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Abstract.  In this paper the overall dynamic response of simple railway bridges subjected to high-speed 
trains is investigated numerically based on the mechanical models of simply supported single-span and 
continuous two-span Bernoulli-Euler beams. Each axle of the train, which is composed of rail cars and 
passenger cars, is considered as moving concentrated load. Distance, magnitude, and maximum speed of the 
moving loads are adjusted to real high-speed trains and to load models according to Eurocode 1. Non-
dimensional characteristic parameters of the train-bridge interaction system are identified. These parameters 
permit a spectral representation of the dynamic peak response. Response spectra assist the practicing 
engineers in evaluating the expected dynamic peak response in the design process of railway bridges without 
performing time-consuming time history analyses. 
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1. Introduction 

 

If a train passes a railway bridge with high constant speed, the bridge may be driven into a 

condition of resonance. Since many decades this effect is well known, and thus, numerous 

analytical and numerical models of different degree of sophistication have been developed aiming 

at predicting the dynamic bridge response, see e.g., (Fryba 1996, 2001, Yang et al. 1997, Museros 

and Alarcon 2005, Xia et al. 2006, Liu et al. 2009). Some of these studies have been supported by 

experimental investigations, see e.g., (Zambrano 2011). More recently, the construction of 

railways for high-speed trains has led to intensified research efforts, because the travel speed up to 

320 km/h combined with increasing bridge spans induces increased demands on bridge structures 

(Museros and Alarcon 2005). The textbook of Yang et al. (2004) provides a comprehensive state-

of-the-art report of methods for the analysis of vehicle-bridge interaction dynamics with emphasis 

on applications to high-speed railways.  

Simultaneously, Hauser and Adam (2007), Fink and Mähr (2007) have introduced a 

methodology, which permits a quick and yet accurate assessment of the maximum dynamic 

railway bridge response subjected to high-speed trains without performing expensive time history 

analyses. 
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In this study spectral representations of the high-speed train induced dynamic peak response, in 

the following referred to as response spectra, are derived for simply supported single-span and 

continuous two-span Bernoulli-Euler beam models subjected to a series of moving loads with 

constant speed. Distance, magnitude and maximum speed of the moving loads is adjusted to real 

high-speed trains according to Eurocode 1 (Eurocode 1 2003). Subsequently, response spectra are 

presented for the peak deflection, the peak acceleration response, and peak bending moment. Other 

example problems may be found in (Salcher 2010). 

 

 

2. Modeling of train-bridge interaction 
 

2.1 Idealization of the train loads 
 

In the most general approach the train vehicle may be modeled with different degree of 

sophistication as a spring-mass system consisting of the car body, bogies, and visco-elastic 

connection elements, as outlined e.g., in (Liu et al. 2009). However, it has already been mentioned 

by Museros and Alarcón (2005) that sophisticated train models have beneficial effects on the 

bridge response, because they operate like a Tuned Mass Damper, which reduce the vibration 

amplitudes of the bridge. Since in the design process of a bridge the properties of all passing trains 

to be developed during the bridge life cycle are not known, analysis should not be performed 

considering particular characteristics of the vehicle (Museros and Alarcón 2005). 

Thus, for the present study each axle of the train, which is composed of rail cars and passenger 

cars, is considered as a moving concentrated load with constant speed v. Thereby, each 

concentrated load corresponds to the static reaction force of an axle. In Fig. 1 the axle loads are 

displayed in black and denoted by Fi, Fi+1, etc. In such a model the inertia effect of the train in the 

interaction system of moving train and bridge is neglected.  

Depending on the type of high-speed train each passenger car can be supported by a bogie at 

the front and at the rear with two axles. Alternatively, the rear bogie and the front bogy of two 

adjacent cars can be merged into a single bogie with two axles or one axle (Museros and Alarcón 

2005). Consequently, the mechanical train model consists of a sequence of lateral group loads or of  

 

Fig. 1 Idealization of the train loads. Black: Consideration of each axle as moving load. Grey:  

Simplified consideration – merging the individual axle loads close to both ends of the carriages into a 

single moving concentrated load 
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single lateral loads (for the latter trains), which pass the bridge with constant speed. In several 

studies lateral group loads are merged to a single load (e.g., iF ), as shown in Fig. 1 in grey. This 

simplification is also evaluated in the present study. 

 
2.2 Considered trains 
 
2.2.1 Input parameters 
Besides the train speed and the load magnitude, distance d of the concentrated loads and/or load 

groups (see Fig. 1) is a further critical parameter for dynamic bridge excitation. Load magnitude 

and distance depend on the type of train. The considered train types are subsequently discussed. 

 
2.2.2 Load model for the ICE ET 410 train 
Here, several studies are performed utilizing a simplified model of the high-speed train ICE ET 

410. The example train, which is subsequently referred to as long train, is composed as follows: 1 

rail car - 7 passenger cars - 1 rail car - 6 passenger cars. The second considered example train, 

which is referred to as short train, has one rail car followed by seven passenger cars. Each car has 

at both ends a bogie with two axles each. The distances of the axles according to Fig. 1 are: 

b=2.27 m, c=2.80 m, d=24.34 m. It is assumed that the length of the rail cars correspond to the 

distance d of the passenger cars, compare with Fig. 1. The axle loads of the rail cars are 200 kN, 

the axle loads of the passenger cars are 116.5 kN. As already mentioned, for comparative studies 

the axle loads at the front end and the rear end of the adjacent vehicle are merged into a single 

concentrated load, compare also with Fig. 1. 

 
2.2.3 Set of European high-speed trains 
High-speed trains, which are authorized in Europe for operating bridges, are considered in this 

study as a train set. This train set contains conventional trains (e.g., ICE, Railjet), articulated trains 

 

Fig. 2 Moving lateral load with constant speed passing a simply supported single-span and a two-

span continuous beam, respectively 
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(e.g., TGV, Thalys, Eurostar), and regular trains (Talgo) (Eurocode 1 2003). The corresponding 

load models comprising the combination of rail and passenger cars, number of cars, axles loads, 

car length, and axles distances are outlined in (Salcher 2010). 

 

2.2.4 HSLM-A train set according to Eurocode 1 
According to Eurocode 1 (2003) the high-speed load models (HSLM) A1 to A10 must be 

utilized for the dynamic analysis of railway bridges, besides the European train set. This set of 

load models is valid for bridges with a span larger than 7 m. The individual models A1 to A10 

consider different magnitudes of axle loads, car length, bogie distances, and number of cars. For 

details see (Eurocode 1 2003, Salcher 2010). 

 
2.3 Bridge model 
 

In the present study the considered simply supported single-span and continuous two-span 

bridges are modeled as linear elastic Bernoulli-Euler beam of constant mass per unit length A and 

constant bending stiffness EJ, see Fig. 2. The ith axle load Fi, which passes the bridge with 

constant speed v, induces lateral vibrations w(x,t). w(x,t) is governed by the following equation of 

motion (Museros and Alarcon 2005, Hauser and Adam 2007) 

     
 (1) 

t denotes the time variable. In Eq. (1) Dirac delta function  determines the location xi of the 

lateral force at time t on the bridge. Unit step function H indicates, when Fi arrives and departs the 

beam at time instants ti
0
 and ti

E
, respectively. The actual location xi of Fi and time instants ti

0
 and ti

E
 

depend on the speed v and the initial location si according to 

        i ivt s    ,  0 i
i

s
t

v
  ,  iE

i
s l

t
v


  (2) 

compare also with Fig. 2. For a single-span beam l=L, for the two-span beam l=2L. 

For the solution of Eq. (1) the lateral displacement w is split into its quasistatic part wS and its 

complementary dynamic counterpart wD (Adam 1999) 

       S Dw w w   (3) 

Since the quasistatic response wS can be expressed in closed form, only the complementary 

dynamic response is found by modal analysis (Adam 1999). Modal decomposition of wD(x,t) into 

the mode shapes ϕn(x) of the actual beam problem (Clough and Penzien 1993, Ziegler 1998) 

       1

( , ) ( ) ( )D n n

n

w x t Y t x




  (4) 

leads to an infinite set of ordinary oscillator equations of motions for the complementary modal 

coordinates Yn(t), see e.g., (Adam et al. 2000) 

     

 ,   1,...,n    , (5) 
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mn is the nth modal mass 

       

2 ( )dxn n
l

m A x    (6) 

and n denotes the nth natural circular frequency of the beam. 

For a simply supported single-span beam the modal properties are derived as (Clough and 

Penzien 1993) 

        2
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The natural frequencies and the mode shapes of the two-span continuous beam can be separated 

into two groups (Blevins 2001, Wang et al. 2010), 
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(9) 

For odd numbers of n the modal properties correspond to those of a simply supported beam. 

The additional natural frequencies at even numbers of n consider the continuity of the beam at the 

intermediate support. 

In Eq. (5) the effect of structural damping has been considered by modal adding of viscous 

damping n (Adam et al. 2000, Ziegler 1998). Structural bridge damping is a fundamental bridge 

parameter, in particular for excitation at resonance. In (Eurocode 1 2003) lower limit values for 

viscous damping are defined. They depend on the type of bridge and span L, compare with Table 1.  

The solution of the quasistatic part wS can be expressed in closed form, and only the infinite 

modal series of the complementary dynamic part, Eq. (4), needs to be approximated by a finite 

number of N modes. It has been shown (Adam 1999) that such a procedure accelerates the rate of 

convergence of the modal series, or even ensures convergence, if response quantities contain 

derivatives of the displacement w of higher order. In this study, the N modal coordinates, Eq. (5), 

have been derived in the time domain by application of Duhamel integral (Clough and Penzien 

1993). For details see Salcher (2010). The response of the beam loaded by a train of N axles is 

found by superposition of the individual responses for each load Fi. 
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Fig. 3 Peak acceleration at mid-span and at 0.75L plotted against the train speed. Single-span bridge, 

fundamental frequency f1=2.50 Hz. Two different configurations of the high-speed train ICE ET 410 
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Fig. 4 Peak acceleration at mid-span and at 0.75L plotted against the train speed. Single-span bridge, 

fundamental frequency f1=2.50 Hz. High-speed train ICE ET 410: Load model containing each axle 

load, and simplified load model with merged axle loads at the car ends 

 
 
3. Critical train speeds 
 

At critical train speeds v the dynamic response of the bridge is severely amplified, and the 

bridge is driven into resonance. The main source of bridge resonance is the rhythmic repetition of 

moving forces with constant speed. The corresponding critical speeds of concentrated forces with 

the same magnitude and with distance d are determined according to the relation (Yang et al. 2004, 

Museros and Alarcon 2005) 

     2

n ni
n

d d f
V

i i




   ,  1,2,3,...n   ,  1,2,3,...i   (10) 

They depend on the linear natural beam frequencies fn=ωn/(2π), and on the length d of the rail cars. 

Resonance may be also induced by the constant speed of the moving forces itself. For a simply 

supported beam the following relation for the critical speeds (of second order) nV  is derived 

(Ziegler 1998, Fryba 2001) 
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Fig. 5 Peak acceleration at mid-span and at 0.75L plotted against the train speed. Single-span bridge, 

fundamental frequency f1=3.00 Hz. Two different configurations of the high-speed train ICE ET 410 

 

0

1

2

3

20 40 60 80 100 120

x / L = 0.50

x / L = 0.75

x / L = 1.50

x / L = 1.75

v [m/s]

V5
5V3

3V2
2V1

2 = V3
7 V1

1 = V3
4 = V5

9 V2
1

L = 35 m

two-span beam

ICE ET 410 - long train

w
 [

m
/s

2
]

..

 

Fig. 6 Peak acceleration at 0.50L, at 0.75L, at 1.50L and 1.75L plotted against the train speed. Two-

span bridge, fundamental frequency f1=2.50 Hz. High-speed train ICE ET 410 
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Fig. 7 Peak acceleration at 0.50 L, and at 0.75 plotted against the train speed. Single span bridge versus 

two-span bridge, fundamental frequency f1=2.50 Hz. High-speed train ICE ET 410 
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2 2

2

n n
n

L L f
V

n n




   ,  1,2,3,...n   (11) 

In general critical speeds nV  are not hit by high-speed trains, and are thus not of significance in 

the present study.  

Furthermore, sway forces of the train vehicles induced by track irregularities and wheel hunting 

movements may lead to periodical actions on the bridge, and subsequently to bridge resonance 

(Xia et al. 2006). However, this type of resonance is out of scope of the present investigation. 

 
 
4. Example problems 
 

In the first example problem a simply supported bridge with the following parameters is 

utilized: span L=35.0 m, mass per unit length A=20,000 kg, bending stiffness 

EJ=7.603E+10 Nm
2
, damping coefficients n=0.01 (n =1,2,…). The corresponding fundamental 

bridge frequency is f1=2.5 Hz. According to Eq. (10) critical speeds (of first order) in the speed 

range between 0 and 120 m/s can be derived as: V1
1
=60.9 m/s, V1

2
=30.4 m/s, V1

2
=20.3 m/s, 

V2
3
=81.1 m/s, V2

4
=60.9 m/s, V2

5
=48.7 m/s. The critical speed (of second order) 1V =175 m/s is 

larger than the maximum speed of the considered train. In the time-history response analysis the 

first three modes (i.e., n=1,2,3) are considered. 

Fig. 3 shows the maximum bridge acceleration at mid-span and at three-quarters of the span as 

function of the train speed v. Bridge vibrations are induced by the load models of the ICE ET 410 

train, as described in section 2.2.2. The short train consists of 1 rail car and 7 passenger cars, while 

the long train includes 1 more rail car and 6 more passenger cars. It can be seen that the peaks of 

the maximum response occur principally at critical speeds although repetitive groups of four axle 

forces pass the bridge. Since the long train excites the bridge periodically for a longer time period, 

at certain speed ranges the maximum acceleration response is larger than for the short train, in 

particular at critical speeds. It is interesting to observe that for a critical speed of V2
3
 the peak 

response at three-quarters of the span is a maximum in the considered speed range, i.e., larger than 

at mid-span. This response behavior can be led back to higher mode effects, i.e., at certain speeds 

and at certain bridge locations the second mode contributes significantly to the acceleration 

response. Thus, the second mode must be considered in the analysis of the acceleration. 

In Fig. 4 the peak bridge accelerations induced by the long train are set in contrast to the 

outcomes of an analysis, where the axle loads of the adjacent car ends are merged to a single load. 

It can be observed that this simplification leads to over-conservative response predictions at 

critical speeds. E.g., at V1
2
 the simplified derived maximum acceleration is more than four times 

larger than the one based on load model considering each axle load separately. 

In the next study the bridge length L is reduced to 30 m. The fundamental frequency increases 

to f1=3.0 Hz. All other bridge and excitation parameters remain unchanged. From Fig. 5 it can be 

seen that the maximum peak response is associated to the fundamental critical speed V1
1
. It is 

interesting to observe that the maximum response of 12.5 m/s
2
 is much larger than for the 

previously considered bridge with 3.8 m/s
2
.  

The peak accelerations at four locations of a continuous two-span bridge with spans of 

L=35.0 m are shown in Fig. 6. All other parameters are identical to single-span bridges. The 

considered locations are both mid-spans and three-quarters of the spans. In order to cover the same 
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frequency range as in the corresponding single-span bridge the first five modes are included in the 

time-history analyses. At both mid-spans the response is larger compared to the peak acceleration 

at the three-quarter points except for the critical speed V3
3
. 

Comparison of the outcomes of this bridge with the results of the corresponding single-span 

bridge reveals that in the lower speed range the response of the single-span bridge is larger. 

However, at the critical speed V2
1
 of the two-span bridge, which is associated to the second mode, 

the peak acceleration at mid-span of the first field exceeds the corresponding response of the 

single-span bridge dramatically, see Fig. 7. The reason is that this mode does not existent for the 

single-span bridge. 

 

 

5. Response spectra 
 
5.1 Characteristic parameters 
 
The excitation frequency of the moving train can be expressed in terms of the constant speed as 

πv/L (Yang et al. 1997, Yang et al. 2004). Relating this excitation frequency to the fundamental 

natural beam frequency 1 leads to the definition of the non-dimensional speed parameter S (Yang 

et al. 1997, Yang et al. 2004) 

     1 12

v v
S

L f L




   (12) 

In several studies, e.g., (Yang et al. 1997, Yang et al. 2004), the dynamic response due to the 

effect of inertia has been presented by an impact factor, which expresses the magnification of the 

dynamic response compared to the corresponding static one. This factor is only useful when 

response quantities (such as the deflection w and the bending moment My) are considered, which 

also arise in statically loaded structures. However, the bridge acceleration  is an essential 

response parameter, which also needs to be assessed by the practicing engineer (Museros and 

Alarcon 2005). Hence, for the present study the following non-dimensional response quantities are 

utilized (Hauser and Adam 2007, Salcher 2010) 

     max

AL
w w

F


  ,  

3
max

EJ
w w

F L
  ,  

max

y
y

M
M

F L
  (13) 

Here, maxF  is the maximum axle load of the considered load model. A non-dimensional 

characteristic length of this dynamic problem is the ratio L/d composed of bridge-span L and car 

length d. 

As previously discussed, the peak response depends strongly on the critical speed. Since a train 

may pass a bridge with a speed starting from (almost) zero to a maximum admissible (non-

dimensional) speed S0=maxS, the maximum response in the speed range 0≤S≤S0 is of particular 

interest 

    0 0 0( ) max ( )w S w S S   ,  0 0 0( ) max ( )w S w S S  ,  ,0 0 0( ) max ( )y yM S M S S   (14) 

In the following the peak response is specified as a function of the maximum admissible speed 

parameter S0 according to the definitions of Eq. (12). 
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Fig. 8 Definition of the peak acceleration response.  is the peak response at a certain speed 

parameter S.  denotes the peak response in range of speed parameters 0≤S≤S0 

 

 

Note that the response at the speed parameter S (except 0( ) ( )w S w S ) is of no significance for 

estimating the peak bridge response. Fig. 8 illustrates for an example problem the difference 

between  and . 

 
5.2 Definition of response spectra 
 

These parameters permit the three-dimensional representation of the dynamic peak response as 

function of the maximum admissible speed parameter S0 and the normalized length L/d. Since S0 

contains the fundamental bridge frequency, the results are referred to as response spectra (in 

analogy to earthquake engineering). Here, response spectra are presented for peak displacement, 

peak acceleration, and peak bending moment. The concept of response spectra for railway bridges 

has been introduced simultaneously by Hauser and Adam (2007), Fink and Mähr (2007). Note that 

already Yang et al. (1997) have presented the actual dynamic impact factor as function of the 

speed parameter S and the normalized length L/d for the mid-span deflection. The advancement of 

the response spectrum methodology compared to the presentation of (Yang et al. 1997) is that the 

maximum peak response, which occurs in the complete range of admissible speeds at any point, is 

specified. Response spectra based on a set of European high-speed trains and on the HSLM-A 

trains are derived separately for single-span and continuous two-span bridges. 

In the compilation process of response spectra various time history analyses for various bridge- 

train combinations are performed. In each analysis the response at closely spaced discrete points of 

the span is determined, and the peak response is recorded (which may occur at other locations than 

at mid-span). From this it follows that the spectral response quantities of the spectra cannot be 

related to a certain beam location. The peak response is plotted against the corresponding 

maximum admissible speed parameter S0 and the normalized length L/d. Response spectra are 

determined for each train model. Subsequently, envelope spectra are determined for two groups of 

trains: Envelope response spectra based on a set of European high-speed trains and on the HSLM-

A trains are derived separately for single-span and two-span bridges. If envelope response spectra 

are readily available, the practicing engineer can assess quick and yet accurate the peak bridge  
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(a) Acceleration response spectrum, single-span beam, European train set 

 
(b) Acceleration response spectrum, Two-span beam, European train set 

Fig. 9 Acceleration response spectrum for the European train set. Prestressed concrete. (a) Single-span 

beam. (b) Two-span beam 

 

 

response without performing time-expensive time history analyses considering various real bridges 

- train combinations. 

 

5.3 Representation of response spectra 
 

Exemplarily, in Fig. 9 three-dimensional envelope response acceleration spectrum for the 

European rail set are shown both for a single-span (Fig. 9(a)) and a two-span bridge (Fig. 9(b)) of 

prestressed concrete. Thus, according to Table 1 viscous damping is selected for prestressed 

concrete. The three-dimensional representation of the non-dimensional acceleration provides an 

excellent overview of the global response behavior. From Fig. 9(a) can be readily observed that 

there are domains of wave like local maxima, which are repeated periodically. For short bridges, 

i.e., for small length ratios L/d, there is a “wave crest”, where the acceleration increases with a  
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(a) Acceleration response, single-span beam, European train set 

 
(a) Acceleration response, two-span beam, European train set 

Fig. 10 Contour plot of the acceleration response spectrum for the European train set. Prestressed 

concrete. Functions 1S  and 2S , which separate the critical resonance domain from the less 

vulnerable domain with respect to resonance. (a) Single-span beam. (b) Two-span beam 

 

 

sharp gradient until the maximum peak acceleration is attained. Furthermore, with increasing L/d 

the peak values are shifted to smaller values of S0. Consequently, with increasing L/d trains with 

lower speeds may drive longer bridges into resonance.  

Comparison of Figs. 9(a) and 9(b) reveals that there is a distinct difference in the response 

characteristics between a single-span and a two-span bridge. The total maximum peak acceleration 

in the displayed range of L/d and S0 is larger for the single-span bridge. This outcome is 

reasonable, because the continuous transition of the two-span beam at the central support makes 

this structure stiffer compared to the single-span bridge. Moreover, in the two-span beam at low 

ratios L/d two “wave crest” with a sharp increase of the acceleration response can be seen 

separated by a “wavetrough”, which does not exist for the single-span structure. Fig. 10 shows the 

corresponding contour plots of these response spectra. 

Both in Fig. 10(a) and Fig. 10(b) a full line, which follows the empirically determined speed 

function 

     

1

1
9

10

L
S

d


 

  
 

 (15) 

separates the critical resonance domain from the less vulnerable domain with respect to resonance. 

For speed parameters 0 1S S  the response increases sharply due to resonance. In order to avoid  

592



 

 

 

 

 

 

Dynamic effect of high-speed trains on simple bridge structures 

0

20

40

60

80

0 1 2 3 4

S0 = 0.25

S0 = 0.35

S0 = 0.45

S0 = 0.55

S0 = 0.65

S0 = 0.75

w
0

L / d

S0 = 0.30

S0 = 0.40

S0 = 0.50

S0 = 0.60

S0 = 0.70

(a) HSLM-A train set, peak accelerations 

0

20

40

60

80

0 1 2 3 4
L / d

w
0

(d) European train set, peak accelerations 

0

0.2

0.4

0.6

0.8

0 1 2 3 4
L / d

w
0

(b) HSLM-A train set, peak displacements 

0

0.2

0.4

0.6

0.8

0 1 2 3 4
L / d

w
0

(e) European train set, peak displacements 

0

2

4

6

8

0 1 2 3 4
L / d

M
y,

0

(c) HSLM-A train set, peak bending moments 

0

2

4

6

8

0 1 2 3 4
L / d

M
y,

0

(f) European train set, peak bending moments 

Fig. 11 Response spectra displayed as function the length ratio L/d for selected values of the maximum 

admissible speed parameter S0. Single-span beam. Prestressed concrete. Left column: Envelope spectra for 

the HLSM-A train set. Right column: Envelope spectra for the European train set. (a), (d) Normalized peak 

accelerations. (b), (e) Normalized peak displacements. (c), (f) Normalized peak bending moments 

 

 

excessive dynamic response amplitudes it is recommended to design a railway bridge such that the 

maximum admissible speed parameter is smaller than the speed function 0 1S S , if feasible. 
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Then, detailed dynamic analysis need not to be performed.  

Additionally, for continuous two-span bridges with equal spans a second speed function can be 

identified empirically 
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 (16) 

Along this line, which is depicted in Fig. 10(b) by dashed line, a further sharp increase of the 

peak response can be observed. As it can be seen from Fig. 9(b) for values of 0 2S S  additional 

“wave crests” arise.  

Response spectra assist the practicing engineers in evaluating the expected dynamic peak 

response in the design process of railway bridges without performing time-consuming time history 

analyses. However, a two-dimensional representation of response spectra is more appropriate for 

practical applications. Thus, in Fig. 11 for single-span bridges made of prestressed concrete the 

non-dimensional peak response quantities displacement, acceleration, and bending moment are are 

plotted against the length ratio L/d for a series of discrete maximum admissible speed parameters 

S0. In the left column the envelope spectra for the set of HLSM-A train models are displayed, the 

results of the right column are based on the set of European high-speed trains. The speed 

parameter considered starts at S0=0.25 and ends at S0=0.75, the length ratio L/d ranges between 0.2 

and 4.0. These parameters cover “all” realistic bridges combined with “all” realistic train speeds. 

Note that the individual graphs of Figure 11(d) represent vertical sections of Figure 9(a) at 

constant values of S0. 

It is observed that the maximum response amplitudes are in the vicinity of L/d = 1. Further 

local maxima correspond to length ratios L/d of 2, 3 and 4. Peak acceleration spectra exhibit more 

local maxima than spectra of the displacements and bending moments. From this outcome it can 

be concluded that higher mode effects are more important for bridge accelerations. Comparison of 

the results in the left and the right column reveal that the maximum peak responses for the set of 

European trains are larger than for the HSLM-A train set. The difference is about 10% for all 

considered response quantities. However, some local maxima are larger for the set of HSLM-A 

trains. Thus, in the design process response spectra for both train sets should be utilized. 

Alternatively, in Fig. 12 corresponding response spectra for the peak acceleration are illustrated 

as function of the maximum admissible speed parameter S0 for selected values of the length ratio 

L/d. It can be seen that with increasing ratio L/d the peak values increase step-wise. However, this 

representation is less favorable compared to the one of Fig. 11, because in the presentation of Fig. 

12 the global response behavior is “hidden”. 

In Fig. 13 two-dimensional envelope response spectra for two-span bridges for discrete values 

of S0 are shown. Vertical sections of Fig. 9(b) at constant values of S0 correspond to the results 

displayed in Fig. 13(b). Comparison of the results of the left and right column proves evidence that 

the European train set induce for all considered quantities the largest maximum peak response at 

L/d = 0.7. However, in particular for length ratios L/d larger than 1.5 there are domains, where the 

peak response due to the HSLM-A set is larger.  

From the comparison of the individual non-dimensional response quantities derived for single-

span and two-span bridges for a speed parameter of S0 = 0.75 it can be observed that the peak 

response of a single-span beam is larger in almost the entire domain of considered ratios L/d, 

compare with Fig. 14. Thus, for a rough conservative check of the peak response spectra for 

single-span bridges can be utilized, if no spectra of two-span structures are available. 
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Fig. 12 Response spectra displayed as function of the maximum admissible speed parameter S0 for selected 

values the length ratio L/d. Single-span beam. Prestressed concrete. Normalized peak accelerations. (a) 

Envelope spectra for the HSLM-A train set. (b) Envelope spectra for the European train set 
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Fig. 13 Response spectra displayed as function the length ratio L/d for selected values of the maximum 

admissible speed parameter S0. Two-span beam. Prestressed concrete. Left column: Envelope spectra for 

the HLSM-A train set. Right column: Envelope spectra for the European train set. (a), (d) Normalized 

peak accelerations. (b), (e) Normalized peak displacements. (c), (f) Normalized peak bending moments 
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Fig. 14 Response spectra displayed as function the length ratio L/d for the maximum admissible speed 

parameter S0=0.75. Single-span versus two-span beam. Prestressed concrete. Envelope spectra for the 

HLSM-A train set and for the European train set. (a) Normalized peak accelerations. (b) Normalized 

peak displacements. (c) Normalized peak bending moments 
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Fig. 15 Normalized peak accelerations as function the length ratio L/d for the maximum admissible 

speed parameter S0=0.75. Single-span beam. Prestressed concrete. Variation of viscous damping 

according to Tabel 1 

 
Table 1 Damping parameters according to Eurocode 1 (2003) 

Bridge type 
Viscous damping n [%], n =1, 2, 3,.. 

Span L<20 m Span L≥20 m 

Steel and steel-concrete composite 0.5 + 1.25 (20 – L) 0.5 

Prestressed concrete 1.0 + 0.07 (20 – L) 1.0 

Reinforced concrete 1.5 + 0.07 (20 – L) 1.5 

 

 

Finally, the effect of viscous damping is quantified. Up to here, all presented results are based 

on the assumption that the bridges are made of prestressed concrete. According to Table 1, steel 

and steel-concrete bridges exhibit smaller viscous damping values, while damping of reinforced 

concrete is larger. Fig. 15 shows acceleration response spectra of a single-span bridge for a speed 

parameter S0=0.75. The outcomes of steel and steel-concrete bridges, prestressed bridges, and 

reinforced concrete bridges are based on viscous damping ratios according to Table 1. Obviously, 

steel and steel-concrete bridges exhibit the largest peak responses. At length ratio L/d = 0.8 

 for a steel and steel-concrete bridge,  for a prestressed concrete bridge, and 

 for reinforced concrete bridge. It is noted that response spectra for all damping 

coefficients specified in Table 1 can be found in (Salcher 2010). 

 

5.4 Application 
 

As an example problem the peak acceleration of a single-span prestressed concrete bridge with 

the following parameters is to be determined: L = 25.0 m, A = 20,000 kg/m, f1 = 3.00 Hz. The 

train model HSLM-A4 passes the bridge (Eurocode 1 2003): d = 21 m, vmax = 250 km/h 

(= 69.4 m/s), Fmax = 190,000 N. The design speed v0 of the bridge corresponds to vmax. The non-

dimensional input parameters can be derived as: L/d = 1.19, S0 = 69.4/2/3.0/25 = 0.46 (compare 

with Eq. (12)). From response spectrum of Fig. 11(a) follows: . By rearranging the first of 

Eq. (13) from this value the expected peak bridge acceleration can be derived as 
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max 2
0

190,000
max 40 15.2m/s

20,000 25.0

F
w w

AL
  


  (17) 

Accordingly, the peak displacement and peak bending moment can be determined utilizing the 

response spectra displayed in Figs. 11(b) and 11(c), respectively. 

 

 

6. Conclusions 
 

The presented study shows that higher modes may have a significant contribution on the 

dynamic acceleration response of bridges, in particular for the peak bridge acceleration of 

continuous two-span bridges. Merging the individual axle loads into a single concentrated force 

leads at resonance speeds to an over-conservative estimate of the bridge response. A novel 

representation of the non-dimensional dynamic peak response of railway bridges as function of a 

maximum admissible train speed parameter and a non-dimensional bridge length is introduced. 

The presented peak response spectra allow the practicing engineer a fast and yet accurate 

quantification of the dynamic peak response without conducting time-consuming and 

computationally expensive dynamic time history analyses. 
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