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Abstract.  Nonlinear bending of super-elliptical plates of uniform thickness under uniform transverse 
pressure was investigated by the Ritz method. The material was assumed to be homogeneous and isotropic. 
The contribution of the boundary conditions at the point supports was introduced by the Lagrange 
multipliers. The solution was obtained by the Newton-Raphson method. The influence of the location of the 
point supports on the central deflection was highlighted by sensitivity analysis. An approximate relationship 
between the central deflection and the super-elliptical power was obtained using the method of least squares. 
The critical points where the maximum deflection may develop, and the influence of nonlinearity were 
highlighted. The nonlinearity was found to be sensitive to the aspect ratio. The accuracy of the algorithm 
was validated by comparing the central deflection with the solutions of elliptical and rectangular plates. 
 

Keywords:  super-elliptical; plate; nonlinear; bending; large deflection 

 
 
1. Introduction 

 

If the deflection of a plate is beyond a certain level (i.e., w≥0.3t) the relation between external 

load and deflection is no longer linear (Szilard 2004). It is well known that when the deflections 

are of the same order as the thickness, the membrane forces play a more significant role in 

carrying the load (Alwar and Nath 1976, Gorji and Akileh 1990), and thus, the analysis must be 

extended to include the additional effects produced by large deflections (Szilard 2004).  

The nonlinear analysis of plates has been a challenging topic in applied mechanics due to the 

coupled governing differential equations. Since closed form solutions are only available for a 

limited number of cases depending on the geometry, boundary conditions, material properties, and 

loading, the problem involving nonlinearity has been attacked by means of various numerical 

methods (Silverman and Mays 1972, Civalek 2005, Malekzadeh 2007, Dai et al. 2013).  

Plates of various shapes have been studied by different methods using several plate theories 

(Mukhopadhyay and Bera 1994, Bayer et al. 2002, Ö zkul and Türe 2004, Artan and Lehmann 

2009, Orakdöğen et al 2010, Kutlu and Omurtag 2012, Chen 2013). As far as the author knows, in 

the literature devoted to the nonlinear analysis of plates, except the only paper in which clamped 

and simply supported boundaries were examined (Zhang 2013), no study has been published on 

the large deflection of super-elliptical plates. Super-elliptical plates include a large variety of plate 
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shapes ranging from an ellipse to a rectangle with rounded corners. Rectangular plates with 

rounded corners enable to diffuse and dilute stress concentrations unlike plates with sharp corners 

(Liew et al. 1998). However, although they are extensively used as structural and machine 

elements in aviation, shipbuilding, bridge construction and in applications of aerospace and naval 

engineering where the deflections are no longer small (Zhang and Kim 2006), the number of 

studies dealing with them has been rather limited (Asemi et al. 2013, Ceribasi 2013, 

Hasheminehad et al. 2013, Jazi and Farhatnia 2012, Tang et al. 2012, Algazin 2011, Wu and Liu 

2005, Zhou et al. 2004, Pedersen 2004, Liew and Feng 2001, Chen et al. 1999, Lim et al. 1998, 

Wang et al. 1994, and the references cited therein). Besides, plates resting on isolated points such 

as telescope mirrors, solar panels, printed circuit boards, or slabs supported by columns are 

frequently encountered in structural design. In the current study the nonlinear bending behavior of 

a super-elliptical plate undergoing large deflection, and supported symmetrically by four 

intermediate point supports on the diagonals was examined. Sensitivity analysis was made to 

determine the influence of the position of the point supports on the maximum deflection. Since the 

bending moments are crucial in design, the support location minimizing the bending moments at 

the supports and at the center of the plate was investigated. The large deflection bending response 

of the plate was compared with the linear solution, and the influence of the thickness on the central 

deflection was observed. Some of the numerical results were presented for future reference. The 

accuracy of the algorithm was checked with the solutions of elliptical and rectangular plates, and 

good agreement was obtained.  

 
 

2. Formulation 
 

In Cartesian coordinates the boundary contour of a super-elliptical plate can be defined by 

(Liew et al. 1998)  
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The strain energy of the plate due to bending, the strain energy of the plate due to strain of the 

middle surface, the potential energy of the lateral load, and the bending moments can be written as 

(Timoshenko and Woinowsky-Krieger 1959) 

 
2 2

1 1

2 2
2 2 2 2 2

1 2 2 2 2
2 1

2

                
               

                   
 
x y

x y

D w w w w w
V dx dy

x yx y x y
        (2) 

 

2 22 2

2
22

22

2 2

1

4

1 1
22 1 2 2

              
           
               

    
     
     

                
                               



u u w v v w

x x x y y y

w w

x y

Et
u v v w u wV

x y y x x y


 

2 2

1 1

2 2

2
1

2
2 2

 
 
 
 
 
 
 
 
 
 
 
 
                                
  

                                            

 
x y

x y

dx dy

u u v v

y y x x

u w w v w w

y x y x x y



 

334



 

 

 

 

 

 

Large deflection analysis of point supported super-elliptical plates 

 

2 22 2

2
22

22

2 2

1

4

1 1
22 1 2 2

              
           
               

    
     
     

                
                               



u u w v v w

x x x y y y

w w

x y

Et
u v v w u wV

x y y x x y


 

2 2

1 1

2 2

2
1

2
2 2

 
 
 
 
 
 
 
 
 
 
 
 
                                
  

                                            

 
x y

x y

dx dy

u u v v

y y x x

u w w v w w

y x y x x y



 

(3) 

2 2

1 1

2 2 2 2

3 2 2 2 2
, ,

      
          

      
 
x y

x y

x y

w w w w
V q wdxdy m D m D

x y y x
         (4) 

 

3
2 2 2

1 2 1 2 2
, ,

12 1
         



k k kb Et
x x a y y a x D

a 
          (5) 

4

, , , ,     
w qa u v x y

W U V X Y
t Dt t t a b


           (6) 

2 2
2 2, , , 1, 1     

k kq a t
Q c e X Y X

E b a
           (7) 

3 3
, , ,   x x y y x x y y

a a D D
M m M m M M

D D a q a q
             (8) 

 Hence, substituting the non-dimensional variables into Eqs. (2)-(4)  
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are obtained. Due to the symmetry of the plate geometry, a quarter of the plate is used in the 

computations.  

 

 

3. Ritz method 
 

The plate is considered to be resting on symmetrically distributed four point supports located at 

the vertices of a concentric rectangle. The positions of the point supports which prevent both 

deflection and in-plane displacements are defined by 

1 2,   x yd a d b                           (13) 

where dx and dy denote the distance from the central axes of the plate (Fig. 1).  

The procedure of the Ritz method can be summarized in two steps. First, an admissible solution 

which satisfies the Dirichlet (essential) boundary conditions and contains unknown coefficients is 

chosen (Kwon and Bang 2000). The admissable functions must be at least p times differentiable 

(Monterrubio and Ilanko 2012). Next, the functional into which the assumed solution is substituted 

is minimized and the unknown coefficients are found (Kwon and Bang 2000). However, if it is 

difficult to construct a series of assumed functions that satisfies all the prescribed boundary 

conditions, the Ritz method combined with Lagrange multipliers is employed (Szilard 2004). 

Therefore, the geometrical boundary conditions at the point support at (X, Y)=(Δ1, Δ2) 
are satisfied 

by the subsidiary conditions G1, G2, G3 given by (Brebbia 1984) 
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where λ1, λ2, λ3 are the Lagrange multipliers. The transverse deflection surface W, and the 
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horizontal displacements U, and V are constructed as two dimensional complete polynomials given 

by 

/ 2 / 2
2 2( ) 2 2( )

0 0 0 0

( , ) , ( , ) 

   

    
d m d m

n m n n m n
mn mn

m n m n

W W X Y A X Y U U X Y X B X Y     (16) 

/ 2
2 2( )

0 0

( 2)( 4)
( , ) ,

8



 

 
  

d m
n m n

mn

m n

d d
V V X Y Y C X Y r             (17) 

where the unknowns Amn, Bmn, Cmn 
and λi are determined from the minimum potential energy 

principle by (Wang et al. 2002)  

0, 0, 0, 0, 1,2,3,
   

    
   mn mn mn i

F F F F
i

A B C 
        (18) 

Eq. (18) yields a system of nonlinear equations due to V2. The components of linear and 

nonlinear coefficient matrices CL, and CN are introduced by 

 
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where 
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Fig. 1 Geometry of the plate and the location of the point supports 
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4. Newton-Raphson method 
 

The Newton-Raphson (NR) method is one of the best known iterative techniques in finding the 

roots of nonlinear equations. The algorithm requires the evaluation of two functions per iteration: 

the Jacobian matrix which involves the partial derivatives, and the function vector. Depending on 

the initial guess the NR method may converge fast to the solution. After each iteration, 

convergence is checked, and the values of the unknowns are updated. The iterations stop when 

convergence is obtained, and the error is less than the desired tolerance value provided that the 

maximum number of iterations is not exceeded (Mathews 1992).  

In the current paper totally 3r+3 unknowns were considered, and the zero vector (i.e., the linear 

solution) was assumed to be the initial guess. For each iteration the Euclidian norm of the function 

vector was determined, and Ea, and Er were computed. When Ea≤ε, or |Er|≤ε, the iterations were 

stopped.  
 
 
5. Numerical results 
 

The integration with respect to “X” was evaluated numerically by the 12-point Gaussian 

quadrature technique (Maron and Lopez 1991). The analysis was made for 0.1≤∆≤0.7 where 

∆=∆1=∆2. Unless otherwise stated the semi-minor axis, the nondimensional load, and the Poisson’s 

ratio were considered to be b=1m, Q=5×10
-10

, and μ=0.3. As a special case, a corner supported 

plate was examined for 21/ 2k  . Convergence studies were performed and d=8 was found to be 

sufficient for admissible accuracy. The results of the central deflection computed in the present 

study for varying support location were compared with those of elliptical (k=1) and rectangular 

(k=250) plates, and good agreement was obtained (Table 1). The location of the point where the 

maximum deflection develops was highlighted by comparing the deflections at the points Rj(X, Y) 

where j=0,1,2,3. The coordinates of these points are R0(0,0), R1(1,0), R2(0,1), )2/1 ,2/1( 22
3

kkR . 

Therefore, the deflections α0, α1, α2, 
α3 where the subscripts denote the points R0, R1, R2, R3, 

respectively, were computed for varying support location (Table 2). The central deflection of a 

 

 

  

Fig. 2 Influence of the thickness on the cental 

deflection (c=1) 

Fig. 3 Influence of the thickness on the cental 

deflection (c=2) 
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Fig. 4 Comparison of the linear and nonlinear 

solutions (c=1, Q=5×10
-7

) 

Fig. 5 Comparison of the linear and nonlinear 

solutions (c=2, Q=5×10
-7

) 

 
Table 1 Convergence study and comparison of the central deflection results for a point-supported super-

elliptical plate under uniform pressure (t=0.01 m) 

k c ∆ μ d α0 Reference Geometry of the plate 

1 1 k2 2/1  0.17 

4 0.0816 

 

Circular plate 

6 0.0835 

8 0.0849 

 
0.0861 (Williams and Brinson 1974) 

0.0858 (Altekin 2010) 

1 1 2/9.0  0.17 

4 0.0456 

 

Circular plate 

6 0.0490 

8 0.0491 

 
0.0500 (Williams and Brinson 1974) 

0.0499 (Altekin 2010) 

250 1 k2 2/1  0.28 

4 0.4060 

 

Square plate 

6 0.4053 

8 0.4055 

 
0.4052 (Shanmugam et al. 1988) 

0.4060 (Altekin 2010) 

250 1 k2 2/1  0.30 

4 0.4052 

 

Square plate 

6 0.4045 

8 0.4048 

 

0.4096 (Wang et al. 2002)
*
 

0.4080 (Rajaiah and Rao 1978) 

0.4052 (Altekin 2010) 

1 2 k2 2/1  0.30 

4 0.0475 

 
Elliptical plate 

6 0.0491 

8 0.0495 

 0.0497 (Altekin and Altay 2008) 

                                           

*The results obtained from Wang et al. (2002), Shanmugam et al. (1988), and Szilard (1974) were scaled by 

the author. 
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Table 1 Continued 

20 2 k2 2/1  0.30 

4 0.2123 

 
Super-elliptical plate 

6 0.2132 

8 0.2134 

 0.2140 (Altekin and Altay 2008) 

250 2 k2 2/1  1/6 

4 0.2227 

 
Rectangular plate 

6 0.2238 

8 0.2239 

 0.2240 (Szilard 1974) 

 
Table 2 Location of αmax for varying support location (t=0.05, μ=0.3) 

c Δ α0 α1 α2 α3 

1 

Δ=0.1    αmax=α3 

0.2≤Δ≤0.4  αmax=α1 for k=1  αmax=α3 for k≥2 

Δ=0.5  αmax=α0 for k≤2  αmax=α3 for k≥3 

0.6 Δ≤0.7 αmax= α0    

2 

0.1≤Δ≤0.4  αmax=α1   

Δ=0.5  αmax=α1 for k≥2 αmax=α2 for k=1  

0.6≤Δ≤0.7   αmax=α2  

 
Table 3 Central deflection α0 for varying support location (c=1, t= 0.05, μ=0.3) 

2k Δ=0.1 Δ=0.2 Δ=0.3 Δ=0.4 Δ=0.5 Δ=0.6 Δ=0.7 

2 -0.0035 -0.0096 -0.0111 -0.0054 0.0087 0.0341 0.0780 

4 -0.0042 -0.0123 -0.0162 -0.0116 0.0023 0.0282 0.0716 

6 -0.0044 -0.0131 -0.0178 -0.0137 0.0001 0.0260 0.0696 

8 -0.0044 -0.0134 -0.0184 -0.0146 -0.0009 0.0250 0.0687 

10 -0.0045 -0.0135 -0.0188 -0.0151 -0.0015 0.0244 0.0681 

12 -0.0045 -0.0136 -0.0190 -0.0154 -0.0018 0.0241 0.0678 

14 -0.0045 -0.0136 -0.0191 -0.0156 -0.0020 0.0239 0.0676 

16 -0.0045 -0.0137 -0.0192 -0.0158 -0.0021 0.0238 0.0675 

18 -0.0045 -0.0137 -0.0193 -0.0159 -0.0022 0.0237 0.0674 

20 -0.0045 -0.0137 -0.0193 -0.0159 -0.0023 0.0236 0.0673 

22 -0.0045 -0.0137 -0.0193 -0.0160 -0.0024 0.0235 0.0672 

24 -0.0045 -0.0137 -0.0194 -0.0160 -0.0024 0.0235 0.0672 

26 -0.0045 -0.0137 -0.0194 -0.0161 -0.0024 0.0235 0.0672 

28 -0.0045 -0.0137 -0.0194 -0.0161 -0.0025 0.0234 0.0671 

30 -0.0045 -0.0137 -0.0194 -0.0161 -0.0025 0.0234 0.0671 

32 -0.0045 -0.0137 -0.0194 -0.0161 -0.0025 0.0234 0.0671 

34 -0.0045 -0.0137 -0.0194 -0.0161 -0.0025 0.0234 0.0671 

36 -0.0045 -0.0137 -0.0195 -0.0162 -0.0025 0.0234 0.0671 

38 -0.0045 -0.0137 -0.0195 -0.0162 -0.0025 0.0234 0.0671 

40 -0.0045 -0.0137 -0.0195 -0.0162 -0.0026 0.0233 0.0670 

100 -0.0045 -0.0137 -0.0195 -0.0163 -0.0026 0.0233 0.0670 

400 -0.0045 -0.0137 -0.0195 -0.0163 -0.0027 0.0233 0.0670 
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Table 4 Central deflection α0 for varying support location (c=2, t=0.05, μ=0.3) 

2k Δ=0.1 Δ=0.2 Δ=0.3 Δ=0.4 Δ=0.5 Δ=0.6 Δ=0.7 

2 -0.0015 -0.0045 -0.0057 -0.0030 0.0050 0.0206 0.0471 

4 -0.0019 -0.0060 -0.0086 -0.0068 0.0008 0.0167 0.0437 

6 -0.0021 -0.0065 -0.0095 -0.0082 -0.0007 0.0152 0.0424 

8 -0.0021 -0.0067 -0.0099 -0.0088 -0.0014 0.0145 0.0418 

10 -0.0021 -0.0068 -0.0101 -0.0091 -0.0017 0.0141 0.0414 

12 -0.0022 -0.0068 -0.0103 -0.0093 -0.0019 0.0139 0.0412 

14 -0.0022 -0.0069 -0.0103 -0.0094 -0.0021 0.0137 0.0411 

16 -0.0022 -0.0069 -0.0104 -0.0095 -0.0022 0.0136 0.0410 

18 -0.0022 -0.0069 -0.0104 -0.0095 -0.0022 0.0135 0.0409 

20 -0.0022 -0.0069 -0.0104 -0.0096 -0.0023 0.0135 0.0408 

22 -0.0022 -0.0069 -0.0105 -0.0096 -0.0023 0.0134 0.0408 

24 -0.0022 -0.0069 -0.0105 -0.0096 -0.0023 0.0134 0.0408 

26 -0.0022 -0.0069 -0.0105 -0.0096 -0.0024 0.0134 0.0407 

28 -0.0022 -0.0069 -0.0105 -0.0096 -0.0024 0.0134 0.0407 

30 -0.0022 -0.0069 -0.0105 -0.0097 -0.0024 0.0134 0.0407 

32 -0.0022 -0.0069 -0.0105 -0.0097 -0.0024 0.0133 0.0407 

34 -0.0022 -0.0069 -0.0105 -0.0097 -0.0024 0.0133 0.0407 

36 -0.0022 -0.0069 -0.0105 -0.0097 -0.0024 0.0133 0.0407 

38 -0.0022 -0.0070 -0.0105 -0.0097 -0.0024 0.0133 0.0407 

40 -0.0022 -0.0070 -0.0105 -0.0097 -0.0024 0.0133 0.0407 

100 -0.0022 -0.0070 -0.0106 -0.0097 -0.0025 0.0133 0.0406 

400 -0.0022 -0.0070 -0.0106 -0.0097 -0.0025 0.0132 0.0406 

 
Table 5 Coefficients determined by the method of least squares (c=1, t=0.05) 

Δ h1 h2 h3 h4 

0.1 -0.0041263 -1.8096×10
-5

 1.8797×10
-7

 -3.6212×10
-10

 

0.2 -0.012063 -8.5564×10
-5

 8.7633×10
-7

 -1.6823×10
-9

 

0.3 -0.015762 -0.00018558 1.8827×10
-6

 -3.6056×10
-9

 

0.4 -0.011129 -0.00025066 2.5317×10
-6

 -4.8431×10
-9

 

0.5 0.0027313 -0.00026279 2.6557×10
-6

 -5.0811×10
-9

 

0.6 0.028503 -0.00025617 2.5902×10
-6

 -4.9563×10
-9

 

0.7 0.072139 -0.00025284 2.5559×10
-6

 -4.8903×10
-9

 

 
Table 6 Coefficients determined by the method of least squares (c=2, t=0.05) 

Δ h1 h2 h3 h4 

0.1 -0.0019079 -1.3608×10
-5

 1.3914×10
-7

 -2.6701×10
-10

 

0.2 -0.0058758 -5.4293×10
-5

 5.5282×10
-7

 -1.0597×10
-9

 

0.3 -0.0083431 -0.00010988 1.1145×10
-6

 -2.1342×10
-9

 

0.4 -0.0065945 -0.00015446 1.563×10
-6

 -2.9913×10
-9

 

0.5 0.0010771 -0.00017536 1.7732×10
-6

 -3.393×10
-9

 

0.6 0.016854 -0.00017587 1.7759×10
-6

 -3.3969×10
-9

 

0.7 0.043857 -0.00015756 1.587×10
-6

 -3.0338×10
-9

 
 

342



 

 

 

 

 

 

Large deflection analysis of point supported super-elliptical plates 

  

Fig. 6 αx at the center (c=1, Q=5×10
-10

) Fig. 7 αx at the support (c=1, Q=5×10
-10

) 

 

  

Fig. 8 αx at the center (c=2, Q=5×10
-10

) Fig. 9 αx at the support (c=2, Q=5×10
-10

) 

 

  

Fig. 10 αy at the center (c=2, Q=5×10
-10

) Fig. 11 αy at the support (c=2, Q=5×10
-10

) 
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super-elliptical plate undergoing large deflection was presented for future reference (Tables 3-4). 

The influence of the thickness on the central deflection was investigated for four different values 

of t as shown on the horizontal axes of Figs. 2-3. The contribution of the nonlinearity on the 

central deflection was highlighted for 0.02 m≤t≤0.08 m (Figs. 4-5). The influence of the support 

location on the bending moment was examined for 0.1≤∆≤0.7 (Figs. 6-11). 

 

 

6. Conclusions 
 

It can be deduced that the perimeter of the plate is more critical than the center in terms of 

deflection, and the central deflection becomes dominant if ∆>0.5 and c=1 (Table 2). The results 

reveal that ∆  0.5 yields the minimum absolute central deflection for k>1 (Tables 3-4). The 

influence of the super-elliptical power on the central deflection tends to weaken for k>10. For 

practical considerations the central deflection computed for k=15 for varying support location may 

be assumed to be the central deflection of a rectangular plate (Tables 3-4). The central deflection 

of a super-elliptical plate subject to fully applied uniform transverse pressure can be estimated 

approximately by the relationship given by  

2 3
0 1 2 3 4 , 2    h h h h k                         (23) 

where h1, h2, h3, h4 are the scalar coefficients which may be determined by the method of least 

squares (Tables 5-6).  

The relation between the thickness and the central deflection is observed to be nonlinear. The 

influence of the super-elliptical power on the central deflection decreases if the thickness is raised 

(Figs. 2-3). The nonlinearity becomes significant for W0>0.5 for c=1, and W0>0.4 for c=2 (Figs. 4-

5). The nonlinearity is observed to be sensitive to the aspect ratio.  

As Δ is raised, the influence of k on xM to be developed at the center and at the support 

decreases (Figs. 6-11). ∆ 0.45, and ∆ 0.67 can be considered to be the optimum positions of the 

point support which minimize the bending moments at the supports and at the center of the plate 

(Figs. 6-11). The influence of the super-elliptical power on the bending moments αx, and αy is 

negligible for (i) ∆  0.6 (Fig. 6), and ∆  0.5 (Fig. 10) at the center of the plate and (ii) ∆ 0.66 

(Fig. 7), and 0.6   at the support (Fig. 11). As Δ is raised, the influence of k on the bending 

moments weakens (Figs. 8-9). 
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Nomenclature 
 
D, E, F flexural rigidity, Young’s modulus, modified functional 

Q, U, V, W nondimensional uniform pressure, nondimensional horizontal displacement 

 along x-axis, nondimensional horizontal displacement along y-axis, 

 nondimensional deflection 

Amn, Bmn, Cmn coefficients of the shape functions 

CL, CN  linear coefficient matrix, nonlinear coefficient matrix  

Ea, Er absolute error, relative error 

G1, G2, G3 subsidiary conditions 

Mx, My  nondimensional bending moments per unit length of the plate 

R0, R1, R2, R3 the critical points where the maximum deflection may develop  

V1, V2, V3 strain energy of the plate due to bending, strain energy of the plate due  

 to strain of the middle surface, potential energy of the lateral load  

a, b, c  semi-major axis, semi-minor axis, aspect ratio  

d degree of the complete two-dimensional polynomial function  

p order of the highest differential operator in the functional 

e, k, q parameter of thickness, super-elliptical power, uniform pressure  

r, t  number of terms in the shape function, thickness of the undeformed plate  

u, v, w horizontal displacement along x-axis, horizontal displacement along  

 y-axis, deflection  

dx, dy half span along x-axis, half span along y-axis  

mx, my  bending moments per unit length of the plate  
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ε, μ tolerance value, Poisson’s ratio  

αj, λi nondimensional deflection (j=0, 1, 2, 3), Lagrange multiplier (i=1, 2, 3)  

Δ1, Δ2  nondimensional half span parallel to x-axis, nondimensional half span parallel  

 to y-axis  
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