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Abstract.  In the first part of this paper, the influences of some of crack parameters on natural frequencies 
of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using 
Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. 
Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and 
multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial 
Neural Networks (ANNs) are designed for prediction of FGB's Cracks’ location and depth. Particle Swarm 
Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The 
accuracy of two training methods’ results are investigated. 
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1. Introduction 

 

In mechanical systems, crack is a damage that if develops, may cause catastrophic failure. 

Therefore identification of cracks is a very important issue. In recent years, from non-destructive 

methods of study cracked structures, researchers have paid great attention to vibration analysis 

methods. Many numerical, analytical, and experimental studies have been done in this field. A 

Crack causes a local flexibility in structure which has some influences on dynamic behavior. For 

example, it changes the mode shapes and reduces natural frequencies. Analysis of these effects can 

was used for crack detection by Douka et al. (2003). Dimarogonas (1996) studied methods of 

investigation of cracked structures. Dimarogonas (1976), Paipetis and Dimarogonas (1986) 

modeled a crack using local flexibility and evaluated the equivalent stiffness utilizing fracture 

mechanics. Adams and Cawley (1979) developed an experimental technique to estimate crack 

depth and location using natural frequencies. In another investigation Chan and Dimarogonas 
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(1980) presented methods which relate crack depth to natural frequencies when the crack location 

is known. These methods can be used for detection of cracks in different structures. Goudmunson 

(1982) presented a method for prediction of changes of natural frequencies caused by faults such 

as cracks, notches, etc. Shen and Taylor (1991) presented a method based on minimizing 

difference between measured data and data obtained from analytical study for identification of 

cracks in an Euler-Bernoulli beam. Masoud et al. (1998) studied vibrational characteristics of a 

fixed-fixed beam which contains a symmetric crack considering coupling effect of crack depth and 

axial load.  

In recent decade some investigations have been done on vibrational behavior of multi-cracked 

structures. Sekhar (2008) summarized different papers on multiple cracks, the respective 

influences, and identification methods in some structures such as beams, pipes, rotors etc. Lee 

(2009) used FEM to solve forward problem in a multi-cracked beam. In this paper an inverse 

problem is solved iteratively for locations and depths of the cracks using the Newton-Raphson 

method. Patil and Maiti (2003) identified multiple cracks using frequency measurements. Their 

procedure presented a linear relationship explicitly between changes in natural frequencies and 

damage parameters. Mazanoglu and Yesilyurt (2009) performed a vibration analysis of multi-

cracked variable cross section beams using the Rayleigh–Ritz approximation method. Binici 

(2005) presented a parametric study on the effect of cracks and axial force levels on 

eigenfrequencies. A new method for natural frequency analysis of beams with an arbitrary number 

of cracks has been developed by Khiem and Lien (2001). Cam et al. (2008) studied vibrations of 

cracked beam as a result of impact shocks to obtain information about crack location and depth of 

beams. Also Lu and Liu (2012) proposed a response sensitivity-based model updating method to 

identify both a single and multiple cracks of a beam from dynamic responses.  

A new technique often used for identification of damage in the recent two decades is artificial 

neural network. Wu et al. (1992) used multi-layer feed forward neural network to identify the 

location of fault in a simple frame. Wang and He (2007) developed a numerical simulation and 

model experiment upon a hypothetical concrete arch dam for the crack identification based on 

reduction of natural frequencies using a statistical neural network. In another study, Kao and Hung 

(2003) presented a two-step method for detection of cracks using ANN. The first step is 

identification of damaged and undamaged system situations and the second step is damage 

detection in structures. In the second step a trained ANN is applied to produce free vibration 

response of system. After that changes of amplitude and periods between results are compared. 

Also Chen et al. (2003) applied the ANN for damage detection in structures when excitation signal 

is not available. 

Optimization algorithms have been frequently applied for identification of damages in 

structures in recent years. Xiang et al. (2008) presented a method for detection of crack location 

and depth in shafts. They construct Rotating Rayleigh-Timoshenko and Rayleigh-Euler beam 

elements of B-Spline Wavelet on the interval to discretize slender shaft and stiff disc, respectively. 

They modeled a cracked shaft using wavelet-based elements to obtain precise frequencies. Then 

they used the first three natural frequencies of the structures in crack detection process and 

identified the normalized crack location and depth by means of GA. In another work, He et al. 

(2001) formulated crack identification of a shaft as an optimization problem and using GA to 

search for a solution. 

A new type of materials that are generally made of a mixture of ceramic and a metal to satisfy 

demand of a ultra-high-temperature environment and to eliminate interface problems are known as 

Functionally Graded Materials (FGMs). Since the concept of FGMs has been introduced in 1980s, 
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these new kinds of materials have been employed in many engineering application fields, such as 

space vehicles, aircrafts, defense industries, electronics and biomedical sectors, to eliminate stress 

concentrations, enhance bonding strength and relax residual stresses. Because of the high cost of 

productions and importance of applications of FGMs, study behavior of the cracked Functionally 

Graded (FG) structures is very important. Yu and Chu (2009) employed a ρ-version of FEM to 

evaluate transverse vibration characteristics of a cracked FGB. Kitipornchai et al. (2009) 

investigated nonlinear vibration of cracked FGBs using Timoshenko beam theory and von-Karman 

geometric nonlinearity. They assumed that material properties vary exponentially through beam 

thickness. Yang and Chen (2008) presented a theoretical investigation in free vibration and elastic 

buckling of cracked FGBs containing open edge cracks by using a rotational spring model and the 

Bernoulli-Euler beam theory. They obtained analytical solutions of natural frequencies, critical 

buckling load, and corresponding mode shapes for FGBs containing open edge cracks with 

different end supports. In another study a non-linear dynamic analysis of FGB with pinned-pinned 

supports due to a moving harmonic load using Timoshenko beam theory with the von--Karman’s 

non-linear strain-displacement relationships was presented by Simsek (2010). He assumed that 

material properties of a beam vary along thickness according to a power-law form. 

In this paper, the effects of some crack factors on natural frequencies of a cantilever FGB with 

single and multiple cracks are investigated using FEM. The results of the FGB are then compared 

with a homogeneous beam. After that a procedure is presented for the crack identification in 

FGBs. In this procedure BEP and PSO algorithms are applied separately for ANN training for 

crack detection in the FGB. Finally the results of these training methods are analyzed. 

 

 

2. Mathematical background 
 

In this paper, a crack is assumed to be perpendicular to beam surface and always remains open. 

The cracked beam can be treated as two sub-beams which are connected by an elastic rotational 

spring with no mass and no length at the crack section according to the rotational spring model. 

The following formulation relates the cracked section bending stiffness Kt to the flexibilityG . 

1
tK

G


                                                                   
(1)

 

According to Broek (1986) the flexibility of the beam due to the presence of edge crack can be 

calculated from 
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Where M1 
is the cracked section bending moment.  Stress Intensity Factor (SIF) under mode I 

is a function of crack depth, beam geometry, external loading and material properties which it was 

derived by Erdogan and Wu (1997) for an FGM stripe with an open edge crack under bending as 
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Where Ti is the first kind Chebyshev polynomial and )43(   By evaluating boundary  
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Geometry of the Cracked FGBFig. 1  

 
Table 1 Characteristics of the FGB 

Length-Height ratio (L/h) 20 

(E2/E1) ratio 0.01 

(E1) (GPa) 70 

Density (ρ1) (kg/m3) 2780 

Poisson’s ratio 0.33 

 

 

integrals using the Gaussian quadrature and solving the resulting functional equation by a 

collocation method, the constants αi can be determined. 

   

 

3. Modal analysis using finite element method 

 
Considered structure in this paper is a cantilever FGB. The elastic modulus E, shear modulus μ 

and mass density ρ
 
are taken to be in the form of Eq. (4). In these equations, E0, μ0 and ρ0 are 

values of these parameters at y=0, and β=ln(E2/E1)/h is a constant representing material gradient, 

where h is height of the beam and E1 and E2 are elastic modulus in top and bottom of the FGB. A 

schematic view of the FGB has been shown in Fig. 1. Table 1 shows material and geometrical 

characteristic of the FGB. 

0 0 0( ) , ( ) , ( )y y yE y E e y e y e       
                                       

 (4) 

In following examples, 2D FEM of the FGB with and without crack is established using a 

commercial package ANSYS. The FGB is assumed to consist of 30 layers with same heights 

containing isotropic homogeneous materials. The material properties are constant in each layer and 

are equal to the value of middle point of the corresponding layer. The multi-layer plate structure is 

discretized using a 8-node quadrilateral plane stress element (PLANE 183), which has two degrees 

of freedom at each node. Three first natural frequencies of structure in different conditions of the 

crack in this study were obtained using a modal analysis of ANSYS. Then the calculated data is 

validated in comparison with the result of paper of Yang et al. (2008) for cracked and un-cracked  
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(a) 

 
(b) 

Fig. 2 Data validation in comparison with Yang et al. for cracked FGM beam: non-dimensional 

natural frequency of cracked FGB versus non-dimensional crack location (a) First natural 

frequency (b) Second natural frequency 

 

 

FGB which is shown in Fig. 2. The properties of structure used in paper of Yang et al. have been 

tabulated in Table 1. 

 

 

4. Effects of cracks’ parameters on natural frequencies of FGB 
 

Variations of different cracks parameters such as depth, location, and number of cracks are 

considered to assess their effects on natural frequencies of structure. 

Figs. 3(a)-(c) indicate effect of variation of location of the crack on first three natural 

frequencies of beam for two different constant depths of cracks. In this figure both FG and 

homogeneous beams have been investigated. It should be mentioned that the natural frequencies 

have been considered based on the ratio of data of beam in cracked form to un-cracked form. As 

can be seen from Fig. 3(a), the non-dimensional natural frequencies for both two depths of cracks 

have a monotonic growth with the increase of crack location for both FG and homogeneous 

beams.  
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(a) 

 
(b) 

 
(c) 

Fig. 4 The first three non-dimensional natural frequencies of the cantilever FGB versus non-

dimensional crack depth for different crack locations and material properties 
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(a) 

 
(b) 

 
(c) 

Fig. 5 The first three non-dimensional natural frequencies of the cantilever FGB with two 

cracks versus the second non-dimensional crack location for different material properties 
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(a) 

 
(b) 

 
(c) 

Fig. 6  The first three non-dimensional natural frequencies of the cantilever FGB with two 

cracks versus the second non-dimensional crack depth for different material properties 
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Figs. 4(a)-(c) illustrate effects of variation of the crack depth on first three natural frequencies 

of beam for two different constant crack locations. As can be seen from Fig. 4, the non-

dimensional natural frequencies for both locations of cracks have a monotonic decline with the 

increase of non-dimensional depth of crack for both FG and homogeneous beams. 

Figs. 5 (a)-(c) show the influences of second crack location on first three natural frequencies of 

beam with two cracks for two different constant depths of cracks. In this part, depth and location 

of one of the cracks has been considered to be constant, and the location of the second crack has 

been changed along the length of beam. As can be seen from Figs. 5(a)-(c), the non-dimensional 

natural frequencies for both depths of cracks have a monotonic rise with the increase of non-

dimensional location of cracked FGB. Also as shown in Fig. 5(b) and 5(c), with increase of 

location of the crack, the second and third non-dimensional natural frequencies of beam for both 

cracks depths and for both material types of beam (FG and homogeneous) does not have a 

monotonous trend. 

Figs. 6 (a)-(c) indicate effect of variation of the second crack depth on first three natural 

frequencies of the beam with two cracks. This time depth and location of one crack is constant, 

and the depth of the second crack is changed. As can be seen from Fig. 6, the non-dimensional 

natural frequencies have a monotonic decrease with the increase of non-dimensional depth of the 

crack for both FG and homogeneous beams. 

From Figs. 3-6 it can be concluded that, curves of homogeneous beam are always higher than 

FGB. 

 

 

5. Crack identification using soft computing methods 
 

5.1 Artificial Neural Network 
 
The ANN used in this study is a MLFF neural network consists of an input layer, some hidden 

layers and an output layer. A schematic of the MLFF neural network is shown in Fig. 7. Usually, 

knowledge in ANNs is stored as a set of connection weights. Process of modification of 

connection weights, using a suitable learning method is called training. In this study two distinct  

 

 

 

Fig. 7 Schematic diagram of a typical MLFF neural-network architecture 
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ANNs are employed for prediction of the crack locations and depths. The ANNs consist of one 

input layer with 3 neurons, one hidden layer with 6 neurons and one output layer with one neuron. 

Transfer functions for neurons of hidden and output layers are defined as Eq. (5), called Tansig 

function. 

2
( ) 1;

[1 exp( 2 )]
f n

n
 

 
                                                           (5) 

 

5.2 Back-Error propagation algorithm 
 
The BEP is the most widely used learning algorithm of MLFF neural networks. This learning 

method was proposed by McClelland and Rumelhart (1986) in a ground-breaking study originally 

focused on cognitive computer science. 

In this work the structure of the ANN includes three layers: input, hidden, and output layers. 

Values of wab represent weights between the input and the hidden layer. Values of wbc represent 

weights between the hidden and the output layer. The operation of BEP consists of three stages: 

1- Feed-forward stage 

( ). ( );bcv w n y n                                                             (6) 

2
( ) ( ( ))) ;

1 exp[ (2 )]
o n v n

v n
 

 
                                            (7) 

Where o is the output, u is the input, y is the output of hidden layer and φ is the activation 

function. 

2- Back-propagation stage 

( ) ( ). [ ( )] [ ( ) ( )].[ ( )].[1 ( )];n e n v n d n o n o n o n                                 (8) 

Where δ represents local gradient function, e shows error function, o and d means actual and 

desired outputs, respectively. 

1- Adjust weighted value 

( 1) ( ) ( ) ( ) ( ). ( );ab ab ab abw n w n w n w n n o n                               (9) 

Where η is the learning rate. Repeating these three stages led to a value of the error function 

that will be zero or a constant value. 

 

5.3 Particle swarm optimization algorithm 
 
PSO is a population based stochastic optimization technique developed by Eberhart and 

Kennedy (1995), inspired by social behavior of bird flocking or fish schooling. This algorithm 

shares many similarities with evolutionary computation techniques such as GA. The optimization 

procedure is started with a population of random solutions and searches for optima by updating 

generations. Unlike GA, PSO has no evolution operators such as mutation and crossover. In PSO, 

potential solutions that are named “particles” fly through the space of problem by following 

current optimum particles. Each particle keeps track of its coordinates in the space of problem 

which are associated with the best solution (best fitness) it has achieved up to now, called “pbest”.  
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Fig. 8  Flowchart of the PSO 

 

 

Another “best” value that is tracked using PSO is the best value, achieved so far by any particle in 

the neighbors of the particle. This parameter is called “lbest”. When a particle takes all the 

population as its topological neighbors, a global best, named “gbest”, is the best value. The PSO 

concept at each time step consists of changing the velocity of each particle toward its “pbest” and 

“lbest” locations. Acceleration is weighted using a random term, by separate random numbers 

being generated for acceleration toward “lbest” and “pbest” locations. A schematic of optimization 

procedure of PSO is illustrated in Fig. 8. 

 

5.4 Crack detection procedure 
 
For detection of crack, first of all, MLFF ANNs with 3, 6 and 1 neuron in input, hidden and 

output layers are created. First three natural frequencies of the FGB in 22 different crack 

conditions are applied to ANNs as the input and the corresponding locations and depths are 

applied as targets to first and second networks, respectively. The data applied to ANNs are 

obtained using FEM on the FGB that are modelled by 20 different layers. Training the ANNs is 

done using two different algorithms of BEP and PSO using MATLAB. The BEP algorithm is used 

with 2000 iterations. In ANN training using the BEP method, 70%, 20% and 10% of data were 

used for train, verification and test of network. BEP training procedure for prediction of location 

and depth of cracks using MATLAB, are plotted in Figs. 9(a) and 9(b), respectively. In training  
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Table 2 The predicted crack location and depth using ANN and different training methods 

Crack Number 1
st 

2
nd 

3
rd 

4
th

 Average 

Actual 
Depth 0.3 0.4 0.25 0.35 

 
Location 0.5 0.3 0.4 0.4 

BEP 

Depth 0.287 0.396 0.248 0.368 

Location 0.536 0.303 0.375 0.394 

Error of Depth (%) 1.33 0.357 0.235 1.793 0.93 

Error of Location (%) 3.59 0.31 2.51 0.61 1.75 

PSO 

Depth 0.279 0.391 0.245 0.344 
 

Location 0.562 0.299 0.394 0.415 

Error of Depth (%) 2.09 0.87 0.42 0.54 0.98 

Error of Location (%) 6.18 0.01 0.54 1.57 2.10 

 

 
(a) location of cracks 

 
(b) depth of cracks 

Fig. 9  BEP Training procedures of ANNs for identification of cracks 
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(a) location of cracks 

 
(b) depth of cracks 

Fig. 10 PSO based ANNs training for identification of cracks 

 

 

process using PSO algorithm, weights of ANNs were considered as optimization variables and 

sum of square of differences between the output and the target values of ANNs were assumed as 

cost functions. Considered PSO algorithm has a population size of 100, 2000 iterations and 31 

optimization variables. The trained ANNs are tested for 4 different conditions of cracks as 

tabulated in Table 2. Training procedure of ANNs using PSO algorithm for prediction of location 

and depth of cracks are illustrated in Figs. 10(a) and 10(b), respectively. 

As can be found from this table, average errors in prediction of crack locations for the BEP and 

PSO algorithms are 1.75% and 2.10%, respectively. Location Errors were computed as differences 

between actual and predicted location of crack on length of beam in percent. Also the average 

errors in prediction of cracks depths for BEP and PSO algorithms are 0.93% and 0.98%, 

respectively. Depth Errors were computed as differences between actual and predicted depth of 
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cracks on depth of beam in percent. Therefore, it can be concluded that for the considered ANNs 

and assumed condition, the ANNs are trained by these training methods predict the cracks' depths 

more accurate than cracks’ locations. Also as can be seen in Table 2, there is good agreements 

between actual and predicted results. 

 

 

6. Conclusions 
 

In the first part of this study, the effects of some crack factors on natural frequencies of a 

cracked cantilever FG, and homogeneous beams is studied. A cantilever beam is modeled using 

the FEM and the results are validated using an available reference. Then its natural frequencies are 

calculated for different crack conditions. In the case of FGB with a single crack, the influences of 

crack location and depth on natural frequencies of FG and homogeneous beam are investigated. 

The same procedure is done for variation of crack locations and depths for multi-cracked FGB. In 

the second part, a procedure consisting of three steps based on ANN for detection of crack location 

and depth in FGB is presented. In the first step, three natural frequencies of a FGB for different 

locations and depths of cracks are calculated using the FEM that was obtained in the first part of 

this study. In the second step, two MLFF neural networks are created and the BEP and PSO 

algorithms are used to train them based on the FEM data. In the third step, trained ANNs are used 

to predict the characteristics of some cracks in the FGB. The first ANN is used to predict the crack 

locations and the second ANN for the crack depths. Finally it is concluded that for the assumed 

condition of training algorithm and considered ANNs, both algorithms can predict the cracks' 

locations and depth accurately. Furthermore, the crack depth can be predicted more accurately than 

the crack locations using both training methods. 
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