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Abstract.  A numerical method, using a special mixed finite element associated with the virtual crack 
extension technique, has been developed to evaluate the energy release rate for kinking cracks. The element 
is two dimensional 7-node mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed 
finite element ensures the continuity of stress and displacement vectors on the coherent part and the free 
edge effect. This element has been formulated starting from a parent element in a natural plane with the aim 
to model different types of cracks with various orientations. Example problems with kinking cracks in a 
homogeneous material and bimaterial are presented to assess the computational accuracies. 
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1. Introduction 

 

The problem of kinking cracks is relevant to situations where cracks change direction from the 

original orientation. The problem has received a considerable attention for analytical study. This 

problem has been solved by Chatterjee (1975), Amestoy and Leblond (1992) using the conformal 

mapping technique. Vitek (1977), Lo (1978), Hayashi and Nemat-Nasser (1981), Melin (1986) 

studied the problem with methods based on continuous distributions of dislocations. Cotterel and 

Rice (1980) solved the problem using perturbation techniques, Theocaris and Makrakis (1986, 

1987) used the Mellin transform. Khrapkov (1971) proposed a solution based on Mellin transform 

and Bilby and Cardew (1975) used the Khrapkov’s solution to solve the problem of semi-infinite 

kinked crack (Blanco et al. 1998). Li et al. (2010) presented a solution for the elastic T-stress at tip 

of a slightly curved or kinked based on a perturbation approach. Beghini et al. (2012) proposed a 

simplified approach for evaluating the stress intensity factors of an inclined edge kinked crack in a 

semi-plane. This method is based on an analytical weight function. 

Numerical analysis of the crack kinking using finite element has not received much attention. 

Maiti (1990) used three different methods: stiffness derivative procedure, J integral method and 

crack closure integral technique to approximate energy release rate for a crack kinks away from its 

original direction. Xie et al. (2004) proposed a numerical method based on the virtual crack 
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closure technique and in conjunction with the finite element to compute strain energy release rates 

for cracks that kink. Jakobsen et al. (2008) studied a general interface delamination and crack 

kinking from an inclined core junction in a sandwich beam. A finite element model was developed 

and calibrated against a known model by He and Hutchinson (1989). Bäker (2008) used the energy 

release rate to determine the crack propagation direction. In two dimensions, this can be 

considered as one-dimensional optimization problem where the kinking angle is chosen to 

maximize the energy release. Bäker (2009) presented a method to calculate crack directions by 

using trial cracks. This approach is applied to three different situations: the kinking angle of a 

crack loaded under mixed mode load, the kinking angle of a crack near a bimaterial interface, and 

crack propagation at the interface of an elastic inclusion. Marsavina et al. (2009) used the finite 

element method to calculate the stress intensity factors at the tips of crack. The effects of material 

properties, the kinked crack length, the interface crack length, and the kinked angle were 

investigated. Boulenouar et al. (2013) proposed a numerical modeling of crack propagation under 

mixed mode loading conditions. This approach is based on the implementation of the displacement 

extrapolation method and the strain energy density theory in a finite element code. At each crack 

increment length the kinking angle is evaluated as a function of stress intensity factors. 

This paper deals with the problem of kinking cracks. A special mixed finite element, based on 

Reissner’s mixed variational principle, has been associated with the virtual crack extension method 

to evaluate the energy release rate for kinking cracks. This mixed finite element takes into account 

the continuity of the interface on the coherent part (mechanical and geometrical continuity) and the 

discontinuity of this one on the cracked part (free edge effect). This element was initially 

developed by Bouzerd (1992) using a direct formulation: the shape functions of the displacement 

and stress fields are built directly starting from the real configuration of the element in a physical 

(x, y) plane.  

The present element was reformulated by Bouziane et al. (2009) starting from a parent element 

in a natural (ξ, η) plane. This formulation presents, in addition to the simplification of calculations, 

the enormous advantage of modelling different types of cracks with various orientations. The 

accuracy of the new numerical method has been evaluated by comparing the numerical solution 

with available analytical solutions or numerical ones obtained from others methods in example 

problems with kinking cracks in homogeneous materials and bimaterials. 

 

 

2. Mixed finite element 
 

The mixed finite element RMQ-7 (Reissner Modified Quadrilateral) is a quadrilateral mixed 

finite element with 7 nodes and 14 degrees of freedom (Bouzerd 1992). The final configuration of 

the element, in a natural (ξ, η) plane, was obtained after passage by three following stages as 

showed in Fig. 1 (Bouziane et al. 2009):  

1. Construction of a parent mixed finite element; 

2. Relocalisation of some static variables from corners to the inside of the element; 

3. Static condensation of the internal unknown variables. 
Then, three of its sides are compatible with linear traditional displacement elements and present 

a cinematic node at each corner. The fourth side, in addition to its two displacement nodes of 

corner (node 1 and node 2), offers three additional nodes: a median node (node 5) and two 

intermediate nodes in the medium on each half-side (nodes 6 and 7), introducing the components 

of the stress vector along the interface. The formulation and the validation of the element have  
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Fig. 1 Stages of construction of the mixed finite element 

 

 

been presented by Bouziane et al. (2009). 

The element displacement component is approximated by 

                       *𝑢+ = ,𝑁-*𝑞+                                (1) 

where *𝑞+𝑇 = {𝑢1
1, 𝑢2

1, 𝑢1
2, 𝑢2

2, 𝑢1
3, 𝑢2

3, 𝑢1
4, 𝑢2

4, 𝑢1
5, 𝑢2

5} is the vector of nodal displacements and ,𝑁- 
is the matrix of interpolation functions for displacements. 

The shape functions are 

𝑁1 =
1

2
(1 − 𝜉)(1 − 𝜂)𝜉    ,    𝑁2 =

1

4
(1 + 𝜉)(1 − 𝜂)𝜉    ,     𝑁3 =

1

4
(1 + 𝜉)(1 + 𝜂) 

𝑁4 =
1

4
(1 − 𝜉)(1 + 𝜂)     ,      𝑁5 =

1

2
(1 − 𝜉2)(1 − 𝜂)                (2) 

The stress field in any point is written 

*𝜎+ = ,𝑀-*𝜏+                                (3) 

where ,𝑀- is the matrix of interpolation functions for stresses and *𝜏+ vector of nodal stresses. 

In the configuration of Fig. 1, the shape functions used to approximate 𝜎11 are given by 

𝑀11
8 =

1

4
(1 + 2𝜉)(1 + 2𝜂)       ,          𝑀11

9 =
1

4
(1 − 2𝜉)(1 + 2𝜂) 

  𝑀11
10 =

1

4
(1 − 2𝜉)(1 − 2𝜂)       ,          𝑀11

11 =
1

4
(1 + 2𝜉)(1 − 2𝜂)            (4) 
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The shape functions used to calculate 𝜎12 and 𝜎22 are given as follows 

𝑀𝑖2
6 =

1

6
(1 − 2𝜉)(1 − 2𝜂)       ,          𝑀𝑖2

7 =
1

6
(1 + 2𝜉)(1 − 2𝜂)  

𝑀𝑖2
8 =

1

3
(1 + 2𝜉)(1 + 𝜂)       ,          𝑀𝑖2

9 =
1

4
(1 − 2𝜉)(1 + 𝜂)    ,   𝑖 = 1,2        (5) 

The nodal approximation of the displacement and stress fields is expressed by 

{
*𝜎+
*𝜀+

} = [
,𝑀- ,0-
,0- ,𝐵-

] {
*𝜏+
*𝑞+

}                          (6) 

where ,𝐵- is the strain-displacement transformation matrix. 

The element matrix ,𝐾𝑒- is given by 

,𝐾𝑒- = [
,𝐾𝜎𝜎- ,𝐾𝜎𝑢-

,𝐾𝜎𝑢-
𝑇 ,0-

]                          (7) 

Here 

,𝐾𝜎𝜎- = −𝑡 ∫ ,𝑀-𝑇,𝑆-,𝑀-
𝐴𝑒

𝑑𝐴𝑒                      (8) 

and 

,𝐾𝜎𝑢- = 𝑡 ∫ ,𝑀-𝑇,𝐵-
𝐴𝑒

𝑑𝐴𝑒                        (9) 

where: 𝑡 is the thickness, ,𝑆- is the compliance matrix, 𝐴𝑒 is the element area and  𝑇 indicate 

the matrix transpose.  

 

 

3. Methodology of numerical calculation of G  
 

3.1 Virtual crack extension method  
 

The virtual crack extension method has been proposed by Parks (1974), Hellen (1975) to 

calculate the energy release rate (G). 

At first, the deformation energy  ( ) is evaluated taking into account the crack initial 

configuration, where       is the length. Secondly the deformation energy  ( +    )  is 

calculated in the modified state, where, the new configuration of the crack has a length of 

   +       where    is an infinitesimal displacement of the crack tip. The energy released due to 

this length variation is equal to 

   =   ( )  −   ( +    )                         (10) 

The energy release rate G is obtained with the following relation: 

𝐺 =    / a                                (11)  

 

3.2 Evaluation of energy release rate G 
 

The virtual crack extension method associated with the RMQ-7 element is used to calculate the  
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Fig. 2 Crack geometry for a kinking (extension   ) 

 

 

Fig. 3 Reorganization of the mesh around the new tip crack 

 

 

energy release rate G in the case of kinking.  

In the case of a co-linear extension of the crack, Bouzerd (1992) showed that a single 

discretisation is sufficient to evaluate the energy release rate. In the present work, the same 

procedure is adopted with some modifications added in order to take into account the non co-linear 

extension of the crack as showed in Fig. 2 (Bouzerd et al. 2011). 

By considering a crack extension  a, following a specified direction with an angle   with the 

initial extension (Fig. 2). The new situation can be represented by an oblique segment beginning at 

node 1of the upper crack tip element, and following the path of the new position of the crack tip 

after extension, as showed in Fig. 3. 

This approximation is quite acceptable, as long as    is small. That is why the choice of     

has an important role in our study. Theoretically, the value of    must be taken as small as 

possible, in order to numerically represent the Eqs. (10)-(11). 

This geometric approximation requires a meshing rearrangement around the tip crack involving 

only four (4) elements: the two elements (upper and lower) belonging to the crack tip and the two 

elements directly linked to them in the direction of the crack extension, the remaining meshing is 

unchanged, as showed in Fig. 3.                                                                                                                                                 

The energy release rate G is calculated by means of the method elaborated by Bouzerd (1992). 
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It is evaluated by taking the parameters in the     +       configuration with kinking. In this 

study the       configuration is implicitly used by canceling    and storing the elementary 

matrices of the concerned elements. 

Indeed, with the assumptions of the linear elastic behaviour in small displacements, the 

solutions v(a) and v( +   ) obtained in the structure with a crack length of "a" and in the same 

structure with a crack length " +   " are quite similar especially when the variation    is 

smaller in contrast with the dimensions of the crack tip. 

We can write with a reasonable approximation that  

𝑣( )  =  𝑣( +   )                           (12) 

Different examples have been treated and the results confirmed the Eq. (12) which is 

theoretically coherent and physically acceptable; as long as the conditions used are respected. Petit 

(1990) used an identical process in the analysis of cracked structures. 

If we consider that the external loading do not vary during the extension   , then the energy 

release rate G is calculated as follows 

𝐺 = −
 (a  a) -  a 

  
                             (13) 

where  ( +   )  and  ( )  represent respectively the deformation energy of the cracked 

structure in the study cases    +      and      . In its discretised form, the deformation energy 

is 

  
 

 
 ∑ * + 

   
   , - * +                            (14) 

with: 

   = total number of elements in discretized structure, 

*𝑣+𝑖 = vertical vector containing the nodal values of element i, 

,𝐾-𝑖 = elementary matrix of element i, and the exponent T indicates the transposed vector. 

By substituting Eq. (14) in Eq. (13), the energy release rate G relation becomes 

  -
 

  a
 ∑ * (a  a)+ 

   
   , (a  a)- * (a  a)+ -∑ * (a)+ 

   
   , (a)- * (a)+         (15) 

Taking into account Eq. (12), the relation (15) can be written as follows 

  -
 

  a
∑ * (a   a)+ 

 [, (a  a)- -, (a)- ]* (a  a)+  
  
                  (16) 

Because, only the elements of crack tip and the elements immediately linked to them are 

disturbed (Fig. 3), then G can be recalculated by means of the following relation: 

  -
 

  a
∑ * (a  a)+ 

 [, (a  a)- -, (a)- ]* (a  a)+ 
  
  1                 (17) 

where    is the number of elements concerned by the disturbance   , following the inclined 

extension of the crack. In Fig. 3, we notice that   =  . 

Eq. (17) shows that only the elements concerned by the disturbance of the crack are used to 

compute the energy release rate. Following this, it is necessary to evaluate their elementary 

matrices in the configuration       and the energy release rate is calculated using Eq. (17); by 

means of a unique discretisation, after a difference calculation of the elementary matrices of the 

concerned elements only; representing the states    +      and      . 
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The relation (17) can be written as 

  -
 

 
∑ * + 

 [
     

 a
] * + 

   
  1                           (18) 

In practice, the discretisation of the cracked structure is done in the context    +     . 

Whereas, the configuration       is obtained in the same analysis by calculating and storing the 

elementary matrices of the concerned elements by taking   = 0. Afterwards, at the resolution 

stage, the nodal values of the concerned elements are extracted and a special module will evaluate 

the energy release rate using the Eq. (18). 

 

 

4. Validation of the method 
 

The previously developed model is validated for a real case which consists on the study of the 

kinking of a central crack in a square plate for which an analytical solution has been established as 

well as a numerical analysis. 

The study is about a square plate with a central crack which is subjected to normal tensile stress 

 = 10    , as shown in Fig. 4 (Xie et al. 2004). The geometric dimensions of the plate are: 

 - side length  2𝑤 = 200    

 - crack length 2 =  0    

The plate is made of a homogeneous material or an isotropic bimaterial.  

The analytical values of the energy release rate G has been calculated for different angles θ 

with the help of a subprogram on the basis of an exact solution taken in account by Xie et al. 

(2004). The out of plane extensions at 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° and 90° to the main 

crack have been examined. 

The geometrical and mechanical symmetry permits to discretise only the half of the structure 

using mixed finite element presented above. After a convergence study, the mesh constituted by 

4900 elements and 12441 nodes, has been retained. 

 

4.1 Homogeneous material 
 

 

 

Fig. 4 Studied plate 
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Table 1 Energy release rate G for different values of kinking angles (case (a)) 

θ(°) 
G (N/mm) 

Proposed method 

G (N/mm) 

Analytical solution 

% differences with 

analytical solution 

0 6.486 6.498 −0.185 

10 6.390 6.400 −0.156 

20 6.132 6.112 +0.327 

30 5.630 5.657 −0.477 

40 5.099 5.067 +0.631 

50 4.407 4.384 +0.525 

60 3.660 3.655 +0.137 

70 2.920 2.926 −0.205 

80 2.259 2.238 +0.938 

90 1.626 1.625 +0.062 

 
Table 2 Energy release rate G for different values of kinking angles (case (b)) 

θ(°) 
G (N/mm) 

Proposed method 

G (N/mm) 

Analytical solution 

% differences with 

analytical solution 

0 1.622 1.625 −0.185 

10 1.606 1.600 +0.375 

20 1.533 1.528 +0.327 

30 1.407 1.414 −0.495 

40 1.275 1.267 +0.631 

50 1.102 1.096 +0.547 

60 0.915 0.914 +0.109 

70 0.730 0.732 −0.273 

80 0.565 0.560 +0.893 

90 0.410 0.406 +0.985 

 

 

The plate is made of a homogeneous and isotropic material. Two different cases were studied: 

• Case (a): E=1000 MPa, ν=0,25 

• Case (b): E=4000 MPa, ν=0,25  

The numerical results obtained using the proposed method are compared with the analytical 

solution (Xie et al. 2004). Computed results are given in Tables 1 (case (a)) and 2 (case (b)). 

The given results by the proposed approach are very close to those of analytical solution. These 

results obtained for various kinking angles (from 0° to 90°) with the ratio  a /a varying from 1/50 

to 1/700. Theoretically, more this ratio is small, more is the exactness of the model is established, 

but if it is too small, numerical disturbances can occur and distort the results. 

The results shown in Tables 1 and 2 indicate that the gap with the exact solution remains 

confined between the values (in absolute value) 0.062% and 0.985%, what affirms that the results 

obtained are in excellent agreement with the exact solution. 

Figs. 5-6 show the variation of the energy release rate G with the extension direction for a crack 

in the case (a) and case (b) respectively. 
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Fig. 5 Variation of energy release rate with different kinking angles (case (a)) 
 

 
 

Fig. 6 Variation of energy release rate with different kinking angles (case (b)) 

 

 

It is seen that the present model computations are in very good agreement with the analytical 

solution. 

For the case θ=0°, the exact solution (Xie et al. 2004) of the energy release rate G is compared 

with the results obtained using J-integral method computed from ABAQUS (Xie et al. 2004) 

where the discretisation required 27000 nodes, the one and two-step approach based on the crack 

virtual closure technique (Xie et al. 2004) and the values obtained by the present method.  
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Table 3 Values of the energy release rate G for θ=0° (case (a)) 

θ=0° 
Energy release rate 

 G(N/mm) 

% difference with analytical 

solution 

One -step-analysis (Xie et al. 2004) 6.515 + 0.262 

Two -step-analysis (Xie et al. 2004) 6.612 + 1.754 

J-integral from ABAQUS (Xie et al. 2004) 6.507 + 0.139 

Proposed method 6.486 - 0.185 

Analytical solution 6.498 / 

 
 

 
 

Fig. 7 Bimaterial with kinking crack 

 

 

Calculated results for the case (a) are given in Table 3. 

The obtained values ( = 0 ) for the present model are in very good agreement with the exact 

solution compared to those obtained by one and two-step approach (Xie et al. 2004) and the J-

integral method from ABAQUS (Xie et al. 2004), even with a number of nodes, i.e., a number of 

degrees of freedom, largely inferior (12441 compared to 27000 for ABAQUS (Xie et al. 2004)) 

and with a single discretisation using the proposed mixed finite element. It is seen that the present 

approach is an accurate procedure for computing the energy release rate. 

 

4.2 Isotropic bimaterial 
 

The plate is made of an isotropic bimaterial as shown in Fig. 7. Three different cases were 

studied: 

• Case (a): E1=1000 MPa, ν1=0.25, E2=4000 MPa, ν2=0.25, E2/E1=4 

• Case (b): E1=1000 MPa, ν1=0.25, E2=3000 MPa, ν2=0.25, E2/E1=3 

• Case (c): E1=1000 MPa, ν1=0.25, E2=2000 MPa, ν2=0.25, E2/E1=2 

The numerical results of the energy release rate G using the proposed method are compared 

with the analytical solutions for the crack along the interface ( = 0 ), and the results evaluated 

with the J-integral method computed from ABAQUS (Xie et al. 2004) and those calculated using 

the one and two-step approach based on the crack virtual closure technique (Xie et al. 2004). 

Computed results for case (a) are given in Table 4. The G values provided by the proposed method  
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Table 4 Values of the energy release rate G for θ=0° (case (a)) 

θ=0° Energy release rate G(N/mm) 
% difference with 

analytical solution 

One -step-analysis (Xie et al. 2004) 3.823 -2.92 

Two -step-analysis (Xie et al. 2004) 3.886 -1.32 

J-integral from ABAQUS (Xie et al. 2004) 3.829 -2.77 

Proposed method 3.953 +0.381 

Analytical solution 3.938 / 

 
Table 5 Values of the energy release rate G for different case (θ=0°) 

θ=0° 
G (N/mm) 

Proposed method 

G (N/mm) 

Analytical solution 

% differences with 

analytical solution 

Case (a) 3.953 3.938 +0.381 

Case (b) 4.260 4.241 +0.448 

Case (c) 4.838 4.828 +0.207 

 

 

Fig. 8 Variation of energy release rate with extension direction for different case 
 

 

for bimaterials confirm the excellent results of the homogeneous case. 
Table 5 gives the values of the energy release rate G for different case. The numerical results 

are compared with the analytical solution for the crack along the interface.  

The accuracy of computational results is very good compared with the analytical solution. The 

errors with respect to the exact solution ranges from +0.207% to +0.448% for the different case. 

Fig. 8 show the variation of the energy release rate G with the extension direction for a crack in 

the different case. 
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The figures obtained show a shape different from that of the homogeneous case. They increase 

to lead to a peak then decrease. In the homogeneous case the curves continuously decrease from 

the maximum value obtained for  = 0°, what means that if there is propagation it will be done in 

initial direction of the crack. 

As for the case (a) studied by Xie et al. (2004) in bimaterials case, and according to the 

criterion of Gmax, the kinking occurs according to an angle around 30°. 

In all bimaterial cases the kinking grows into the material 1 who presents the weak mechanical 

characteristics. 

The results obtained in this example of validation show that the proposed method is an accurate 

and an efficient procedure for computing the energy release rate for crack kinking problems. 

 

 

5. Conclusions 
 

A new numerical method, based on the virtual crack extension technique associated with a 

special mixed finite element, has been proposed to evaluate the energy release rate for kinking 

cracks. The present element is 7-node two dimensional mixed finite element with 5 displacement 

nodes and 2 stress nodes. In the formulation of this element, we used Reissner’s mixed variational 

principle to build the parent element. The mixed interface finite element is obtained by 

successively exploiting the technique of relocalisation and the static condensation procedure. 

This new technique makes it possible to evaluate energy release rate by only one finite 

elements analysis. Computed results show that the proposed method is an accurate and an efficient 

procedure for computing the energy release rate for crack kinking problems. 

This approach is to be completed by an extension to the orthotropic and anisotropic bimaterials 

case. It would be very interesting to study the influence of the ratio  a/a and find an objective 

criterion for its choice. 

A detailed study around the angle giving Gmax must be conducted to evaluate the influence of 

strong material on the kinking angle. 
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