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Abstract.  In this study, three approximate analytical methods have been proposed to prepare an accurate 
analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and 
their applications to nonlinear discontinuous equations have been completely presented and discussed.  
Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy 
Balance Method (EBM) , Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that 
the proposed approaches are very close together and could be easily extend to conservative nonlinear 
vibrations. 
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1. Introduction 

 

The general nonlinear oscillators with discontinuities is 

          
( , , ) 0u f u u u     (1) 

with initial conditions u(0)=A  and  u'(0)=0. Here f is a known discontinuous function. If there is 

no small parameter in the equation, the traditional perturbation methods cannot be applied directly.  

Many researchers have been works on new approximate analytical solutions for nonlinear 

equations without possible small parameters. Many new approaches have been proposed to 

overcome the traditional perturbation methods such as  :homotopy perturbation method (Shaban et 

al. 2010, Bayat 2013a), Hamiltonian approach (Bayat et al. 2011a, 2012a, 2013a, b, 2014a, b), 

energy balance method (He 2002, Bayat et al. 2011b, Pakar et al. 2011a, b, Mehdipour 2010), 

variational iteration method (Dehghan 2010, Pakar et al. 2012), amplitude frequency formulation 

(Bayat 2011c, 2012b, Pakar et al. 2013a, He 2008), max-min approach (Shen et al. 2009, Zeng et 

al. 2009), variational approach (He 2007, Bayat et al. 2012c, 2013c, 2014c, Pakar et al. 2012b), 

and the other analytical and numerical (Xu 2009, Alicia et al. 2010, Bor-Lih et al. 2009, Wu 2011, 

Odibat et al. 2008, He 1999, Ganji et al. 2009, He 2004, Pakar et al. 2014). 

The main objective of this paper is to approximately solve nonlinear oscillators with fractional 
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potential by applying the Energy Balance Method (EBM), Variational Iteration Method (VIM) and 

Hamiltonian Approach (HA). Some comparisons of the results are presented to have better 

comparison between the methods. It has been demonstrated that these three methods could be 

strong mathematical tools for solving nonlinear vibration equations. 

 

 

2. Basic idea of energy balance method 
 

In order to clarify this method, consider the following general oscillator (He 2002) 

             
 ( ) 0u f u t    (2) 

In which u and t are generalized dimensionless displacement and time variables, respectively. 

Its variational principle can be easily obtained 

              

2

0

1
( ) ( )

2

t

J u u F u dt
 

   
 

  (3) 

Where T=2π/ω is period of the nonlinear oscillator, F(u)=∫f(u)du. 

Its Hamiltonian, therefore, can be written in the form 

             

21
( ) ( )

2
H u F u F A     (4) 

Or 

              

21
( ) ( ) ( ) 0

2
R t u F u F A     (5) 

Oscillatory systems contain two important physical parameters, i.e., the frequency ω and the 

amplitude of oscillation, A. So let us consider such initial conditions 

             
(0) , (0) 0u A u    (6) 

He use the following trial function to determine the angular frequency ω 

             cos( )u A t  (7) 

Substituting Eq. (7) into Eq. (5), He obtain the following residual equation 

             
 2 2 21

( ) sin ( ) cos( ) ( ) 0
2

R t A t F A t F A       (8) 

If, by chance, the exact solution had been chosen as the trial function, then it would be possible 

to make R zero for all values of t by appropriate choice of ω. Since Eq. (6) is only an 

approximation to the exact solution, R, can not be made zero everywhere. Collocation at  ωt=π/4 

gives 

             

 
2

2 ( ) cos( )
sec

sin( )

F A F A t
rad

A t







  (9) 
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Its period can be written in the form 

              

 
2

2

2 ( ) cos( )

sin( )

T
F A F A t

A t










 
(10) 

 

 

3. Basic idea of variational iteration method 
 

We re-write Eq. (1) in the following form (He 1999) 

             
2 2( ), ( ) ( )u u F u F u u f u      (11) 

We consider that the angular frequency of the oscillator is ω, and we choose the trial function 

u0=Acos(ωt)
 
The angular frequency ω is identified with the physical understanding that no secular 

terms should appear in u1(t),which leads to 

               

2

0 0
0

2
cos( ) ( ) 0,

T

t u f u dt T


 


      (12) 

From this equation, ω can easily be found. It should be specially pointed out that the more 

accurate the identification of the multiplier, the more faster the approximations converge to its 

exact solution, and for this reason, we identify the multiplier from Eq. (11) rather than Eq. (1). 

According to the VIM, we can construct a correction functional as follows 

               
 2

1
0

( ) ( ) ( ) ( )
t

n n n n nu t u t u u F d    
     (13) 

where 𝜆 is a general Lagrange multiplier (He 1999), which can be identified optimally via the 

variational theory, the subscript n denotes the nth-order approximation,  
nF is considered as a 

restricted variation, i.e., 0nF  . Under this condition, its stationary conditions of the above 

correction functional can be written as 

Follows 

             

2( ) ( ) 0,

( ) 0,

1 ( ) 0.

t

t





    

 

 





  



 

 (14) 

The Lagrange multiplier, therefore, can be readily identified by 

             

1
sin ( )t  


   (15) 

Which leads to following iteration formula 

             
 1

0

1
( ) ( ) sin ( ) ( ) .

t

n n n nu t u t t u f d


   
     (16) 

As we will see in the forthcoming illustrative examples, we always stop at the first-order 
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approximation, and the obtained approximate and accurate solution is valid for the whole solution 

domain. 

 

 

4. Basic idea of Hamiltonian approach  
 

Recently, He (2010) has proposed the Hamiltonian approach. This approach is a kind of energy 

method with a vast application in conservative oscillatory systems. In order to clarify this 

approach, consider Eq. (2) as general oscillator with initial conditions u(0)=A, u’(0)=0.  

It is easy to establish a variational principle for Eq. (2), which reads 

       

/4
2

0

1
( ) ( )

2

T

J u u F u dt
 

   
 

  (17) 

Where T is period of the nonlinear oscillator, ∂F/∂u=f. 

In the Eq (17), 21
2
u 

 
is kinetic energy and F(u) potential energy, so the Eq. (17) is the least 

Lagrangian action, from which we can immediately obtain its Hamiltonian, which reads 

     

2

0

1
( ) ( ) constant =

2
H u u F u H    (18) 

From Eq. (18), we have 

     
0

H

A





 (19) 

Introducing a new function, ( )H u , defined as 

         

4

2

0

1 1
( ) ( , , )

2 4

T

H u u F u u u dt TH
 

     
 
  (20) 

Eq. (19) is, then, equivalent to the following one 

        

0
H

A T

  
 

  
 (21) 

Or 

        
 

0
1

H

A 

  
 

   

 (22) 

From Eq. (22) we can obtain approximate frequency–amplitude relationship of a nonlinear 

oscillator. 

 

 

5. Application 
 

5.1 Application of energy balance method  
 

In the present paper, we consider the following nonlinear oscillators with discontinuities (Ganji 
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et al. 2009) 

                
0u u u u    (23) 

With the initial condition: 

               (0) , (0) 0u A u    (24) 

Here the discontinuous function is ( )f u u u u  .  

Its variational principle can be easily obtained 

                   

1 3

32 2

1 30

3

01 1
( )

2 2 0

t u u
J u u u d

u u






    
      
    
  (25) 

Its Hamiltonian, therefore, can be written in the form 

                 

1 13 3

3 32 2 2

1 13 3

3 3

1 1 1

2 2 2

0 0
0

0 0

u u A A
H u u A

u u A A

 

 

        
        

      

 (26) 

or 

                  

1 13 3

3 32 2 2

1 13 3

3 3

1 1 1

2 2 2

0 0
0

0 0

u u A A
u u A

u u A A

 

 

        
        

      

 (27) 

In Eq. (26) the kinetic energy (E) and potential energy (T) can be respectively expressed as 

                   

21

2
E u   (28) 

and 

                

1 3

32

1 3

3

01

2 0

u u
T u

u u





  
   

  

 (29) 

Throughout the oscillation, it holds that H=E+T constant. We use the following trial function to 

determine the angular frequency ω 

                 cos( )u A t  (30) 

Substituting  Eq. (30) into  Eq. (27) ,we obtain the following residual equation 

    

     
   

   

1 3 3

32 2 2 2 2

1 3

3

1 3

32

1 3

3

1

2

cos cos 01 1
sin cos

2 2 cos cos 0

0
0

0

A t A t
R t A t A t

A t A t

A A
A

A A

  
  

  





   
    

  

  
   

  

 (31) 
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If, by chance, the exact solution had been chosen as the trial function, then it would be possible 

to make R zero for all values of t by appropriate choice of ω. Since Eq. (30) is only an 

approximation to the exact solution, R cannot be made zero everywhere. Collocation at ωt=π/4 

gives 

            

 
12 33

3122 2 2

1 32 3

312

001 1
0

4 4 00

A AA A
R t A A

A AA A






       
       

     

 (32) 

In Eq. (32), ω  is passive and the other parameters are  active, including A and  . 

By solving Eq. (32) there will be 

          

1

3

1

3

9 3 2 12 0

9 3 2 12 0
EBM

A A A

A A A

 


 

   
 
   

 (33) 

 

5.2 Application of variational iteration method 
 

In Eq. (23), the discontinuous function is f(u)=u+εu|u| we can determine the angular frequency 

 2

0

2
cos( ) cos( ) cos( ) cos( ) cos( ) ,

T

t A t A t A t A t dt T



            (34) 

Nothing that |cos(ωt)|=cos(ωt) when
2 2

t
 

    and |cos(ωt)|= −cos(ωt) when 
3

2 2
t

 
   , 

so we write Eq. (34) in the following form 

   
3

2 2 2 3 2 2 2 32 2

2 2

1 cos ( ) cos ( ) 1 cos ( ) cos ( ) 0A t A t dt A t A t dt
 

        


        
      (35) 

From the above equation, one can easily conclude that: 

8
1

3
VIM A 


   (36) 

We re-write Eq.(16) in the following form: 

  1
0

1
( ) ( ) sin ( ) ( ) ( ) ( )

t

n n n n n nu t u t t u u u u d


      
      (37) 

By the above iteration formula, we can calculate the first-order approximation: 

    

    

2 2 2

0

1

2 2 2

0

1

1

cos ( ) sin 1 cos ( ) cos ( ) ,
2 2

( )
3

cos ( ) sin 1 cos ( ) cos ( ) ,
2 2

t

t

A t t A t A t d t

u t

A t t A t A t d t





 
       

 
       


      

 
      






 (38) 

Which yields 
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   

   

2 2
2

2 2

2 2
2

2 2

1
cos ( ) 1 sin( ) cos (2 ) 2cos( ) ,

2 2 26 2
( )

1 3
cos ( ) 1 sin( ) cos (2 ) 2cos( ) ,

2 2 26 2

A A
A t A t t t t t

u t
A A

A t A t t t t t

   
     

  

   
     

  


       


 
       


 (39) 

Where the angular frequency ω is defined as Eq. (36). 

The above results are in good agreement with the results obtained by the homotopy 

perturbation reported in He (2004) 

In order to compare with traditional perturbation solution, we write Nayfeh’s result (1973) 

          

4
( ) cos 1 ....

3
u t A A t



 
   

 
 (40) 

 

5.3 Application of Hamiltonian approach 
 

The Hamiltonian of Eq. (23) is constructed as 

               

2 2 21 1 1

2 2 3
u uH u u      (41) 

Integrating Eq. (41) with respect to t from 0 to T/4, we have 

                

/4 /
2 2 3 2 2 3

2

0 /4

1 1 1 1 1 1

2 2 3 2 2 3
( ) .

T T

T
H u dt u dtu u u u u 

   
    

 


 
      (42) 

We use the following trial function 

( ) cos( )u t A t  (43) 

If we Substitute Eq. (43) into Eq. (42), its results are 

          

/2
2 2 2 3 3

0

/2

2 2

2 2

2 2

2 2 2 3 3

/4

/4
2 2 3 3

0

2 32 22 3

( ) sin ( ) cos ( ) cos ( )

sin ( ) cos ( ) cos ( )

sin cos cos

si

1 1 1

2 2 3

1 1 1

2 2 3

1 1 1

2 2 3

1 1 1

2 2
n cos co

3
s

T

T

T

A A A

A A A

A A A

A A

H u t t t dt

t t t dt

t t t dt

t At t



   

   










 


 

 

 

 

 

 
  

 

 
  

 

 
  

 


 









/

2 3

2

2 4

4 4 9
A

d

A

t

A





 
 

 
 









 (44) 

Setting 

            
 

2 24

1 2 2 3

H
A A A

 
 



  
       

 (45) 
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Table 1 Comparison of time history response of EBM, VIM and HA. 

Time 
displacement velocity acceleration 

EBM VIM HA EBM VIM HA EBM VIM HA 

0 2 2 2 0 0 0 -4.7582 -4.7514 -4.7162 

0.5 1.4341 1.4408 1.4389 -2.1502 -2.1481 -2.1332 -3.4119 -3.4127 -3.3930 

1 0.0567 0.0637 0.0703 -3.0836 -3.0857 -3.0693 -0.1350 -0.1509 -0.1659 

1.5 -1.3528 -1.3493 -1.3377 -2.2721 -2.2845 -2.2832 3.2184 3.1959 3.1544 

2 -1.9968 -2.0019 -1.9951 -0.1749 -0.1960 -0.2159 4.7505 4.7417 4.7046 

2.5 -1.5109 -1.5265 -1.5330 2.0213 2.0029 1.9726 3.5945 3.6155 3.6149 

3 -0.1700 -0.1909 -0.2107 3.0737 3.0731 3.0541 0.4044 0.4520 0.4968 

3.5 1.2671 1.2522 1.2298 2.3868 2.4116 2.4220 -3.0145 -2.9661 -2.9001 

4 1.9871 1.9896 1.9802 0.3493 0.3912 0.4307 -4.7276 -4.7127 -4.6696 

4.5 1.5827 1.6059 1.6195 -1.8859 -1.8496 -1.8022 -3.7655 -3.8036 -3.8189 

5 0.2827 0.3173 0.3500 -3.0539 -3.0480 -3.0238 -0.6726 -0.7512 -0.8253 

5.5 -1.1773 -1.1500 -1.1159 -2.4938 -2.5288 -2.5487 2.8009 2.7243 2.6314 

6 -1.9711 -1.9692 -1.9556 -0.5225 -0.5847 -0.6434 4.6894 4.6644 4.6116 

6.5 -1.6495 -1.6788 -1.6980 1.7444 1.6887 1.6229 3.9244 3.9761 4.0040 

7 -0.3945 -0.4424 -0.4875 3.0242 3.0104 2.9786 0.9387 1.0473 1.1497 

7.5 1.0837 1.0432 0.9965 2.5927 2.6357 2.6629 -2.5782 -2.4714 -2.3498 

8 1.9487 1.9408 1.9213 0.6941 0.7758 0.8530 -4.6362 -4.5972 -4.5307 

 

 

If we solve Eq. (45) the approximate frequency of the system is 

            

8
1

3
HA A 


   (46) 

Hence, the approximate solution can be readily obtained: 

              

8
1

3
( ) cost A Au t



 
 



 


 (47) 

 

 

6. Result and discussion 
 

In this section, we compare the results of energy balance method, variational iteration method 

and Hamiltonian approach in table and figures to show the accuracy of these three methods. 

Table 1 shows values of displacements and velocity and acceleration for different time points. 

As it is obvious from the table, the results are very close together for different time values. 

To better understanding the motion of the problem, we have compared the results of the energy 

balance solution with the variational iteration solution and Hamiltonian approach in some figures 

for two case to show the displacement time history response, velocity time history response, 

acceleration time history response and phase curve.  Fig. 1 is for A=1, ε=0.5. Fig. 2 is for A=10, 

ε=0.2. The motion of the problem is periodic and it is function of the initial condition. In the phase 

cure, it has not seen any problem in the extreme points. Fig. 3 is the effect of epsilon on frequency 

base on amplitude. The increases of epsilon is increases the nonlinear frequency of the problem. 
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The three proposed methods have been correctly applied to nonlinear problem with 

discontinuity. The methods are very strong for solving nonlinear conservative problems. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1 Comparison of the energy balance solution with the variational iteration  solution and Hamiltonian 

approach. (a) displacement time history response (b) velocity time history response  (c) acceleration time 

history response (d) phase curve. for A=1, ε=0.5 

 

 
(I) 

 
(II) 

Fig. 2 Comparison of the energy balance solution with the variational iteration solution and Hamiltonian 

approach. (I) displacement time history response (II) velocity time history response (III) acceleration time 

history response (IV) phase curve. for A=10, ε=0.2 
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(III) 

 

(IV) 

Fig. 2 Continued 

 

 

Fig. 3 Influence of epsilon on frequency base on amplitude 

 

 
7. Conclusions 
 

In this study, energy balance method, variational iteration method and Hamiltonian approach 

were proposed and discussed. The basic ideas of the methods were illustrated and also their 

applications to discontinue nonlinear problem were considered. The methods are very useful to 

obtain the nonlinear frequency of the conservative problems. Some patterns were also presented to 

show the accuracy of these new methods. The methods do not require any linearization or small 

perturbation, and adequately accurate to both linear and nonlinear problems. The methods can 

easily extend to engineering nonlinear problems. 
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