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Abstract.  The present investigation is concerned with the effect of two temperatures on functionally 
graded (FG) nanobeams subjected to sinusoidal pulse heating sources. Material properties of the nanobeam 
are assumed to be graded in the thickness direction according to a novel exponential distribution law in 
terms of the volume fractions of the metal and ceramic constituents. The upper surface of the FG nanobeam 
is fully ceramic whereas the lower surface is fully metal. The generalized two-temperature nonlocal theory 
of thermoelasticity in the context of Lord and Shulman's (LS) model is used to solve this problem. The 
governing equations are solved in the Laplace transformation domain. The inversion of the Laplace 
transformation is computed numerically using a method based on Fourier series expansion technique. Some 
comparisons have been shown to estimate the effects of the nonlocal parameter, the temperature discrepancy 
and the pulse width of the sinusoidal pulse. Additional results across the thickness of the nanobeam are 
presented graphically. 
 

Keywords:   thermoelasticity; two temperatures; FG nanobeam; nonlocal theory; sinusoidal pulse 

 
 
1. Introduction 

 

The classical uncoupled theory of thermo-elasticity predicts two phenomena not compatible 

with physical observations. First, the equation of heat conduction of this theory does not contain 

any elastic terms. Second, the heat equation is of a parabolic type, predicting infinite speeds of 

propagation for heat waves. Biot (1956) formulated the theory of coupled thermoelasticity to 

eliminate the paradox inherent in the classical uncoupled theory. The heat equations for both 

theories, however, are of the diffusion type predicting infinite speeds of propagation for heat 

waves contrary to physical observations. The generalized theory of thermoelasticity has been 

developed to overcome the physically unrealistic prediction of the coupled dynamical theory of 

thermoelasticity that thermal signals propagate with infinite speed. Lord and Shulman (1967) and 

Green and Lindsay (1972) established two-temperature rate dependent theories of generalized 
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thermoelasticity. They introduced the thermal relaxation parameters in the basic equations of the 

coupled dynamical thermoelasticity theory and admit the finite value of heat propagation speed. 

The finiteness of the speed of the thermal signal has been found to have experiment evidence too. 

The generalized thermoelasticity theories are therefore more realistic, and have found much 

interest in recent research. 

Thermoelasticity theory with two temperatures is one of the non-classical theories of 

thermoelastic solids. The main difference of this theory with respect to the classical one is in the 

thermal dependence. Chen and Gurtin (1968), Chen et al. (1969) formulated a theory of heat 

conduction in deformable bodies, which depends on two distinct temperatures: the conductive 

temperature υ and the thermodynamic temperature θ. For time independent situations, the 

difference between these two temperatures is proportional to the heat supply. The two temperatures 

are identical in the absence of any heat supply. However, for time-dependent problems, and for 

wave propagation problems in particular, the two temperatures are in general different, regardless 

of the presence of a heat supply. The two temperatures and the strain are found to have 

representation in the form of a travelling wave plus response, which occurs instantaneously 

throughout the body (Boley 1956). In brief, the conductive temperature and its two gradients are 

used to find the internal energy, entropy, stress, heat flux and thermodynamic temperature at a 

given material point and time. Warren and Chen (1973) investigated the wave propagation in the 

two-temperature theory of thermoelasticity. Quintanilla (2004 a, b) proved some theorems in 

thermoelasticity with two temperatures. Zenkour and Abouelregal (2014) presented the state-space 

approach for an infinite medium with a spherical cavity based upon two-temperature generalized 

thermoelasticity theory and fractional heat conduction. 

Micro- and nano-mechanical resonators have attracted considerable attention recently due to 

their many important technological applications. Accurate analysis of various effects on the 

characteristics of resonators, such as resonant frequencies and quality factors, is crucial for 

designing high-performance components. Many authors have studied the vibration and heat 

transfer process of beams. Kidawa-Kukla (2003) studied the problem of transverse vibrations of a 

beam induced by a mobile heat source. The analytical solution to the problem is obtained using 

Green’s functions method without considering the thermoelastic coupling effect. Boley (1972) 

analyzed the vibrations of a simply-supported rectangular beam subjected to a suddenly applied 

heat input distributed along its span. Manolis and Beskos (1980) examined the thermally induced 

vibration of beams exposed to rapid surface heating. They studied the effects of damping and axial 

loads on the structural response. Al-Huniti et al. (2001) investigated the thermally induced 

displacements and stresses of a rod using the Laplace transformation technique. 

The present nanobeam is made of a ceramic-metal functionally graded material (FGM) for the 

purpose of thermal protection against large temperature gradients. The ceramic material provides a 

high temperature resistance due to its low thermal conductivity, while the ductile metal constituent 

prevents fracture due to its greater toughness. Gradually varying the material properties can 

prevent from interface cracking, delamination and residual stresses and thus maintain structural 

integrity to a desirable level. Ching and Yen (2006) presented numerical solutions obtained by the 

meshless local Petrov-Galerkin method for transient thermoelastic deformations of FG beams. 

Malekzadeh et al. (2012) presented the transient heat transfer analysis of FG hollow cylinders 

subjected to a distributed heat flux with a moving front boundary on its inner surface is presented. 

Malekzadeh and Heydarpour (2012) presented the transient thermoelastic analysis of FG 

cylindrical shells under moving boundary pressure and heat flux. Malekzadeh and Shojaee (2014) 

investigated the dynamic response of FG beams under a moving heat source. The material 
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properties are assumed to be temperature-dependent and graded in the thickness direction. 

Mareishi et al. (2013) developed the thermo-mechanical vibrations of FG beams. Governing 

equations are obtained based on higher-order variation of transverse shear strain through the depth 

of the beam. Recently, Abbas and Zenkour (2013) presented the electro-magneto-thermoelastic 

analysis problem of an infinite FG hollow cylinder based upon LS theory. 

This work is devoted to study the effect of the nonlocal parameter, the heat conduction and the 

coupling effect between temperature and strain rate in nanobeams based upon the LS model. The 

governing equations are written in the context of the nonlocal two-temperature generalized 

thermoelasticity theory. The present nanobeam is made from a ceramic-metal FGM. The solution 

for the generalized thermoelastic vibration of nanobeam induced by sinusoidal pulse heat with 

constant pulse of thermal vibration is developed. The Laplace transform method is used to 

determine the lateral vibration, the temperature and the displacement of the nanobeam. The effects 

of some parameters on thermal vibration quantities are studied and represented graphically. Some 

special cases are also derived. The numerical solutions of the non-dimensional governing partial 

differential equations of the problem have been graphically shown and some comparisons have 

been discussed to estimate the effect of the nonlocal parameter, the pulse parameter of heating and 

the parameter of two-temperature theory. 

 

 

2. Basic equations of the two-temperature thermoelasticity theory 
 

The governing equations of the linear theory of thermoelasticity with two temperatures and 

relaxation time are as follows: 

Equations of motion 

iijji uF  ,                                        (1) 

Equations of entropy (Energy equations) 

Qq iii  ,0                                (2) 

Constitutive equations for the local theory 

ijijkkijij ee   2                            (3) 

The modified Fourier’s law 

iii Kqq ,0                                   (4) 

The entropy-strain-temperature relation 







0

e

kk
C

e                                (5) 

The strain-displacement relations 

ijjiij uue ,,2                                  (6) 

In these relations, σij are the components of the stress tensor, Fi are the components of body force 

vector, ρ is the material density, ui are the components of the displacement vector, υ is the 
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conductive temperature measured from the temperature υ0, η is the entropy per unit volume 

measured from the entropy of the reference state, qi are the components of the heat flows vector, Q 

is the heat supplied per unit volume from the external world, eij is the strain tensor, γ=(3λ+2μ)αt is 

the coupling parameters, in which, λ and μ being Lamé’s coefficients and αt being the coefficient 

of linear thermal expansion, θ=T−T0 
denotes the thermodynamical temperature, T0 is the reference 

temperature, δij is Kronecker's delta function, K is the thermal conductivity, and τ0 is the thermal 

relaxation time, which will ensure that the heat conduction equation will predict finite speeds of 

heat propagation. The conductive temperature υ satisfies the relation 

kka ,                                 (7) 

where a>0 is the two temperature parameter (temperature discrepancy) and υ0= T0, is the reference 

temperature. 

In all of the above equations, the comma followed by a suffix denotes partial derivation with 

respect to the space variables and the superposed dot denotes the derivation with respect to the 

time t. Eqs. (1)-(7) give the basic equations of two-temperature thermoelasticity (2TT) in context 

of the LS theory as: 
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e
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kke

iiijjiiji
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,,,
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




 

                 (8) 

where C
e
 is the specific heat at constant strain. The key element that sets the two-temperature 

thermoelasticity theory apart from the classical theory is the material parameter a. Specifically, in 

the limit as a→0 and υ→θ, the classical theory (one-temperature generalized thermoelasticity 

theory 1TT) is recovered. In what follows, Lamé's coefficients λ and μ will be given in terms of 

Young's modulus E and Poisson's ratio v. 

 

 

3. Formulation of the problem 
 

Let us consider a FG thermoelastic solid beam in Cartesian coordinate systems Oxyz. The x axis 

is drawn along the axial direction of the beam and the y and z axes correspond to the width and 

thickness, respectively (see Fig. 1). In equilibrium, the beam is unstrained, unstressed and at 

temperature T0 everywhere. The small flexural deflections of the nanobeam with dimensions of 

length L(0≤x≤L), width b(−b/2≤y≤+b/2) and thickness h(−h/2≤z≤+h/2) are considered. The basic 

governing equations of motion, balance of equilibrated force and heat conduction in the context of 

generalized (non-Fourier) thermoelasticity for displacement vector u(x,y,z,t) in the absence of 

body forces, external loads, extrinsic equilibrated body force and heat sources are also considered. 

A new model of FGMs is presented to treat the governing equations of the thermoelastic 

nanobeam that subjected to a sinusoidal pulse heating. Based on this model, the effective material 

property P(z) gradation through the thickness direction is presented by (Zenkour 2006, 2014) 

cm
/)2(

m /ln,e)( PPnPzP P
hhznP 


                     (9) 

where Pm and Pc represent the metal and ceramic properties, respectively. This study assumes that 

Young’s modulus E, material density ρ, thermal conductivity coefficient K and the stress- 
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Fig. 1 Schematic diagram for the FG nanobeam 

 

 

temperature modulus γ of the FGM change continuously through the thickness direction of the 

beam according to the gradation relation given in Eq. (9). It is to be noted that the material 

properties of the considered beam are metal-rich (fully metal) at the lower surface (z=+h/2) and 

ceramic-rich (fully ceramic) at the upper surface (z=−h/2) of the beam. 

In the present study, the usual Euler–Bernoulli assumption (Mareishi et al. 2013) is adopted, 

i.e., any plane cross-section, initially perpendicular to the axis of the beam, remains plane and 

perpendicular to the neutral surface during bending. Thus, the displacements are given by 

),(),,,(0,, txwtzyxwv
x

w
zu 



                      (10) 

where w is the lateral deflection. Substituting Eq. (10) with the aid of Eq. (9), into the heat 

conduction equation given in Eq. (8)2 for the nanobeam without the heat source (Q=0), one gets 
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where Km, ρm, γm and 
eCm  are, respectively, the thermal conductivity coefficient, the material 

density, the thermal modulus, and the specific heat per unit mass at constant strain of the metal 

material. Note that the parameters nK, nγ and eC
n


 are given according to Eq. (9) in terms the 

properties of ceramic and metal materials, and 

mmmmmmmm /,)2/(1  KCE e                     (12) 

in which αm, Em, vm and χm are the thermal expansion coefficient, Young's modulus, Poisson's ratio 

h 

z 

Y metal (aluminum) 

ceramic (alumina) 

X 

L 
b 
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and the thermal diffusivity of the metal material, respectively. 

There is no heat flow across the upper and lower surfaces of the beam (thermally insulated), so 

that z /  should be vanish at the upper and lower surfaces of the beam z=±h/2. For a very thin 

beam (nanobeam), assuming that the conductive temperature varies sinusoidally along the 

thickness direction. That is 











h

z
txtzx


 sin),(),,( 1                           (13) 

Now, substituting Eq. (13) into Eq. (11) and integrating the resulting equation with respect to z 

through the beam thickness from −h/2 to h/2, yields 
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where mmm / KCe  , KCC ee 


/  and K  /  in which 
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The nonlocal theory assumes that stress at a point depends not only on the strain at that point 

but also on strains at all other points of the body. Here, the one-dimensional constitutive equation 

gives the uniaxial tensile stress only, according to the differential form of the nonlocal constitutive 

relation proposed by Eringen (1972, 1983), Eringen and Edelen (1972), as 
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where ccmmE EEn  /ln  in which αc and Ec are the thermal expansion coefficient and 

Young's modulus of the ceramic material, respectively. The nonlocal parameter is ξ=(e0L)
2
 in 

which e0 is a constant appropriate to each material and L is the internal characteristic length. A 

conservative estimate of the nonlocal parameter is generally e0L<2.0 nm for a single wall carbon 

nanotube (Wang and Wang 2007). 

The flexure moment of the cross-section is given, with the aid of Eqs. (13) and (16), by 
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The differential equation of thermally induced lateral vibration of the beam may be expressed 

in the form 
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                         (19) 

where A=bh is the cross-section area. Substituting Eq. (17) into Eq. (19), one can get the motion 

equation of the beam as 
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where EEE   /  and mm /  E .  

The initial and boundary conditions should be considered to solve the present problem. The 

initial conditions of the problem are taken as 
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These conditions are supplemented by considering the two ends of the nanobeam are simply-

supported 
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Let us also consider the nanobeam is loaded thermally by sinusoidal pulse heating incidents 

into the surface of the nanobeam x=0 with pulse width t0. In this case, the conductive temperature 

is considered as 
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In addition, the conductive temperature at the end boundary should satisfy the following relation 
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The preceding governing equations can be put in nondimensional forms using the following 

dimensionless parameters 
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So, the governing equations and the thermodynamical temperature θ in the dimensionless forms 

are simplified as (dropping the primes for convenience) 
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4. Solution procedure 
 

The closed-form solution of the governing and constitutive equations may be possible by 

adapting the Laplace transformation method. Applying the Laplace transform to Eqs. (26) and 

(27), one gets the field equations as 
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where an over bar symbol denotes its Laplace transform, s denotes the Laplace transform 

parameter and 
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Eliminating 1  or w from Eqs. (31) and (32) gives the following differential equation for either 
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where the coefficients A, B and C are given by 
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Introducing mi (i=1,2,3) into Eq. (34), one gets 
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The solution of the governing Eq. (36) in the Laplace transformation domain can be represented as 
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where Ci and Fi are parameters depending on s. The compatibility between these two equations 

and Eqs. (31) and (32), gives 
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Then, the thermodynamical temperature θ in the Laplace domain with the aid of the above 

equations, becomes 
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Also, the axial displacement after using Eq. (42) takes the form 
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In addition, the strain will be 
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After using Laplace transform, the boundary conditions, in their dimensionless forms, are given 

by 
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Substituting Eq. (42) into the above boundary conditions, one obtains six linear equations in the 

matrix form as 
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(47) 

The solution of the above system of linear equations gives the unknown parameters Ci and Ci+3. 

This completes the solution of the problem in the Laplace transform domain. 

 
 
5. Inversion of the Laplace transforms 
 

To get the solutions for stress, strain, temperature, induced magnetic field and induced electric 

field, we have applied the Laplace inversion formula to Eqs. (42)-(45). These have been done 

numerically using a method based on the Fourier series expansion technique. In this method, a 

function in the Laplace domain is inverted to the time domain through the sum 
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where Re is the real part and i is the imaginary number unit. For faster convergence, numerical 

experiments have shown that the value that satisfies the above relation is ζ≈4.7/t (Tzou 1996). 

 

 
6. Numerical results 
 

In terms of the Riemann-sum approximation defined in Eq. (48), numerical Laplace inversion 

is performed to obtain the non-dimensional lateral vibration, temperature and displacement in the 

nanobeam. In the present work, the thermoelastic coupling effect is analyzed by considering a 

beam made of an FGM. The aluminum as lower metal surface and alumina as upper ceramic 

surface are used for the present nanobeam. The material properties are assumed to be: 

Metal (aluminum) 
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The reference temperature of the nanobeam is T0=293 K. The dimensionless variables defined 

in Eq. (25) are plotted for a wide range of nanobeam length when L=1, h=0.1 and t=0.12 sec. The 

thickness position is assumed, except otherwise stated, to be z=h/6. In what follows, the nonlocal 

parameter  ( =10
6
ξ) is used. It should be less than 4(μμm

2
). The local theory of the beam is 

given when  =0.  

Some plots consider the present quantities through the length of the nanobeam and others take 

into account both the length and thickness directions. Eq. (48) is used to invert the Laplace 

transforms in Eqs. (42)-(45) and the conductive temperature, the dynamical temperature and the 

displacement distributions are represented graphically with respect to x(0≤x≤1). Figs. 2-5 represent 

the curves predicted for these quantities. 

 

 

  
(a) Transverse deflection (b) Conductive temperature 

  
(c) Dynamical temperature (d) Axial displacement 

Fig. 2 The field quantities of the FG nanobeam for different values of temperature discrepancy a 
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(a) Transverse deflection (b) Conductive temperature 

  
(c) Dynamical temperature (d) Axial displacement 

Fig. 3 The field quantities of the FG nanobeam for different values of pulse width parameter t0 

 

 

In fact, numerical calculations are carried out for three cases. The first one is to investigate how 

the non-dimensional conductive temperature, thermodynamic temperature and displacement vary 

with the different values of the non-dimensional temperature discrepancy a. Note that the case of 

a=0 indicates the old situation (one temperature 1TT theory) and the cases of a=0.005 and 002.0  

indicate the two-temperature theory (2TT). In this case, one assumed that the characteristic time of  

the pulse width t0=0.2 and the non-local parameter  =1. 

The second case is to investigate how the non-dimensional conductive temperature, 

thermodynamic temperature and displacement vary with different values of the characteristic time 

of the pulse width t0 when the temperature discrepancy parameter remains constant (a=0.005). In 

this case, one assumed that the characteristic non-local parameter  =1.  

The third case is to investigate the non-dimensional lateral vibration, temperature and 

displacement for various values of the nonlocal parameter   when the pulse width remains 

constant (t0=0.2) and the temperature discrepancy parameter a=0.005. 

In the first case, we consider three different values of the temperature discrepancy parameter a  

as shown on Fig. 2. The variation of a is very sensitive to the response of all field quantities. When 

a=0, all quantities get different behaviors. This shows the difference between the one temperature 

generalized thermoelasticity of LS and the two-temperature generalized thermoelasticity. Also, 

Fig. 2 shows that this parameter has significant effect on all the field quantities. The waves reach 
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(a) Transverse deflection (b) Conductive temperature 

  
(c) Dynamical temperature (d) Axial displacement 

Fig. 4 The field quantities of the FG nanobeam for different values of nonlocal parameter   

 

 

the steady state depending on the value of the temperature discrepancy a. Fig. 2(a) depicts the 

distribution of the lateral vibration w through the length of the beam. It always begins at the zero 

value and non-uniformly vibrates through the beam length to vanish once again at the end of the 

beam. This satisfies the boundary condition at beam boundaries.  

Fig. 2(b) shows the variation of the conductive temperature υ versus distance x. It is observed 

that the conductive temperature υ decreases as the axial distance x increases to move in the 

direction of wave propagation. The conductive temperature of 2TT model may be differing than 

those of 1TT theory. 

Fig. 2(c) exhibits the space variation of thermodynamic temperature θ in which we observe that 

a significant difference in the thermodynamic temperature for the value of the non-dimensional 

two-temperature parameter a where the case of a=0 indicates one-type temperature and the case of 

a>0 indicates two-type temperature. From this figure it can be observed that a>0 corresponds a 

slower rate of decay than the case when a=0. 

Fig. 2(d) shows that the axial displacement u moves directly in the direction of wave 

propagation. A significant difference in the displacement is noticed for different values of the non-

dimensional two-temperature parameter a. Once again, the behavior of 2TT model may be 

differing than that of 1TT model near the boundary plane x=0. 

In the second case, one considered different values of the time of the pulse width, i.e., t0=0.2, 

0.4 and 0.6 with the constant parameter a=0.005. From Fig. 3, it is found that, the pulse width  
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(a) Transverse deflection (b) Conductive temperature 

  
(c) Dynamical temperature (d) Axial displacement 

Fig. 5 Distributions of the field quantities through the axial and thickness directions of the FG nanobeam 

 

 

parameter has significant effects on all the field quantities. The pulse width makes the difference 

between the results in the context of the two-temperature generalized thermoelasticity theory. The 

case of t0=0.2 gives absolutely different behaviour comparing with the other cases t0=0.4 and 

t0=0.6. 

In the third case we restrict our attention to the behaviour of the nonlocal parameter   when 

the pulse width remains constant (t0=0.2). The variations of the field quantities with various values 

of the nonlocal parameter are depicted in Fig. 4. It can be seen that the effect of nonlocal 

parameter on the deflection, temperatures and displacement is highly significant. In general, the 

field variables are increase with the increasing of the nonlocal parameter. 

Additional and interesting case is added in Fig. 5. The three dimensions of all field quantities of 

the nanobeam are presented at constant value of the pulse width parameter t0=0.2, the non-local 

parameter 1 , the temperature discrepancy parameter a=0.005 and wide range of thickness 

−0.5≤z/h≤0.5. When the thickness increases all the studied field quantities increase and it is very 

obvious at the peak points of the curves. 

 

 

7. Conclusions 
 

The vibration characteristics of the deflection, conductive temperature, the thermodynamics 
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temperature and the displacement of an Euler-Bernoulli nanobeam induced by a sinusoidal pulse 

heating in the context of nonlocal two-temperature theory of thermoelasticity have been 

investigated. The effects of the nonlocal parameter, the pulse width parameter and time parameter 

t0 as well as the two-temperature parameter a of thermal vibration on the field quantities are 

investigated. It is found that all of theses parameters have significant effects on the behaviors of 

the studied field quantities. Numerical technique based on the Laplace transformation has been 

used. Some numerical examples of a FGM nanobeam are presented to show the differences due to 

the presence of a nonlocal nanoscale. 

In engineering application, one can choose appropriate gradients to make the FG nanobeams be 

safe in structural integrity when subjected to high-temperature change of the inner or outer 

environment. The significant differences in the physical quantities are observed for all the one-

temperature models and two-temperature models. Two-temperature theory is more realistic than 

the one-temperature theory in the case of generalized thermoelasticity. 

The paper also concludes the governing equation of motion for a nonlocal nanobeam can be 

formed by replacing the bending moment term in the classical equation of motion with an effective 

nonlocal bending moment as presented herewith. This work is expected to be useful to design and 

analyze the wave propagation properties of nanoscale devices with terahertz frequency range. 
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