find the optimum configuration, consistently with performance 

based approach, in which most of the cable elements are designed in such a way to reach under the 

worst LL combinations exactly the allowable design strength.   
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Nomenclature 
 

    Values arising from previous iteration step or trial values  

 
G

  Stiffening girder variable 

 
P

  Pylon variable 

 
S

  Stay variable 

 
H

  Hanger variable 

 
M

  Main cable variable 

A  Cross-section area 

ma  Suspended portion of the main span 

A  Incremental cross-section area of the cable 

B  Girder cross-section width 

c   Cable-stayed portion of the main span 
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DL  Dead Load configuration 

E  Material elasticity modulus 

f  Main cable sag 
g  Self-weight per unit length 

H  Pylon height 

iI  Moment of inertia with respect to the i-axis 

l  Lateral span length 

L  Central span length 

TL  Girder total length 

LL  Live Load configuration 

iS  Incremental initial stress in the i-th cable 

iS  Cable stress under self-weight loading 

giS  Initial design stress of the i-th cable 

aS  Allowable cable stress 

aS  Incremental allowable cable stress 

iU  Displacement component with respect to the i-axis 

  Longitudinal stay geometric slope 

A  Maximum allowable displacement 

  Stay spacing step 

  Maximum longitudinal main cable geometric slope 

i  Stress performance factor of the i-th cable 

  Material specific weight 

i  Strength performance factor of the i-th cable 
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