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Abstract.  This paper attempts to investigate the nonlinear dynamic analysis of strong nonlinear problems 
by proposing a new analytical method called Hamiltonian Approach (HA). Two different cases are studied to 
show the accuracy and efficiency of the method. This approach prepares us to obtain the nonlinear frequency 
of the nonlinear systems with the first order of the solution with a high accuracy. Finally, to verify the results 
we present some comparisons between the results of Hamiltonian   approach and numerical solutions using 
Runge-Kutta’s [RK] algorithm. This approach has a powerful concept and the high accuracy, so it can be 
apply to any conservative nonlinear problems without any limitations. 
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1. Introduction 

 

Many phenomena and physical and engineering problems are modeled such as nonlinear 

differential equations. Therefore, solving these nonlinear differential equations is very important to 

obtain more information from the behavior of the system or the problem. We have two approaches 

to solve differential equations, if it is a linear differential equation, it is possible to prepare an 

analytic solution for it and if it is a nonlinear one, we should use numerical solutions because it is 

very difficult to have an analytical. Recently, a particular attention has been done to the new 

developed methods to prepare an approximate analytic solution of nonlinear differential equations 

such as : variational iteration method (Wazwaz 2007), Homotopy perturbation method (Shou 

2009) energy balance method (Ganji et al. 2009),max-min method (Zeng 2009), amplitude 

frequency- formulation (Ren et al. 2011), parameter expansion method (Kaya et al. 2009) and 

other methods (Bayat et al. 2011a, b, c, 2012a, b, 2013a, b, c, 2014a, b, c, Pakar et al. 2011a, 

2012a, b, 2013a, b). 

Through the continuous investigations of these methods, many scientific works have been 

conducted as follows. Bayat et al. (2012a) considered the recent new approaches and have a 

complete comparison in their valuable review paper, obtaining nonlinear frequency of the 

problems by numerical and recent new approximate approaches for different kinds of nonlinear 
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systems is one of the advantages of their study. Fu et al. (2011) prepares an analytical solutions by 

means of energy balance method for nonlinear vibration of micro electromechanical system. They 

governed the nonlinear equation based on Euler-Bernoulli hypothesis. They reduced a PDE 

problem to an ODE by using Galerkine method and then applying the energy balance method. The 

results are in good agreement with numerical ones. Pirbodaghi et al. (2010) tried to analysis 

symmetrically conservative Multi-Degree Of Freedom (MDOF) System with cubic nonlinearity. 

The second-order coupled differential equations were solved analytically with homotopy analysis 

method. Beléndez et al. (2008) investigated a modified version of homotopy perturbation method 

for to achieve high order solution of nonlinear oscillator with discontinuities. Bayat et al. (2012b) 

obtained the nonlinear frequency of tapered beams by means of hamiltonian approach. They 

considered the effect of significant parameters on the nonlinear frequency of the system. 

In this study, we have considered a new application of Hamiltonian approach for two high 

nonlinear mechanical cases. Some comparisons are presented to show the accuracy of the 

proposed method. It has been indicated that the Hamiltonian approach could be easily extended to 

any conservative nonlinear oscillators. 

   

 

2. Basic idea of Hamiltonian approach 
 

Previously, He (2002) had introduced the energy balance method based on collocation and the 

Hamiltonian. This approach is very simple but strongly depends upon the chosen location point. 

Recently, He (2010) has proposed the Hamiltonian approach to overcome the shortcomings of the 

energy balance method. This approach is a kind of energy method with a vast application in 

conservative oscillatory systems. In order to clarify this approach, consider the following general 

oscillator 

          ( , , ) 0 u f u u u  (1) 

With initial conditions 

             (0) , (0) 0. u A u  (2) 

Oscillatory systems contain two important physical parameters, i.e., the frequency ω and the 

amplitude of oscillation A. It is easy to establish a variational principle for Eq. (1), which reads 

           

/4
2

0

1
( ) ( )

2

T

J u u F u dt
 

   
 

  (3) 

Where T is period of the nonlinear oscillator, ∂F/∂u=f. 

In the Eq. (3), 21

2
u is kinetic energy and F(u) potential energy, so the Eq. (3) is the least 

Lagrangian action, from which we can immediately obtain its Hamiltonian, which reads 

            

21
( ) ( ) constant

2
  H u u F u  (4) 

From Eq. (4), we have 

             
0






H

A
 (5) 
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Introducing a new function, ( )H u , defined as 

                  

4

2

0

1 1
( ) ( )

2 4

 
   

 


T

H u u F u dt TH  (6) 

Eq. (5) is, then, equivalent to the following one 

            

0
  

 
  

H

A T
 (7) 

or 

            
 

0
1

H

A 

  
    

 (8) 

From Eq. (8) we can obtain approximate frequency-amplitude relationship of a nonlinear 

oscillator. 

 

 
3. Applications 
 

In order to assess the advantages and the accuracy of the Hamiltonian approach, we will 

consider the following examples: 

 

3.1 Example 1 
 

 We first consider the following nonlinear oscillator as it is shown in Fig. 1 (Nayfe 1973) 

     
3

2 2 2

0

1
1 0 0 , 0 0

2
      

R g u
Ru u Ru u u u A u

l
  (9) 

 

 

 

Fig. 1 The geometry of the problem 
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where 

            

2 2

0

1 1

, , 1    
mk Rg x

R u
m l m l

  (10) 

The Hamiltonian of Eq. (9) is constructed as 

          

2 2
4

2 2 2

0

1 1 1

2 2

1

82
    

Rg u
H u R u u u

l
  (11) 

Integrating Eq. (12) with respect to t from 0 to T/4, we have 

          

 
4

/4
2 2 2

0
0

2 21 1 1 1

2 2 82

T Rg u
H u u R u u u dt

l


 
     

 
  (12) 

Assume that the solution can be expressed as 

          ( ) cos( )u t A t  (13) 

Substituting Eq. (13) into Eq. (12), we obtain 

     

         
/4 22 2 2 4 2 2 2 2 2 4 4

0

2 2 4 2 2 2 2 2 4 4

0

2 4 2 2 4

0

/2

0

0

1 1 1 1
sin sin cos cos cos

2 2 2 8

1 1 1 1
sin sin cos cos cos

2 2 2 8

1 1 1 3

8 32 8 128

T Rg
A t R A t t A t A t

l

Rg
A t R A t t A t A

H dt

t
l

Rg

d

A R A
l

t

A A



       

  
 

 
   

 

   

 

 
  

 

 
  

 

 

 

  




 (14) 

Setting 

           
 

2 2 3 2 3

0

1 1 1 3
0

4 81 4 32
  

  
   

   

Rg
A R A

H

A
A A

l


    


 (16) 

Solving the above equation, an approximate frequency as a function of amplitude equals 

               

2

2

2

0

2 2

3 81

2 2
,




HA

RgA l

RlA l


  (17) 

According to Eqs. (13) and (17), we can obtain the following approximate solution 

            

2 2

0

2 22

3 81

2
) co

2
( s

RgA l

A R
u A

l l
t t

 
 

  




 (18) 

 

3.2 Example 2 
 

Consider the motion of a mass m moving without friction along a circle of radius R that is 

rotating with a constant angular velocity  about its vertical diameter as shown in figure 2. The 

forces acting on the mass are gravitational force mg, the centrifugal of the circle O and the reaction 

force .The following governing equation has been obtained (Nayfe 1973) 
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Fig. 2 Particle moving without friction on a rotating circular 

 

 

       
         2 2 2 sin cos sin 0, 0 , 0 0     m R m R mgR A       (19) 

By using the Taylor’s series expansion for cos(θ(t)), sin(θ(t)) and by some manipulation in Eq. 

(19) we can re-write Eq. (19) in the following form 

         
   3 2 4 31 1 1 1

1
6 2 2

0 0 0 0
6

, ,
4

A        
    

        
 

  
  

  (20) 

Where  

                 
2 2 2, ,mR mR mgR       (21) 

The Hamiltonian of Eq. (20) is constructed as 

             

2 2 4 6 8 2 41 1 1 1 1 1 1

2 2 6 48 1152 2 24
H               (22) 

Integrating Eq. (22) with respect to t from 0 to T /4, we have; 

          
  2 2 4

4

0

6 8 2 4
/ 1 1 1 1 1 1 1

2 2 6 48 1152 2 24
      
 

  
 


T

H dt         (23) 

Assume that the solution can be expressed as 

                
   cost A t   (24) 

Substituting Eq. (24) into Eq. (23), we obtain 
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       

     

2 2 2 2 2 4 4 6 6

8 8 2 2 4 4

2 2 2 2 4 4 6 6

8 8 2 2

/

4

4

0

1 1 1 1
sin cos cos cos

2 2 6 48

1 1 1
cos cos cos

1152 2 24

1 1 1 1
sin cos cos cos

2 2 6 48

1 1 1
cos cos cos

1152 2 24

 
 
 
 
 
 

   

  

   

 






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A t A t A t A t

A t A t A t

A t A t

H dt

A t A t
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     

    
  

  
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4

2 2 4 6 8

/2

0

2 41 1 1 5 35 1 1

8 8 32 1536 294912 8 128
 

 
 

   

 
 



 
 




t

A A A A A

dt

A A



     


     

 

(25) 

Setting 

   
 

2 3 5 7 31 1 1 5 35 1 1

4 4 8 256 36864 4 321
A A A A

H
A A

A
A       




  
 

  
     







 (26) 

Solving the above equation, an approximate frequency as a function of amplitude equal to 

           

2 4 6 21 5 35 1

2 64 9216 8
A A A A

     

   


 
      (27) 

By substituting Eq.(21) in to Eq.(27) we have: 

            

2 2 2 2 2 4 2 61 1 5 35

8 2 64 9216
HA

g g
A A A A

R R
           (28) 

Hence, the approximate solution can be readily obtained: 

             

2 2 2 2 2 4 2 61 1 5 35
( ) cos

8 2 64 9216

g g
t A A A A A t

R R


 
           

 
 (29) 

 

 

4. Results and discussions 
 

In this section to verify the results some comparison are presented to show the accuracy of the 

proposed approach with numerical method. 

In example 1: Table 1 is the comparison of the Hamiltonain approach and the numerical 

solution using Runge-Kutta algorithm (Appendix A) for two different cases. 

Case 1: 
1 210, 20, 10, 2, 200, 0.6g m m l k A       

Case 2: 
1 210, 15, 3, 3, 250, 0.9g m m l k A       

 The results show the high accuracy of the solution for whole domain. 

 Fig. 3 is displacement comparison for different parameters; it is obvious from the figure that 

the behavior of the oscillation is periodic as a function of amplitude. Fig. 4 is shown the effect of 

spring stiffness on the frequency of the system with different amplitudes. By increasing the 

stiffness of the spring the nonlinear frequency is increased too, it is decreased by increasing of the  
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Table 1 Comparison of time history response of Hamiltonian approach with Runge-Kutta for example 1 

 
Case 1  Case 2 

 

Time 

Displacement  

Error % 

 Displacement  

Error % HA RK4 HA RK4 

0 0.6 0.6 0  0.9 0.9 0 

0.05 0.4954 0.5016 1.2291  0.6048 0.6170 1.9686 

0.1 0.2182 0.2259 3.4305  -0.0871 -0.0910 4.3076 

0.15 -0.1351 -0.1410 4.2204  -0.7219 -0.7317 1.3432 

0.2 -0.4413 -0.4499 1.9015  -0.8832 -0.8841 0.1092 

0.25 -0.5937 -0.5943 0.0967  -0.4651 -0.4770 2.4792 

0.3 -0.5392 -0.5428 0.6784  0.2580 0.2687 3.9967 

0.35 -0.2967 -0.3052 2.7721  0.8119 0.8180 0.7523 

0.4 0.0492 0.0525 6.3687  0.8332 0.8367 0.4172 

0.45 0.3779 0.3883 2.6733  0.3080 0.3163 2.6093 

0.5 0.5749 0.5771 0.3829  -0.4192 -0.4341 3.4282 

0.55 0.5716 0.5731 0.2750  -0.8715 -0.8741 0.2960 

0.6 0.3690 0.3770 2.1309  -0.7521 -0.7587 0.8644 

0.65 0.0378 0.0374 1.0297  -0.1394 -0.1413 1.3056 

0.7 -0.3065 -0.3178 3.5411  0.5647 0.5804 2.6942 

0.75 -0.5441 -0.5487 0.8480  0.8985 0.8988 0.0351 

0.8 -0.5919 -0.5922 0.0407  0.6428 0.6516 1.3454 

0.85 -0.4335 -0.4402 1.5130  -0.0344 -0.0404 0.1174 

0.9 -0.1240 -0.1264 1.8839  -0.6891 -0.7025 1.9035 

0.95 0.2287 0.2397 4.5685  -0.8918 -0.8917 0.0073 

1 0.5018 0.5093 1.4759  -0.5095 -0.5182 1.6898 

 

 

(a) 

 

(b) 

Fig. 3 Comparison of analytical solution of displacement with the RK4 solution for cases (a) g=10, 

m1=20, m2=10, l=2, k=100, A=0.3 (b) g=10, m1=20, m2=5, l=2, k=50, A=0.6 
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Fig. 4 Effect of stiffness on nonlinear frequency for various parameter of amplitude g=10, m1=15, m2=5, l=2 

 

 

Fig. 5 Effect of sprig stiffness on phase plane for g=10, m1=15, m2=20, l=5, A=0.5 

 

 
amplitude. Fig. 5 shows the phase plan of the problem by considering the effects of Effect of sprig 

stiffness. 
For the second example:  In this example as same as the previous one, we obtain the same 

results and compare them with the numerical solutions. 

The results for different time steps are shown in Table 2. The results have a very good 

agreement with Runge-kutta’s algorithm for two different cases for example 2. 

Case 1: 10, 2, 1.5, 2, / 3g m R A        
Case 2: 10, 2, 0.4, 2.2, / 2g m R A        
Figure 6 indicates the periodical behavior of the system in two different cases in which the 

angles and the radius are different.  Figure 7 is shown the effect of velocity of the system respect to 

the amplitude and nonlinear frequency of the system. By decreasing of the velocity the nonlinear 

frequency is increased. Increasing of the amplitude reached that to the peak point and after that it 

has a rapid decreasing by increasing the amplitude of the system. Figure 8 is the phase plan curve 

by considering the effect of rotating circle radius on phase plan. 
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Table 2 Comparison of time history response of Hamiltonian approach with Runge-Kutta for example 2 

 
Case 1  Case2 

 

Time 

Angular displacement  

Error % 
 

Angular displacement  

Error % HA RK4 HA RK4 

0 1.0472 1.0472 0  1.5708 1.5708 0 

0.2 0.9729 0.9688 0.4251  1.0833 1.1130 2.6698 

0.4 0.7605 0.7489 1.5548  -0.0766 -0.0753 1.8397 

0.6 0.4403 0.4283 2.7942  -1.1890 -1.2097 1.7116 

0.8 0.0575 0.0567 1.3852  -1.5633 -1.5649 0.1011 

1 -0.3334 -0.3211 3.8325  -0.9673 -1.0059 3.8414 

1.2 -0.6770 -0.6619 2.2781  0.2292 0.2250 1.8688 

1.4 -0.9245 -0.9168 0.8470  1.2834 1.2955 0.9353 

1.6 -1.0409 -1.0402 0.0653  1.5410 1.5471 0.3974 

1.8 -1.0095 -1.0081 0.1410  0.8420 0.8892 5.3024 

2 -0.8349 -0.8269 0.9664  -0.3796 -0.3724 1.9214 

2.2 -0.5418 -0.5311 2.0255  -1.3656 -1.3701 0.3321 

2.4 -0.1719 -0.1697 1.2946  -1.5039 -1.5176 0.9019 

2.6 0.2225 0.2107 5.6157  -0.7088 -0.7638 7.2050 

2.8 0.5853 0.5674 3.1611  0.5263 0.5160 2.0003 

 

 
(I) 

 
(II) 

Fig. 6 Comparison of analytical solution of angular displacement with the RK4 solution for cases (I)
 

g=10, m=2, R=0.8, Ω=1.8, A= π/6   (II) g=10, m=2, R=0.3, Ω=1.2, A= π/3 

 

 

Fig. 7 Effect of amplitude on nonlinear frequency for various parameter of velocity, g=10, R=2 
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Fig. 8 Effect of rotating circle radius on phase plan for g=10, m=2, Ω=2, A= π/3 

 

 

5. Conclusions 
 

In this study, we tried to propose a new analytical approach for nonlinear vibration equations. 

The successful application of the Hamiltonian approach for two strong nonlinear cases shows that, 

this new approach could give a reasonable and accurate solution form the problem and also could 

give engineering sense in nonlinear system. In fact, we can suggest Hamiltonian approach for 

nonlinear conservative problems without any limitations to obtain nonlinear response of the 

problem and also obtain the effect of significant parameters on the nonlinear behavior of the 

system. 
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Appendix A. Basic idea of Runge-Kutta  
 

The Runge-Kutta method is an important iterative method for the approximation solutions of 

ordinary differential equations. These methods were developed by the German mathematician 

Runge and Kutta around 1900. For simplicity, we explain one of the important methods of Runge-

Kutta methods, called forth-order Runge-Kutta method.  

Consider an initial value problem be specified as follows 

          
   0 0, ,u f t u u t u   (A.1) 

u is an unknown function of time t which we would like to approximate. Then RK4 method is 

given for this problem as below 
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for n=0, 1, 2, 3, . . . , using 
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 (A.3) 

Where un+1 
is the RK4 approximation of u(tn+1). The fourth-order Runge-Kutta method requires 

four evaluations of the right hand side per step h. 
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