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Abstract.  A design method of second generation wavelet (SGW)-based multivariable finite elements is 
proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom 
designed by selecting appropriate lifting coefficients depending on the application. The SGW-based 
multivariable finite element equations of static and vibration analysis of beam problems with two and three 
kinds of variables are derived based on the generalized variational principles. Compared to classical finite 
element method (FEM), the second generation wavelet-based multivariable finite element method (SGW-
MFEM) combines the advantages of high approximation performance of the SGW method and independent 
solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve 
structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and 
accurate method in static and vibration beam analysis. 
 

Keywords:  second generation wavelet; multivariable finite element method; generalized variational 

principles; multiscale structural analysis 

 
 
1. Introduction 

 

The finite element method (FEM) based on the energy variational principle and discrete 

interpolation has been an important analysis tool in solving mathematical and engineering 

problems. Since traditional FEM uses single variable as the nodal values of the independent 

variable, the rest field functions, such as rotation and moments in the displacement-based FEM, 

will loss the accuracy for differential or integral operations. The emergence of the MFEM has 

solved this problem by taking generalized displacement, rotation and moments as independent 

variables on the basis of generalized potential energy functional. Zhang (1997) established a 

practical and general constant stress patch test conditions for analyzing and ensuring convergence 

or robustness of multivariable finite element formulations. Sun (2003) used incompatible 

multivariable FEM and homogenization theory to model and analyze micromechanical properties 
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of braided composite materials. Zhang (2002) presented a perturbed multivariable finite element 

method with potential for piezoelectric and disturbed surface acoustic waves in plates and layered 

solids. Since the interpolating basis functions of FEM and MFEM are generally polynomials, a 

great deal of numerical structural analysis using traditional interpolating basis functions show 

several disadvantages, i.e., low efficiency, ill-conditioned elements, etc (Zienkiewicz et al. 2000, 

Chen et al. 2004).  

The adoption of new polynomials or wavelets as interpolating basis functions has recently been 

a new method to improve the stability and accuracy of traditional FEM. A typical combined 

method called wavelet-based finite element method incorporates the feature of the multiresolution 

analysis of wavelet numerical method and discrete approximation of FEM, which has been 

developed broadly by the mathematicians and engineering researchers in the recent years. He 

(2012) proposed a new method for the analysis of beam structures using the trigonometric 

wavelet-based finite elements. Zupan (2009) presented a trigonometric wavelet-based method for 

the analysis of spatial naturally curved and twisted linear beams based on the linearized finite-

strain beam theory. Chen (2004) constructed Daubechies wavelet finite elements for the bending 

analysis of thin plate with singularities. Xiang (2006, 2007, 2008, 2009) developed a new kind of 

wavelet-based finite elements using B-spline wavelet on the interval for the analysis of structural 

problems including beams, plates, shells, shafts, etc. Similarly, the MFEM using new polynomials 

or wavelets bases has also received much attention. Shen (1992, 1995, 1997) constructed 

multivariable spline finite elements based on generalized variational principle for the bending 

analysis of plates and shells. Yu (2010) constructed multivariable finite elements (MFEs) by 

adopting the Legendre hierarchical polynomials as interpolating basis functions of displacement 

and generalized force field functions for static and vibration analysis of beams. Han (2005) 

developed a multivariable wavelet-based FEM based on the Hellinger-Reissner variational 

principle to resolve the bending problems of thick plates. Zhang (2010) proposed a MFEM based 

on B-spline wavelet on the interval and the generalized variational principle for thin plate static 

and vibration analysis. However, the MFEs are generally built for one class of engineering 

problems and their approximation feature can not be changed after the selection of interpolating 

functions.  

Recently, the introduction of second generation wavelets (SGWs) based on lifting scheme 

(Sweldens 1996, 1997) eliminates the restriction and deficiency of traditional interpolating 

functions of MFEM. The lifting scheme provides the users much flexibility to build different SGW 

bases with prediction and update coefficients for engineering problems depending on the 

applications. In the last decades, second generation wavelets based on the lifting scheme have 

gradually been applied in solving various mathematical and engineering problems. Vasilyev et al. 

(Vasilyev et al. 2000, 2005, Mehra 2008) established second generation wavelet collocation 

method to solve partial differential equations (PDE) with general boundary conditions and 

nonlinearities. Wang et al. (2006) developed an adaptive second generation wavelet method to 

solve wave equations accurately. Pinho et al. (2004) discussed a multiresolution analysis for the 

discretisation of Maxwell equations using second generation wavelets, which reduced the 

dimensionality and simplified the representation of nonlinear operators. Castrillón-Candás et al. 

(2003) presented spatially adaptive multiwavelets based on the lifting scheme to sparsely represent 

integral operators on general geometries. He et al. (2007) developed a construction method of 

lifting wavelets to solve field problems with changes in gradients and singularities by designing 

suitable prediction operators and update operators. Wang et al. (2010) constructed a new class of 

operator-orthogonal wavelets based on the lifting scheme for multiresolution structural analysis. 
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Fig. 1 Second generation wavelet transform (a) decomposition (b) reconstruction 

 

 

In this paper, a MFEM by adopting SGWs as interpolating functions is proposed for the static 

and vibration analysis of Euler and Timoshenko beam problems. The organization of the paper: 

An outline of the paper is as follows. Section 2 introduces the construction of second generation 

wavelet based on the lifting scheme. Section 3 introduces the computation of connection 

coefficients. Section 4 discusses the SGW-MFEM for the static and vibration analysis of beam 

problems based on the generalized variational principles. Section 5 demonstrates the numerical 

performance of the multiscale SGW-MFEM and conclusions are drawn in Section 6. 

 

 

2. Second generation wavelets 
 

Lifting scheme (Sweldens 1996, 1997) was presented by Sweldens to custom design second 

generation wavelets with specific properties, i.e., increasing the vanishing moments, ensuring 

symmetry and compact support, etc. Generally, the SGW is constructed by steps of split, predict 

and update shown in Fig. 1. 

Let  j j Z
x


x  be an original signal, the decomposition algorithm of SGW transform is 

given in the following. 

(I) Split: The original signal is divided into even samples se and odd samples so 

( ) (2 ),    
e

s k x k k Z                              (1) 

( ) (2 1),    
o

s k x k k Z                             (2) 

(II) Predict: Using neighboring N even samples se to predict odd samples so and the prediction 

difference d={d(k), kZ} is the detail signal after the original signal is decomposed by 

( ) ( ) ( )   
o e

d k s k P s k Z  ,                          (3) 

where P(N) is defined as N point predictor whose prediction coefficients are p1, p2, …, pN and N is 

the predictor order.  

(III) Update: Using the obtained N detail signal d to update the even samples se and the 

updated signal s(k) is defined as the approximation signal after the original signal is decomposed 
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by SGW 

( ) ( ) ( ),   
e

s k s k U d k Z                            (4) 

where U(N) is denoted as N point updater with update coefficients u1, u2, …, uN, and N is the 

updater order.  

The reconstruction algorithm of SGW transform includes undo update, undo predict and merge 

as follows:  

(I’) Undo update: Approximation signal s(k) and detail signal d can be used to recover even 

samples se(k) of the form 

( ) ( ) ( ),   
e

s k s k U d k Z                             (5) 

(II’) Undo predict: Odd samples so(k) can be recovered by even samples se(k) and detail signal d 

of the form 

( ) ( ) ( )   
o e

s k d k P s k Z  ,                          (6) 

(III’) Merge: Original signal can be obtained by using even samples se and odd samples so 

(2 ) ( ),    
e

x k s k k Z                              (7) 

(2 1) ( ),    
o

x k s k k Z                              (8) 

The lifting scheme provides the users much flexibility to build different SGW bases with 

prediction and update coefficients for engineering problems depending on the applications. Fig. 2 

shows a second generation wavelet with the predictor order N=4 and the updater order N=4.  

 

 

3. Connection coefficients of SGW 
 
Since the wavelet numerical method can be viewed as a method in which the approximating 

function is defined by use of a multiresolution technique, the computation of connection 
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Fig. 2 Second generation wavelet: (a) scaling functions SGW(4) (b) wavelet functions SGW(4,4) 
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coefficients are based on the multiresolution analysis of the wavelets and scaling functions. While 

using the scaling functions of SGWs as a test function of finite element method, we would obtain 

two typical connection coefficients on the interval [0,1] to form stiffness matrices and load vectors 

(Zienkiewicz et al. 2000, Ma et al. 2003), such as 

 
, , ( ) ( )

, , , ,0,1
( )j a b a b

N k l j k j kξ d    



                           (9) 

 
,

, ,0,1
( )j c c

N k j kR ξ d   



                           (10) 

where
 0 1

1      0 1
( )

0    otherwise

ξ
 

 
 


,
. The connection coefficient matrix can be derived as (Wang 2012) 

1 , ,(2 - ) 0m n j m n

NG I                                (11) 

where G is the coefficient matrix 

2 2 2 2 2 2
,

( )j js k t l s k t l
s t

G         
                        (12) 

where –(2N−1)≤k, l≤2
j
−1 and λj,k,l denote the low-pass filters of SGWs, I is an identity matrix, and 

, ,j m n

N denotes the (2
j
+2N−1)×(2

j
+2N−1) stiffness matrix. Eq. (9) cannot be determined uniquely 

through the homogeneous Eq. (11), so independent inhomogeneous equations are required for 

unique solution as 

( ) , ,

, , , ,

,

! ! 2
2

( )! ( )! 1

j m n q w j m n

j k j l N k l

k l

q w
C C

q m w n q w m n


     
            (13) 

where 
, ,,q q

j k j kC x  . For the computation of the connection coefficients of load vectors, the 

multiresolution analysis of SGWs will derive the following equation  

1 ,

, ,2 2
1

(2 ) j

m
m j m m s

N k N ii k
i s

m
I B R R

s
 

 


 
   

 
                     (14) 

where (2 1) 2 1jN k     ,  2 2 2
,

ji k i k
i k

B    
  .  

 

 

4. Construction of SGW-MFEM 
 

4.1 Euler beam analysis 
 
4.1.1 Static analysis 
Euler beam with two kinds of variables 
The boundary and inner nodes in the physical space of multivariable Euler beam element have 

the degrees of freedom including transverse deflection and moments. Fig. 3 shows the elemental  
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Fig. 3 Euler beam element node array 

 

 

nodal array in solving domain Ω of the Euler beam. When the second generation wavelets are used 

to construct the multivariable finite elements, the standard solving domain is divided into n=2
j
+2N 

segments shown in Fig. 3 and the node number is n+1. Every node has the degrees of freedom wi, 

Mi, i=1, 2, …, n+1 and the overall number of degrees of freedom is 2(n+1). 

The generalized potential energy function of the bending problems of an Euler beam with two 

categories of variables is defined as  

2 2

2 20 0 0

d
( ) d d d ( )

d 2

L L L

p i i

i

w M
w,M M x x qw x Pw x

x EI
      Π            (15) 

where w is the field deflection function, M the resistance moment field function, E elastic ratio, I 

cross-section inertia moment, q distributed load.  

If the SGW scaling functions are applied to solve Euler beam bending problems, the field 

functions w and M are interpolated respectively by 

( ) e ew  ΦT w   and ( ) e eM  ΦT M                      (16) 

where  )()()(Φ
,,,  j

m

j

mm

j

mm j 12211  
   is the one row vector combined by the scaling 

functions for m at the scale j, the field functions w
e
 and M

e
 have the form 

 T

121  n

e www w ,                           (17) 

 
T

1 2 1 e

nM M M M .                          (18) 

and T
e
 is the transformation matrix of the form 

T T T T 1

1 2 1([ ( )  ( )  ( )] )e

n   

T Φ Φ Φ                   (19) 

Substituting Eq. (16) into Eq. (15), according to second kind variation principle 

2
0 

p

e




M


     and     

2
 0

p

e




w


                    (20) 

we can obtain the second generation wavelet FEM formulations for Euler beam problems  

20

02 00

0

1
0

e e

e

EI



 

 
                

w P

M
                       (21) 
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where the integral terms are 

 1
00 T T

  0
( ) {  d }( )e e

el  Γ T Φ Φ T                        (22) 

2 T
 1

20 T

2  0

1 d
( ) { d }( )

d

e e

el



 

Φ
Γ T Φ T                      (23) 

02 20 T( )Γ Γ                                (24) 

the elemental distributed loading column vector is 

 1
T T

 0
( ) de e

el q( )  P T Φ                          (25) 

and the lump loading column vector is 

T T( ) ( )e e

j j

j

P P T Φ                           (26) 

 

Euler beam with three kinds of variables 
The generalized potential energy function of the bending problems of an Euler beam with three 

categories of variables is defined as  

2

3
0 0 0 0

( ) d d d d ( )
2

L L L L

p i i

i

EI d
w, , x x w x qw x Pw x

dx

 
          Π        (27) 

where w, σ, v are the field deflection function, stress function and strain function, respectively. If 

the SGW scaling functions are applied to solve Euler beam bending problems, the field functions w, 

σ and v are interpolated respectively by 

( ) e ew  ΦT w  ( ) e e  ΦT σ   ( ) e e  ΦT ν                 (28) 

where the field functions w, σ and v have the form  

 T

121  n

e www w ,                          (29) 

 
T

1 2 1 e

n   σ ,                           (30) 

 
T

1 2 1 e

n   ν .                           (31) 

Substituting Eq. (28) into Eq. (27), according to second kind variation principle 

  
2

 0
p

e




w


,    

2
0 

p

e








σ
,  

2
0 

p

e








ν
                  (32) 

we can obtain the second generation wavelet FEM formulations for Euler beam problems  

10 e

01 00

00 00

0 0

0 0

0 0

e

e

eEI

     
     

      
          

Γ w P

Γ Γ σ

Γ Γ ν

                       (33) 

685



 

 

 

 

 

 

Youming Wang, Qing Wu and Wenqing Wang 

where the integral terms 

T
 1

10 T

  0

d
( ) {  d }( )

d

e e


 
Φ

Γ T Φ T                       (34) 

01 10 T( )                                (35) 

the elemental distributed loading column vector and the lump loading column vector has the same 

form as Eqs. (25)-(26). 

 

4.1.2 Vibration analysis 
The generalized potential energy function of the eigenvalue problems of a beam with two 

categories of variables is defined as  

2 2
2

2 20 0 0

1
d d d

2 2

L L L

p

d w M
M x x w x

dx EI
     Π                 (36) 

where w is the field deflection function, M the mass matrix, E elastic ratio, I cross-section inertia 

moment, ρ is the density, λ is the eigenvalue. When the SGW scaling functions are applied to solve 

Euler beam eigenvalue problems, the field functions w and M can be interpolated respectively by 

( ) e ew  ΦT w   and ( ) e eM  ΦT M                    (37) 

Substituting Eq. (37) into Eq. (36), according to second kind variation principle 

2
0 

p

e




M


     and     

2
 0

p

e




w


                   (38) 

we can obtain the second generation wavelet FEM formulations for Euler beam eigenvalue 

problems  

00 02

00
20

1
0 0

0
0

e e

e e
EI



 
                   

M M

w w

 




                 (39) 

where the integral terms are referred to Eq. (22)-(24). The vibration equation of Euler beam has 

the form 

0 K M                               (40) 

 

4.2 Timoshenko beam analysis 
 

4.2.1 Static analysis 
The boundary and inner nodes in the physical space of multivariable Timoshenko beam 

element have the degrees of freedom including transverse deflection, rotation and moments. When 

the second generation wavelets are used to construct the multivariable finite elements, the standard 

solving domain is divided into n=2
j
+2N−1 segments shown in Fig. 4 and the node number is n+1. 

Every node has the degrees of freedom wi, θi, Mi, i=1,2,…,n+1 and the overall number of degrees 

of freedom is 3(n+1). 
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Fig. 4 Timoshenko beam element node array 

 

 

If the BSWI scaling functions are applied to solve the thick plate bending problems, the field 

functions of Timoshenko beam are interpolated respectively by  

( ) e ew  ΦT w                               (41) 

( ) e e  ΦT θ                               (42) 

( ) e eM  ΦT M                              (43) 

where w
e
={w1 w2 … wn+1}

T
, θ

e
={w1 w2 … wn+1}

T
, M

e
{M1 M2 … Mn+1}

T
. 

The generalized potential energy function of the bending problems of a Timoshenko beam with 

two categories of variables is defined as  

2
2

2
0 0 0 0

d d
( ) ( )d ( ) d ( )d d

d 2 d 2

L L L L

p

k GA w M
w, ,M M x x x qw x

x x EI


         Π    (44) 

where G is sheat modulus, A cross-section, kτ cross-section shape factor kτ=5/6 for rectangular 

cross-section, kτ=9/10 for circular cross-section. 

According to second kind variation principle, let 

0
p

e






2Π

M
,  0

p

e






2Π

θ
 and 

p

e






2
0

Π

w
                     (45) 

Substituting Eqs. (41),(42),(43) into Eq. (44), we can obtain SGW FEM equations 

11 10 e

01 00 10

01 00

0

0

1 0
0

e

e

e

k GA k GA

k GA k GA

EI

 

 

 
     
     
       
     

     
 

Γ Γ w P

Γ Γ Γ θ

M
Γ Γ

                 (46) 

where the integral form 

T
 1

11 T

  0

1 d d
( ) { d }( )

d d

e e

el


 
 

Φ Φ
Γ T T                      (47) 

and the element distributed loading column vector and the lump loading column vector has the 

similar form as Eqs. (25)-(26). 
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4.2.2 Vibration analysis 
The generalized potential energy function of the eigenvalue problems of a Timoshenko beam 

with two categories of variables is defined as  

2

2 2 2

2
0 0 0

d d 1 1
( ) ( ) d d d

2 d 2 d 2 2

L L L

p

k GAEI w
w, ,M x Aw x J x

x x


    

   
       

   
  Π  (48) 

where J is the inertia moment. If the SGW scaling functions are applied to solve Euler beam 

eigenvalue problems, the field functions w and M are interpolated respectively by  

( ) e ew  ΦT w   and ( ) e eM  ΦT M                    (49) 

According to second kind variation principle, let  

0
p

e






2Π

M
 and 

p

e






2
0

Π

w
                        (50) 

we can obtain SGW-FEM equations 

11 10

01 11 00

0

0

e e

e e

C C

C EI C









        
      

        

MM M

w wM

 

  
            (51) 

where   

00A M  , 
00J M  , C k Gt                    (52) 

where Mλ is mass matrix, M  is the vibration inertia matrix, the vibration equation of 

Timoshenko beam has the form 

0 MK                           (53) 

 

 

5. Numerical examples 
 

As the common problem in structural mechanics, Euler and Timoshenko beam problems are 

calculated by multiscale SGW-MFEM in the following numerical example. The error estimator of 

second generation wavelet-based multivariable finite element (SGW-MFE) solution is key 

parameter to test the accuracy of the SGW-MFEM. The error estimator δj is chosen to be the 

uniform norm of the difference ej between the SGW-MFE solution ūj and the exact solution ūe 

respectively in the form  

maxj j j ee u u


                             (54) 

To establish a unified standard of error controlling values, the relative error estimate on the 

level j are defined in the nondimensional form 
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max

max max

j j e

j

e e

e u u

u u
 


                          (55) 

The relative error estimation also can indicate the convergence rate of SGW-MFE solution on 

each level.  

 

Example 1. Fig. 5 shows a rectangle cross-section cantilever beam subjected to distributed 

loading. The physical parameters are: elastic modulus E=5×10
10

 N/m
2
, shear modulus G=1.5×10

9 

N/m
2
, width B=0.625 m, height H=1 m, shear correction coefficient Ks=5/6, length L=10 m, 

distributed loading q(x)=q0(1−x/L), q0=10
5 
N, lump force P0=5×10

5

 
N, moment M0=5×10

3

 
N∙m and 

the density ρ=7.9×10
3 
kg/m

3
 , respectively.  

A Timoshenko beam model is constructed to solve this problem using SGW-MFEs with order 

N=4 and N=6. Table 1 illustrates the error estimator and relative error estimator of beam rotation 

by multiscale SGW-MFEM, respectively. Table 2 gives the error estimator and relative error 

estimator of third-order beam eigenvalue by multiscale SGW-MFEM, respectively. It can be 

observed that the SGW-MFEM converges fast while the scale is increasing. It is noted that the 

SGW-FEM is referred to the work by Wang (2012) and Ma (2003). Figs. 6 and 7 show the relative 

error of beam rotation and eigenvalue using multiscale SGW-MFEM with the increasing number 
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q(x)

0q

w

F0

M0

 

Fig. 5 A cantilever beam subjected to distributed loading 

 

  
(a) (b) 

Fig. 6 Convergence of rotation for Timoshenko beam using multiscale SGW-MFEM method with (a) 

number of levels, (b) degrees of freedom 
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(a) (b) 

Fig. 7 Convergence of eigenvalue for Timoshenko beam using multiscale SGW-MFEM method with 

(a) number of levels, (b) degrees of freedom 

 
Table 1 Multiscale rotation solution by SGW-MFEM with order N=4 and N=6 

Space 
 N=4   N=6  

δj (10-5) ηj (%) DOFs δj (10-5) ηj (%) DOFs 

V0(j=0) 16.624 1.67 27 1.519 0.15 39 

V1(j=1) 7.291 0.73 30 0.903 0.09 42 

V2(j=2) 2.255 0.23 36 0.368 0.04 48 

V3(j=3) 1.423 0.14 48 0.156 0.02 60 

Cubic FEM 2.541 0.26 82 —— —— —— 

SGW-FEM 4.217 0.42 32 1.838 0.18 40 

 
Table 2 Third-order eigenvalue solutions by SGW-MFEM with order N=4 and N=6 

Space 
 N=4   N=6  

δj ηj (10-4) DOFs δj ηj (10-4) DOFs 

V0(j=0) 0.021518 5.607 27 0.000176 0.0458 39 

V1(j=1) 0.004289 1.118 30 0.000098 0.0255 42 

V2(j=2) 0.000363 0.095 36 0.000040 0.0105 48 

V3(j=3) 0.000161 0.042 48 0.000012 0.0029 60 

Cubic FEM 0.000451 0.117 82 —— —— —— 

SGW-FEM 0.007716 2.011 32 0.000229 0.0596 40 

 

 

of levels and degrees of freedoms (DOFs), respectively. It can be seen that numerical solution of 

the problem using multiscale SGW-MFEM with the order N=6 has faster convergence rate and 

fewer DOFs than the other methods, including SGW-MFEM with the order N=4, cubic traditional 

cubic traditional FEM and SGW-FEM.  

Example 2. Fig. 8 shows a simply supported beam with uniform section subjected to a 

distributed loading q(x)=q0x
2
e

x
, q0=10

3
 N. The physical parameters are: elastic modulus E=2×10

11 

N/m
2
, length L=10 m, width B=0.25 m, height H=1 m and the density ρ=7.9×10

3 
kg/m

3
, 

respectively. 
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L

x
O
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Fig. 8 A simply supported beam subjected to a distributed loading 

 
Table 3 Multiscale moment solution by SGW-MFEM with order N=4 and N=6 

Space 
 N=4   N=6  

δj (107) ηj (%) DOFs δj (107) ηj (%) DOFs 

V0(j=0) 5.8629 5.58 20 0.9372 0.89 28 

V1(j=1) 3.7812 3.60 22 0.5087 0.48 30 

V2(j=2) 1.7025 1.62 26 0.1358 0.13 34 

V3(j=3) 0.9166 0.87 34 0.0502 0.05 42 

Cubic FEM 1.6983 1.61 62 —— —— —— 

SGW-FEM 2.0231 1.93 34 0.1108 0.11 42 

 
Table 4 Third-order eigenvalue solutions by SGW-MFEM with order N=4 

Space 
 Example 2   Example 3  

δj ηj (%) DOFs δj ηj (%) DOFs 

V0(j=0) 0.02126 0.01035 20 0.03251 0.01645 20 

V1(j=1) 0.00832 0.00405 22 0.01573 0.00796 22 

V2(j=2) 0.00138 0.00067 26 0.00271 0.00137 26 

V3(j=3) 0.00031 0.00015 34 0.00049 0.00025 34 

Cubic FEM 0.00044 0.00022 82 0.00078 0.00039 82 

SGW-FEM 0.00092 0.00045 34 0.00114 0.00057 34 

 

 

The beam problem can be solved by Euler-Bernoulli model using SGW-MFEM with order 

N=4 and N=6. Table 3 shows the error estimator and relative error estimator of beam moment by 

multiscale SGW-MFEM, respectively. Table 4 illustrates the error estimator and relative error 

estimator of third-order beam eigenvalue by SGW-MFEM with the order N=4, respectively. Fig. 9 

shows the relative error of beam moment using multiscale SGW-MFEM with the increasing 

number of levels and degrees of freedoms, respectively. Numerical results show that the problem 

using multiscale SGW-MFEM with the order N=6 needs fewer degrees of freedom than the other 

methods to approximate the analytic solution.  

Example 3. Fig. 10 shows a rectangle cross-section beam with fixed support subjected to 

distributed loading. The physical parameters and loading are: elastic modulus E=10
11 

N/m
2
, width 

B=0.25 m, height H=1 m, length L=10 m, distributed loading 2

0( ) sin( / )xq x q e x L  and q0=10
3 

N and the density ρ=7.9×10
3 
kg/m

3
, respectively.  
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(a) (b) 

Fig. 9 Convergence of moment for Euler beam using multiscale SGW-MFEM method with (a) number 

of levels, (b) degrees of freedom 
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Fig. 10 A fixed supported beam 

 
Table 5 Multiscale deflection solution by SGW-MFEM with order N=4 and N=6 

Space 
 N=4   N=6  

δj ηj (%) DOFs δj ηj (%) DOFs 

V0(j=0) 0.04107 0.3158 30 0.00117 0.0090 42 

V1(j=1) 0.01683 0.1294 33 0.00070 0.0054 45 

V2(j=2) 0.00249 0.0192 39 0.00036 0.0028 51 

V3(j=3) 0.00085 0.0066 51 0.00013 0.0010 63 

Cubic FEM 0.00429 0.0330 93 —— —— —— 

SGW-FEM 0.02528 0.1944 34 0.00351 0.0273 42 

 

 

Based on the lifting scheme, we can build proper SGWs with order N=4 and N=6 based on 

prediction and update coefficient for the Euler-Bernoulli beam analysis. Table 5 gives the error 

estimator and relative error estimator of third-order beam eigenvalue by multiscale SGW-MFEM 

with the order N=4 and N=6, respectively. Table 5 illustrates the error estimator and relative error 

estimator of beam deflection by multiscale SGW-MFEM with three kinds of variables,  
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(a) (b) 

Fig. 11 Convergence of deflection for Euler beam using multiscale SGW-MFEM method with (a) 

number of levels, (b) degrees of freedom 

 

 

respectively. Fig. 11 shows the relative error of beam deflection using multiscale SGW-MFEM 

with the increasing number of levels and degrees of freedoms, respectively. It can be observed that 

multiscale SGW-MFEM with the order N=6 converges fastest in the listed three methods. 

Therefore, the SGW-MFEM is efficient, accurate and reliable for the solution of beam problems.  

 

 

6. Conclusions 
 

A multiscale SGW-MFEM is presented for static and vibration beam analysis based on 

generalized variational principle. The SGW-MFEM is efficient and accurate in the analysis of 

static and vibration beam analysis because it combines the advantages of custom-design wavelet 

bases depending on the application by SGW method and the separate interpolation of transverse 

deflection, rotation and moment by the MFEM. A remarkable property of SGW-MFEM is that it 

combines the advantages of custom-design wavelet bases depending on the application by SGW 

method and the separate interpolation of transverse deflection, rotation and moment by the 

MFEM. Compared to the traditional FEM, the multiscale SGW-MFEM can lead to faster 

convergent rate in solving structural problems. The numerical examples have shown the 

effectiveness and validity for the multiscale structural analysis. The extension of SGW-MFEM will 

be the construction of two- or three- dimensional multivariable finite elements of SGW for the 

solution of engineering problems. 
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