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Abstract.  This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and 
bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary 
conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial 
edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach 
composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of 
motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of 
elastic coefficients of foundation, boundary conditions, material and geometrical parameters.  Results 
indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction 
is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains 
natural frequency higher than those of traditional discretely laminated composite ones and this can be a 
benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of 
material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a 
higher capability to reduce the natural frequency than conventional one-dimensional functionally graded 
material. The multidirectional graded material can likely be designed according to the actual requirement 
and it is a potential alternative to the unidirectional functionally graded material. The new results can be used 
as benchmark solutions for future researches. 
 

Keywords:  free vibration; continuous grading fiber reinforcement; bi-directional FG plates; thick annular 

sector plates; pasternak elastic foundations; three-dimensional elasticity 

 
 
1. Introduction 

 

New class of materials known as “functionally graded materials” (FGMs) has attracted much 

attention as advanced structural materials in many structural members used in situations where 

large temperature gradients are encountered. FGMs are designed so that material properties vary 

smoothly and continuously through the thickness from the surface of a ceramic exposed to high 

temperature to that of a metal on the other surface. The mechanical properties are graded in the 

thickness direction according to volume fraction power-law distribution. 

Most of the previous studies on the free vibration of plates are based on the two-dimensional 

theories, such as the classical plate theory, the first- and the higher- order shear deformation plate 
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theories. These plate theories neglect transverse normal deformations, and generally assume that a 

plane stress state of deformation prevails in the plate. These assumptions may be appropriate for 

thin plates. Ramakris and Kunukkas (1973) provided a closed-form analytical solution for free 

vibration of an annular sector plate with radial edges simply supported. Mukhopadhyay (1979, 

1982) used a semi-analytical method and Srinivasan and Thiruvenkatachari (1983, 1986) used the 

integral equation technique to analyze the vibrations of annular sector plates, respectively. Kim 

and Dickinson (1989) used one-dimensional (1-D) orthogonal polynomials and Liew and Lam 

(1993) used two-dimensional (2-D) orthogonal polynomials as admissible functions to study the 

free vibration of annular sector plates by the Rayleigh-Ritz method. McGee et al. (1995) 

considered the effect of stress singularities on the vibration analysis of thick annular sector plates 

and presented the corner functions to improve the convergence of the numerical solutions. 

The vibration analyses of FG plates on elastic foundations are mostly limited and were 

performed based on the two-dimensional theories, such as the classical plate theory, the first- and 

the higher- order shear deformation plate theories (Yang and Shen 2001, Cheng and Kitipornchai 

1999, Cheng and Batra 2000, Yang and Shen 2003, Hosseini-Hashemi et al. 2010a, b). However, a 

few papers have been found in the literature about the vibrations of annular sector plates based on 

the three-dimensional (3-D) elasticity theory. Houmat (2004) used the hierarchical finite element 

method and Liew et al. (2001) used the 2-D orthogonal polynomials in the Ritz method to analyze 

the free vibration of thick annular sector plates, Zhou et al. (2009) used the Chebyshev-Ritz 

method to study the free vibration of thick annular sector plates, Nie and Zhong (2008) 

investigated the free and forced vibration analysis of FGM annular sector plates with simply-

supported radial edges by using a semi-analytical approach. Yas and Tahouneh (2012) investigated 

the free vibration analysis of thick FG annular plates on Pasternak elastic foundations based on the 

three-dimensional elasticity theory.  

Zhou et al. (2004) studied free vibration characteristics of rectangular plates resting on elastic 

foundation based on the three-dimensional, linear and small strain elasticity theory. The Ritz 

method was used to derive the eigenvalue equation of the rectangular plate by augmenting the 

strain energy of the plate with the potential energy of the elastic foundation. Zhou et al. (2006) 

studied three-dimensional vibration characteristics of thick circular plates resting on an elastic 

foundation. the analysis was based on the three-dimensional theory of elasticity. Lü et al. (2008) 

used a semi-analytical elasticity solution for bending and thermal deformations of functionally 

graded beams with various end conditions, using the state space-based differential quadrature 

method. The beams are assumed to be macroscopically isotropic, with Young’s modulus varying 

exponentially along the thickness and longitudinal directions, while Poisson’s ratio remaining 

constant. Lü et al. (2009) used a three-dimensional elasticity solution based on differential 

quadrature method to investigate the displacement and stress fields of a multi-directional 

functionally graded plate. Nie and Zhong (2010) studied the free vibration of FG plates without 

elastic foundation using DQM. They assumed the material properties of the FG plate having an 

exponent-law variation along the thickness, radial direction or both directions. To the authors’ best 

knowledge, researches on the vibration of thick continuous grading fiber reinforced (CGFR) and 

bi-directional FG annular sector plates on a two-parameter elastic foundation based on the three-

dimensional theory of elasticity, have not been seen until now. 

 

 
2. Problem description 
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-Fig. 1 Geometry and coordinate system of an annular sector plate resting on a two

parameter elastic foundation 

 

 

Consider an annular sector plate resting on a two-parameter elastic foundation in a cylindrical 

coordinate system (r,θ,z), as depicted in Fig. 1, where a, b, rm and h are outer/inner radius, mean 

radius and thickness of the plate, respectively. The plate is supported by an elastic foundation with 

Winkler’s (normal) and Pasternak’s (shear) coefficients. It is assumed that the plate has been 

continuously graded in the thickness and radial directions. 

 

 

3. Estimation of effective material properties 
 

The effective mechanical properties of the continuous fiber reinforced plate are obtained based 

on a micromechanical model as follows (Shen 2009, Valery and Vasiliev 2001) 
 

 
(1) 
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 (5) 
 

Where Eij, Gij, ij, , Vf and Vm
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volume and matrix volume fractions, respectively. For orthotropic plate, we assume the following 

specific power-law variation of the reinforcement volume fraction (Jacob and Senthil 2006) 

 
(6) 

Where Vi and Vo which have values that range from 0 to 1, denote the volume fractions (matrix or 

fiber) on the lower and upper surfaces, respectively. The exponent “P” controls the volume 

fraction profile in the thickness direction of the plate. The volume fraction profile through the 

thickness (z/h) is illustrated in Fig. 2. In this figure it is assumed the matrix volume fractions for a 

CGFR annular plate with graded fiber volume fraction are Vi=1 (100 % matrix constituent) and 

Vo=0.25 (25 % matrix constituent) on the lower and upper surfaces, respectively. In this figure the 

matrix volume fraction decreases from 1 at z/h = -0.5 to 0.25 at z/h = 0.5. At z/h away from 0.5, the 

rate of increase of the matrix volume fraction for p <1 is high compared to p >1 and at z/h closer to 

0.5, the rate of increase of the matrix volume fraction for p >1 is much higher than for p <1. 

In order to investigate 3D dynamic response of thick bi-directional FG annular sector plates 

resting on a two-parameter elastic foundation, it is considered that the fiber volume fraction 

follows a 2-D six-parameter power-law distribution as follows 
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 (7) 

Where the radial volume fraction index γr, and the parameters αr, βr 
and the thickness volume 

fraction index γz, and the parameters αz, βz govern the material variation profile through the radial 

and along the thickness directions, respectively. The volume fractions Vα and Vb, which have 

values that range from 0 to 1, denote the ceramic volume fractions of the two different isotropic 

materials. For example, with assumption Vb=1 and Va=0.3, some material profiles through the 

radial (μr=(r−rm)/(a−b))
 
and thickness (μz=z/h) directions are illustrated in Fig. 3. As can be seen 

from Fig. 3(a), the classical volume fraction profile through the radial and thickness directions is 

presented as a special case of the 2-D power-law distribution by setting γr= γz=4, and αr=αz=0. 

With another choice of the parameters αr, βr, 
αz and βz, it is possible to obtain symmetric and  

 

 
 

Fig. 2 Variations of the volume fraction of the matrix phase (Vm) through the thickness of the 

plate for different values of p 
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Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations 

 

Fig. 3 The variations of the volume fraction profile in the radial and thickness directions of the plate 

(a) γr= γr=4, αr=αz=0, (b) γr=γz=3, βr=2, αr=1, αz=0, (c) γr= γz=3, βr= βz=2, αr=αz=1 

 

 

classical volume fraction profiles through the thickness and radial directions, respectively as 

shown in Fig. 3(b). This Figure shows a classical profile versus μr and a symmetric profile versus 

μz. Fig. 3(c) illustrates symmetric profiles through the radial and thickness directions obtained by 

setting αr=αz=1 and βr=βz=2. 

The effective material properties of the isotropic 2-D FGMs are determined in terms of the 

local volume fractions and material properties of the two isotropic phases by the Mori-Tanaka 

scheme. The Mori-Tanaka scheme (Mori and Tanaka 1973, Benveniste 1987) for estimating the 

effective moduli is applicable to regions of the graded microstructure that have a well-defined 

continuous matrix and a discontinuous particulate phase. It takes into account the interaction of the 

elastic fields among neighboring inclusions. It is assumed that the matrix phase, denoted by the 

subscript m, is reinforced by spherical particles of a particulate phase, denoted by the subscript c. 

In this notation, Km and Gm are the bulk modulus and the shear modulus, respectively, and Vm is the 

volume fraction of the matrix phase. Kc, Gc and Vc are the corresponding material properties and 

the volume fraction of the particulate phase. Note that Vm+Vc=1, the Lamé constant λ is related to 

the bulk and the shear moduli by λ=K−2G/3, and the stress-temperature modulus is related to the 

coefficient of thermal expansion by β=(3λ+2G)α=3Kα. The following estimates for the effective  
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Table 1 Material properties of aluminum and silicon carbide 

 Young’s Modulus, E (Gpa) Poisson’s ratio, υ Mass density, ρ 3( )kg m  

Al 70 0.30 2,707 

Silicon carbide (Sic) 410 0.170 3,100 

 

 

local bulk modulus K and shear modulus G are useful for a random distribution of isotropic 

particles in an isotropic matrix 

1 (1 )( ) ( (4 3) )

m c

c m c c m m m
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K K V K K K K




    
                  (8) 

1 (1 )( ) ( )

m c

c m c c m m m

G G V

G G V G G G f




    
                    (9) 

Where fm=Gm(9Km+8Gm)/6(Km+2Gm). The effective values of Young’s modulus, E, and Poisson’s 

ratio, υ, are found from 
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,

3 2(3 )
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E
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                         (10) 

We choose a metal/ceramic annular sector plate with the metal (Al) taken as the matrix phase 

and the ceramic (SiC) taken as the particulate phase. The material properties of aluminum and 

silicon carbide are listed in Table 1 (Vel and Batra 2002 and Vel 2010). 

 

 

4. Theoretical formulations 

 

Without consideration of body forces, the equations of motion are 

 

(11) 

 

 

 

 

σr, σθ 
and σz are axial stress components, and τrθ, τθz 

and τrz are shear stress components, ur, uθ 
and 

uz are displacement components, ρ denotes material density, and t is time. The relations between 

the strain and the displacement are 
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Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations 

where , , , ,r z z r       and rz are strain components. The constitutive equations for orthotropic 

materials are 
  

             

 
                     

                      

                       

                                 (13( 

  

 

 

 

Where cij
 
are material elastic stiffness coefficients.  

Using the three-dimensional constitutive relations and the strain-displacement relations, the 

equations of motion in terms of displacement components for a linear elastic FG plate with 

infinitesimal deformations can be written as 
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Eqs. (14)-(15) represent the in-plane equations of motion along the r and θ-axes, respectively; 

and Eq. (16) is the transverse or out-of-plane equation of motion. The related boundary conditions 

are as follows 
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(17) 

at z = h/2 

     
0, 0, 0zr z z      (18) 

Kw and Kg are the Winkler and shearing layer elastic coefficients of the foundation. 

In this paper three different kinds of boundary conditions are considered: Clamped-Clamped 

(C-C), Simply supported-Clamped (S-C) and Free-Clamped (F-C). 

The boundary conditions at edges are 

   -Clamped (r=b)-Clamped (r=a): 

at r=a                            0r zu u u                                   

at r = b                           0r zu u u                                  (19) 

  -Simply supported (r=b)-Clamped (r=a): 

at r = b                           0z ru u   
                               

 

at r = a                           0r zu u u                                  (20) 

   -Free (r=b)-Clamped (r=a): 

at r=a                            0r zu u u  
                               

 

at r = b                          0r r rz    
                              

(21) 

                            
                              

 

5. Solution procedure 
 

It is difficult to solve analytically the equations of motion, if it is not impossible. Hence, one 

should use an approximate method to find a solution. According to some recently studies 

(Hosseini-Hashemi et al. 2010, Nie and Zhong 2008, 2010, Tahouneh and yas 2012, 2013) 

differential quadrature method is a really powerful method for vibration analysis of plates. One can 

compare DQM solution procedure with the other two widely used traditional methods for plate 

analysis, i.e., Rayleigh-Ritz method and FEM. The main difference between the DQM and the 

other methods is how the governing equations are discretized. In DQM, the governing equations 

and boundary conditions are directly discretized, and thus elements of stiffness and mass matrices 

are evaluated directly. But in Rayleigh- Ritz and FEMs, the weak form of the governing equations 

should be developed and the boundary conditions are satisfied in the weak form. Generally by 

doing so larger number of integrals with increasing amount of differentiation should be done to 

arrive at the element matrices. In addition, the number of degrees of freedom will be increased for 

an acceptable accuracy. The basic idea of the differential quadrature method is that the derivative 

of a function, with respect to a space variable at a given sampling point, is approximated as a 

weighted linear sum of the sampling points in the domain of that variable. In order to illustrate the 

DQ approximation, consider a function f(ξ,η) defined on a rectangular domain 0≤ξ≤a and 0≤η≤b. 

Let in the given domain, the function values be known or desired on a grid of sampling points. 

According to DQ method, the rth derivative of the function f(ξ,η) can be approximated as 
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     for i=1, 2, …, Nξ ; r=1, 2, …, Nξ−1 

(22) 

from this equation one can deduce that the important components of DQ approximations are the 

weighting coefficients
( )( )r

ijA
and the choice of sampling points. In order to determine the 

weighting coefficients a set of test functions should be used in Eq. (22). The weighting coefficients 

for the first-order derivatives in ξ- direction are thus determined as (Bert and Malik 1996) 
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The weighting coefficients of the second-order derivative can be obtained as the matrix form 

(Bert and Malik 1996) 

      2
ijijijij AAAB                            (25) 

In a similar manner, the weighting coefficients for the η-direction can be obtained. 

It was demonstrated that non-uniform grid points gives a better result with the same number of 

equally spaced grid points (Bert and Malik 1996). It is shown (Shu and Wang 1999) that one of the 

best options for obtaining grid points is Chebyshev-Gauss-Lobatto quadrature points 
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     for i=1, 2, …, Nξ ; j=1, 2, …, Nη 

(26a, b) 

By using the geometrical periodicity of the plate, the displacement components for the free 

vibration analysis can be represented as 
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





                       (27)  

where m(=0, 1,…, ∞) is the circumferential wave number; ω is the natural frequency and i (= 1 ) 

is the imaginary number. At this stage, the DQM rules are employed to discretize the free vibration 
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equations and the related boundary conditions. By substituting for the displacement components 

from Eq. (27) and then using the DQM rules for the spatial derivatives, the discretized form of the 

equations of motion at each domain grid point (rj, zk) with (j=2, 3, …, Nr−1) and (k =2,3,…, Nz−1) 

can be obtained as 

Eq. (14) 
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(30) 

where 
r

ijA ,
z

ijA  and
r

ijB ,
z

ijB  are the first and second order DQ weighting coefficients in the r- and 

z- directions, respectively. 

In a similar manner, the boundary conditions can be discretized. For this purpose, using Eq. 

(27) and the DQM discretization rules for spatial derivatives, the boundary conditions at z=-h/2 

and h/2 become, 

Eq. (17) 

at z =-h/2 
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Eq. (18) 

at z =h/2 
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where k=1 at z=0 and k=Nz at z=h, and j=1, 2, …, Nr. 

The boundary conditions at r=b and a stated in Eqs. (19)-(21) become, 

-Simply supported(S) 
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 
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-Clamped(C) 

0, 0, 0rmjk mjk zmjku u u  
                         

(33c) 

In the above equations k=2, …, Nz−1; also j=1 at r=b and j=Nr at r=a. 

In order to carry out the eigenvalue analysis, the domain and boundary degrees of freedom are 

separated and in vector forms, they are denoted as {d} and {b}, respectively. Based on this 

definition, the discretized form of the equilibrium equations and the related boundary conditions 

take the following forms, 

Equations of motion (28)-(30) 

  
 

 
    2 0db dd

b
K K M d

d


  
     

  
                     

(34) 

Boundary conditions Eqs. (31)-( 32) and Eq. (33a, b and c) 

       0bd bbK d K b 
                          

(35) 

Eliminating the boundary degrees of freedom in Eq. (34), using Eq. (35), this equation becomes 

      2 0K M d                             (36)  

where         
-1

-dd db bb bdK K K K K . The above eigenvalue system of equations can be solved to 

find the natural frequencies and mode shapes of the plates. 

 

 

6. Numerical results and discussion 

 

In this section, the convergence behavior of the method is investigated and comparisons with 

other available solutions are made to verify the accuracy of the results. Then, the effects of the 

different geometrical parameters, the material properties and coefficients of elastic foundation on 

the free vibration characteristics of FG annular sector plates are presented. 

As a first example, the comparative studies of the fundamental frequency parameters are given 

in Table 2. It is seen from Table 2 that for thin plates (h/a=0.01) there is an excellent agreement 

between the present 3-D solutions and the classical solutions. For moderately thick plates, 

(h/a=0.2) the present 3-D solutions also agree quite well with the Mindlin solutions. For very thick 

plates (h/a=0.4) the discrepancies increase, particularly for C-C plates. It is found that only 

nineteen DQ grid points in each direction (r and z) can yield accurate results. The same problem 

has been analyzed by Zhou et al. (2009). It is obvious that the error of the Mindlin plate theory 

increases with the increase of the plate thickness, especially for very thick plates (h/a≥0.4). The 

two-dimensional theories, such as the classical plate theory, the first- and the higher- order shear 

deformation plate theories neglect transverse normal deformations, and generally assume that a 

plane stress state of deformation prevails in the plate. These assumptions may be appropriate for 

thin plates but do not give good results for thick plates. It is seen from Table 2 that the maximum  
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Table 2 Comparison of fundamental frequency parameter 2( )a h D     for flexural vibration of annular  
sector plates with two straight edges simply supported (b/a=0.5) 

α(deg) h/a
 

Theories C-C F-C F-S 

195 0.01 (McGee et al. 1995) 90.0837 21.4263 10.8761 

  (Zhou et al. 2009) 90.1125 21.4074 10.8522 

  Present (Nr=Nz=9) 90.1102 21.4065 10.8513 

  Present (Nr=Nz=13) 90.1124 21.4075 10.8520 

  Present (Nr=Nz =17) 90.1122 21.4076 10.8525 

  Present (Nr=Nz =19) 90.1123 21.4076 10.8524 

 0.2 (McGee et al. 1995) 70.8090 19.9986 10.2268 

  (Zhou et al. 2009) 71.9146 20.0967 10.2386 

  Present (Nr=Nz =9) 71.9115 20.0954 10.2392 

  Present (Nr=Nz =13) 71.9142 20.0964 10.2380 

  Present (Nr=Nz =17) 71.9143 20.0968 10.2385 

  Present (Nr=Nz =19) 71.9143 20.0968 10.2384 

 0.4 (McGee et al. 1995) 48.6618 17.5822 9.3661 

  (Zhou et al. 2009) 50.0059 17.7636 9.3961 

  Present (Nr=Nz =9) 50.0045 17.7653 9.3945 

  Present (Nr=Nz =13) 50.0059 17.7641 9.3958 

  Present (Nr=Nz =17) 50.0056 17.7638 9.3961 

  Present (Nr=Nz =19) 50.0056 17.7638 9.3962 

 

Table 3 The lowest non-dimensional frequency parameter 
11( )h C     for FGMs annular sector plates  

having clamped (r=b) and clamped (r=a) conditions (h/a=0.1)  

α(deg) b/a
 

m  
λ     

1 2 3 4 5 

195 0.1 1 (Nie and Zhong 2008) 0.0663 0.0622 0.0566 0.0505 0.0446 

   Present (Nr=Nz=9) 0.0651 0.0611 0.0553 0.0497 0.0432 

   Present (Nr=Nz =13) 0.0661 0.0620 0.0561 0.0502 0.0440 

   Present (Nr=Nz =17) 0.0664 0.0622 0.0564 0.0505 0.0444 

   Present (Nr=Nz =19) 0.0664 0.0623 0.0564 0.0505 0.0445 

  2 (Nie and Zhong 2008) 0.0795 0.0746 0.0677 0.0603 0.0531 

   Present (Nr=Nz =9) 0.0781 0.0712 0.0666 0.0589 0.0519 

   Present (Nr=Nz =13) 0.0791 0.0743 0.0677 0.0601 0.0528 

   Present (Nr=Nz =17) 0.0793 0.0746 0.0679 0.0604 0.0530 

   Present (Nr=Nz =19) 0.0793 0.0747 0.0679 0.0603 0.0530 

 0.3 1 (Nie and Zhong 2008) 0.1041 0.0980 0.0895 0.0801 0.0710 

   Present (Nr=Nz =9) 0.1049 0.0968 0.0888 0.0789 0.0721 

   Present (Nr=Nz =13) 0.1041 0.0981 0.0896 0.0801 0.0712 

   Present (Nr=Nz =17) 0.1039 0.0979 0.0898 0.0799 0.0710 

   Present (Nr=Nz =19) 0.1039 0.0979 0.0897 0.0800 0.0710 

  2 (Nie and Zhong 2008) 0.1104 0.1039 0.0948 0.0849 0.0753 

   Present (Nr=Nz =9) 0.1094 0.1030 0.0933 0.0839 0.0741 

   Present (Nr=Nz =13) 0.1103 0.1038 0.0946 0.0845 0.0755 

   Present (Nr=Nz =17) 0.1106 0.1040 0.0950 0.0850 0.0751 

   Present (Nr=Nz =19) 0.1105 0.1039 0.0950 0.0850 0.0752 
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Table 4 The lowest non-dimensional frequency parameter 
11( )h C     for FGMs annular sector plates  

having clamped (r=b) and simply supported (r=a) conditions (h/a=0.1) 

α(deg) b/a
 

m  
λ     

1 2 3 4 5 

195 0.1 1 (Nie and Zhong 2008) 0.0442 0.0412 0.0372 0.0329 0.0289 

   Present (Nr=Nz=9) 0.0431 0.0429 0.0361 0.0319 0.0271 

   Present (Nr=Nz =13) 0.0440 0.0417 0.0370 0.0336 0.0282 

   Present (Nr=Nz =17) 0.0444 0.0412 0.0376 0.0331 0.0287 

   Present (Nr=Nz =19) 0.0444 0.0411 0.0374 0.0329 0.0287 

  2 (Nie and Zhong 2008) 0.0582 0.0542 0.0488 0.0431 0.0377 

   Present (Nr=Nz =9) 0.0594 0.0559 0.0477 0.0441 0.0362 

   Present (Nr=Nz =13) 0.0588 0.0549 0.0483 0.0433 0.0372 

   Present (Nr=Nz =17) 0.0584 0.0543 0.0487 0.0430 0.0376 

   Present (Nr=Nz =19) 0.0584 0.0544 0.0487 0.0429 0.0378 

 0.3 1 (Nie and Zhong 2008) 0.0727 0.0680 0.0617 0.0548 0.0484 

   Present (Nr=Nz =9) 0.0710 0.0689 0.0605 0.0538 0.0495 

   Present (Nr=Nz =13) 0.0717 0.0685 0.0611 0.0544 0.0488 

   Present (Nr=Nz =17) 0.0721 0.0682 0.0615 0.0548 0.0485 

   Present (Nr=Nz =19) 0.0726 0.0682 0.0618 0.0548 0.0485 

  2 (Nie and Zhong 2008) 0.0802 0.0751 0.0695 0.0604 0.0532 

   Present (Nr=Nz =9) 0.0790 0.0741 0.0690 0.0619 0.0546 

   Present (Nr=Nz =13) 0.0797 0.0754 0.0684 0.0613 0.0536 

   Present (Nr=Nz =17) 0.0800 0.0750 0.0680 0.0607 0.0533 

   Present (Nr=Nz =19) 0.0803 0.0750 0.0680 0.0605 0.0531 

 
Table 5 Mechanical properties of the materials 

 Cu W 

E (GPa)
 

115.0 400.0 

υ
 

0.31 0.28 

ρ (kg/m
3
) 8960 19,300 

 

 

differences between the 3-D solutions and the Mindlin solutions occur at the Clamped-Clamped 

plates. 

As the second example, the convergence behavior and accuracy of the method for lowest non-

dimensional frequency parameter of thick FG annular sector plates with two different sets of 

circular edge conditions including Clamped-Clamped and Clamped-Simply supported are studied 

in Tables 3 and 4. The results are compared with those of the three-dimensional elasticity solutions 

of Nie and Zhong (2008) which are obtained by using the state space method. It is assumed that 

the material properties vary exponentially 
( ) ( )( ( ) , ( ) )M z h M z h

ij ijc z c e z e     through the thickness 

of the plate. Superscripts M denote the material properties of the bottom surface of the plate, λ is 

the material property graded index. One can see that an excellent agreement exists between the 

converged results of the presented approach and the other one. A numerical value of Nr=Nz =19
 
is 

used for the next studies. 

In this section, we characterize the response of CGFR plate with graded fiber volume fractions 
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Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations 

in the plate’s thickness on elastic foundations. The CGFR plate consists of continuous tungsten 

reinforcement fibers in a copper matrix (W/Cu). The relevant material properties for the 

constituent materials are listed in Table 5. Here we assume that the plate has a continuous variation 

(according to Eq. (6)), starting at VW=0 (0% tungsten, 100% copper) on the lower surface of the 

plate to VW=0.75 (75% tungsten, 25% copper) on the upper surface. The non-dimensional natural 

frequency, Winkler and shearing layer elastic coefficients are as follows 

     

2 3 2

2 4

, 12(1 ),

,

i i i i i

g g i w w i

a h D D E h

k K a D k K a D

     

 

 (37) 

Where ρi, Ei 
and υi are mechanical properties of 100% copper.

 
The influence of constituent volume fractions is studied by varying the volume fractions of 

W/Cu. This is carried out by varying the power-law exponent “p”. Figs. 4 and 5 show the influence 

of the constituent volume fractions “p” on the first two non-dimensional natural frequencies of the 

CGFR plates on an elastic foundation.  

It is observed with increasing power-law exponent “p” (decreasing volume fraction of Tungsten 

fiber) the first two non-dimensional natural frequencies decrease sharply for small value of “p” 

(p<1) and then for p>15 it reaches a constant value for different values of the shearing layer elastic 

coefficient. It should be noted that second derivative of the curves in Fig. 2 is positive for p<1 and 

negative for p>1. It is obvious for p=1, the second derivative is equal to zero. Therefore, in Figs. 4 

and 5 the curves have a first decreasing branch, followed by an increasing part, and finally they 

become constant for p>15, because the volume fraction of the matrix gets approximately constant 

along the thickness of the plate. 

 

 

 
Fig. 4 Variation of the first non-dimensional natural frequency parameter of CGFR annular sector plates 

on a two-parameter elastic foundation versus “p” for different boundary conditions and shearing elastic 

coefficient (Kw=100, h/a=0.2, b/a=0.2, α=195°) 
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Fig. 5 Variation of the second non-dimensional natural frequency parameter of CGFR annular sector 

plates on a two-parameter elastic foundation versus “p” for different boundary conditions and shearing 

elastic coefficient (Kw=100, h/a=0.2, b/a=0.2, α=195°) 

 

 

Fig. 6 Variation of the first non-dimensional natural frequency parameter of CGFR annular sector               

plates on a two-parameter elastic foundation versus Winkler elastic coefficient for different boundary 

conditions (p=1, h/a=0.2, b/a=0.2, α=195°) 

 

 

The effect of Winkler elastic coefficient on the first non-dimensional natural frequency 

parameters at different values of shearing layer elastic coefficient with different boundary 

conditions including Simply supported-Clamped, Camped-Clamped and Free-Clamped is shown 

in Fig. 6. It is observed for the large values of Winkler elastic coefficient, the shearing layer elastic  
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Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations 

 

Fig. 7 The influence of the sector angle on the first and second non-dimensional natural frequency 

parameter of CGFR annular sector plates on elastic foundations (Kw=Kg=100, b/a=h/a=0.2, p=1) 

 
Table 6 Material volume fractions of 2-layer, 3-layer and CGFR plates 

Type of Plates  Material volume fractions 

2 Layers 1 st lamina 0%Tungsten, 100% copper 

 2 st lamina 75%Tungsten, 25% copper 

3 Layers 1 st lamina 0%Tungsten, 100% copper 

 2 st lamina 37.5%Tungsten, 62.5% copper 

 3 st lamina 75%Tungsten, 25% copper 

CGFR Bottom surface 0%Tungsten, 100% copper 

 Top surface 75%Tungsten, 25% copper 

 

 

Fig. 8 The effect of Winkler elastic coefficients on the first non-dimensional natural frequency 

parameter of  CGFR, 2-layer and 3-layer annular sector plates (Kg=10, b/a=h/a=0.2, p=1, α=195°) 

 

 

coefficient has less effect and the results become independent of it. In other word, the non- 

dimensional natural frequency parameters converge with increasing Winkler elastic coefficient of 

the foundation. It can be concluded from Fig. 6 that the non-dimensional natural frequency 

parameters converge at the large values of Winkler elastic coefficient. The influences of the sector 
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angle on the fundamental frequency parameter of CGFR annular sector plates on a two-parameter  

elastic foundation with different circular edge conditions are shown in Fig. 7. 

It is obvious that by increasing the sector angle, the frequency parameter decreases. Now we 

turn our attention to the comparison of the CGFR plate with discretely laminated 2-layer, 3-layer 

plate containing [0/0.75], [0/0.375/0.75] volume fractions, respectively, as shown in Table 6. Figs. 

8 and 9 demonstrate how the first and second non-dimensional natural frequencies benefit from a 

gradual change in volume fraction from the lower surface to the upper one. According to these 

figures, the first and second non-dimensional natural frequencies of the CGFR plate increase in 

comparison with similar discrete laminated plates on a two-parameter elastic foundation. 

For an overall comprehension on 3-D vibration of CGFR annular sector plates, some mode 

shape contour plots are depicted in Figs. 10, 11 and 12. Now we consider the non-dimensional 

natural frequency as 

2 3 2 2 4, 12(1 ), ,Al Al Al Al g g Al w w AlAl
a h D D E h k K a D k K a D       

   
(38) 

 

Where ρAl, EAl and υAl are mechanical properties of aluminum. 

It should be noted that the isotropic 2-D FGM sector plates considered in this work, are 

assumed to be composed of aluminum and silicon carbide. In the following, we have compared 

several different ceramic volume fraction profiles of conventional 1-D and 2-D FGMs with 

appropriate choice of the radial and thickness parameters of the 2-D six-parameter power-law 

distribution, as shown in Table 7. It should be noted that the notation Classical-Symmetric 

indicates that the 2-D FGM annular sector plate has Classical and Symmetric volume fraction 

profiles in the radial and thickness directions, respectively. 

 

 

 

Fig. 9 The effect of Winkler elastic coefficients on the second non-dimensional natural frequency 

parameter of CGFR, 2-layer and 3-layer annular sector plates (Kg=10, b/a=h/a=0.2, p=1, α=195°) 
 

790



 

 

 

 

 

 

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations 

 

Fig. 10 Mode shape plots of the CGFR annular sector plates with Clamped-Clamped boundary 

conditions at the circular edges (Kw=Kg=100, b/a=h/a=0.2, p=1, α=195°) 

 

 

Fig. 11 Mode shape plots of the CGFR annular sector plates with Simply supported-Clamped 

boundary conditions at the circular edges (Kw=Kg=100, b/a=h/a=0.2, p=1, α=90°) 

 

 

Fig. 12 Mode shape plots of the CGFR annular sector plates with Free-Clamped boundary 

conditions at the circular edges (Kw=Kg=100, b/a=h/a=0.2, p=1, α=90°) 
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Table 7 Various ceramic volume fraction profiles, different parameters, and volume fraction indices of 2-D 

power-law distributions 

Volume fraction 

profile 

Radial volume fraction 

Index and parameters 

The volume fraction of Thickness, 

Index and parameters 

Classical-Classical αr=0 αZ=0 

Symmetric-Symmetric αr=1,
 
βr=2 αZ=1,

 
βZ=2 

Classical- Symmetric αr=0 αZ=1,
 
βZ=2 

Classical radially αr=0 γZ=0 

Symmetric radially αr=1,
 
βr=2 γZ=0 

 

 
Fig. 13 Variations of fundamental frequency parameters of a bi-directional FG annular sector plate 

resting on a two-parameter elastic foundation with Winkler elastic coefficient for different volume 

fraction profiles (Kg=100, γZ=2, h/a=b/a=0.5, α=195°)  

 

 

The effect of the Winkler elastic coefficient on the fundamental frequency parameters of a bi-

directional FG sector plate for different boundary conditions is shown in Fig. 13. According to this 

figure, the lowest frequency parameter is obtained by using Classical- Classical volume fraction 

profile. On the contrary, the 1-D FG sector plate with Symmetric volume fraction profile has the 

maximum value of the frequency parameter. It can be also seen from Fig. 13, for different 

boundary conditions, Classical-Classical volume fraction profile has the lowest frequencies  
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Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations 

 

Fig. 14 Variation of fundamental frequency parameters of an elastically supported bi-directional FG 

annular sector plate versus b/a ratio for different boundary conditions at circular edges profiles 

(Kw=Kg=100, γZ=2, αr= αZ=0, α=195°) 

 
 

Fig. 15 Frequency variation against volume fraction index (γz) for a bi-directional FG annular 

sector plate resting on a two-parameter elastic foundation (Kw=Kg=100, h/a=b/a=0.5, γr=2, αr= 

αZ=0, α=195°) 

 

 

followed by Classical-Symmetric, Classical, Symmetric-Symmetric and Symmetric profiles. 

Therefore, a graded ceramic volume fraction in two directions has higher capabilities to reduce the 

frequency parameter than conventional 1-D FGM. 
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The variation of inner-outer radius ratio (b/a) with the frequency parameters of a Clamped-

Clamped, Simply supported-Clamped and Free-Clamped bi-directional FG annular sector plates 

resting on a Pasternak elastic foundation for different values of h/a ratios is shown in Fig. 14. 

According to Fig. 14, the general behavior of the frequency parameters of a bi-directional FG 

annular sector plate for all b/a ratios is that the effects of the h/a ratios are more prominent at high 

inner-to-outer radius ratios. As it is observed, the frequency parameter decreases rapidly with the 

decrease of the b/a ratio and then remains almost unaltered for the b/a< 0.3. 

Now we study the influence of various types of the ceramic volume fraction profile on 

fundamental natural frequency at various volume fraction indices through the thickness direction 

(γz) of the annular sector plates (Fig. 15). The results show that, for the all boundary conditions the 

frequency parameter decreases by increasing the thickness volume fraction index, due to the fact 

that the silicon carbide fraction decreases, and as we know silicon carbide has a much higher 

Young’s modulus than aluminum. It is also seen, that the thickness volume fraction index has less 

effect on the frequency parameter for the Classical-Classical volume fraction profile. 

 

 

7. Conclusions 

 

In this research work, free vibration of continuous grading fiber reinforced (CGFR) and bi-

directional FG annular sector plates on a two-parameter elastic foundation are investigated based 

on three-dimensional theory of elasticity. The elastic foundation is considered as a Pasternak 

model with adding a shear layer to the Winkler model. Three complicated equations of motion for 

the plate under consideration are semi-analytically solved using 2-D differential quadrature 

method. Using the two-dimensional differential quadrature method in the r- and z-directions, 

allows one to deal with FG plates with arbitrary thickness distribution of material properties and 

also to implement the effects of the elastic foundations as a boundary condition on the lower 

surface of the plate efficiently and in an exact manner. The fast rate of convergence and accuracy 

of the method are investigated through the different solved examples. The effects of different 

boundary conditions, various geometrical parameters such as the sector angle, different ceramic 

volume fraction profiles along the thickness and radial directions, elastic coefficients of foundation 

of bi-directional annular sector plates are investigated. Moreover, vibration behavior of 2-D FG 

plates is compared with one-dimensional conventional FG plates. From this study, some 

conclusions can be made: 

• It is shown that with increasing the elastic coefficients of the foundation, the frequency   

parameters increase to some limit values. It is observed for the large values of Winkler elastic 

coefficient, the shearing layer elastic coefficient has less effect and the results become independent 

of it. 

• It is observed that with increasing power-law exponent “p” (decreasing volume fraction of 

Tungsten fiber) the first two non-dimensional natural frequencies decrease sharply for small value 

of “p” and then for p >15, they become constant because the volume fraction of the matrix gets 

approximately constant along the thickness of the plate.  

• It is observed that the CGFR plate attains natural frequency higher than those of traditional 

discretely laminated composite ones and close to that of a 2-layer.  

• It is shown that the CGFR plate attains natural frequency higher than those of traditional 

discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is 

the goal and that is due to the reduction in spatial mismatch of material properties. 
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• The interesting results show that the lowest magnitude frequency parameter is obtained by 

using a Classical-Classical volume fraction profile. It can be concluded that a graded ceramic 

volume fraction in two directions has higher capabilities to reduce the natural frequency than a 

conventional 1-D FGM. 

• It is also seen that the thickness volume fraction index exerts an insignificant influence on the 

frequency parameter for the Classical-Classical volume fraction profile. 

• It is shown that the general behavior of the frequency parameters of a bi-directional FG 

annular sector plate for all b/a ratios is that the effects of the h/a ratios are more prominent at high 

inner-to-outer radius ratios. As it is observed, the frequency parameter decreases rapidly with the 

decrease of the b/a ratio and then remains almost unaltered for the b/a< 0.3. 

• It is observed that for different boundary conditions, Classical-Classical volume fraction 

profile has the lowest frequencies followed by Classical-Symmetric, Classical, Symmetric-

Symmetric and Symmetric profiles. 
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