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Abstract.  An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which 
contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). 
Different from the existing analytical technique, the HAM is indeed independent of the small parameter 
assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended 
Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static 
stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to 
guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the 
corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate 
solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-
Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of 
the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear 
and nonlinear frequency ratio are investigated. 
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1. Introduction 

 

Cables have been widely applied in many mechanical systems and civil structures (Irvine 

1981), such as the cable-supported bridges, suspended roofs, post-tensioned concretes, guyed 

towers and elevators. Generally speaking, the nonlinear dynamics of the cable is very complicated 

and remains an important area of research in the last few years. 

Natural oscillation of an elastic suspended cable in the linearized theory was studied by Irvine 

and Caughey (1974). Then, the rich nonlinear phenomena of cable dynamics were investigated in 

early works, such as Hagedorn and Schafer (1980), Rega et al. (1984), Luongo et al. (1984). The 

quadratic and cubic nonlinearity terms in the equation of motion of the suspended cable-the former 

associated with the initial curvature and the latter with stretching of the cable axis - strongly 

influence the dynamics of the element (Benedettini and Rega 1989, Nayfeh et al. 1992). 

Among all these researches, the perturbation technology (Nayfeh 1981) is one of the most well- 
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Fig. 1 Two different configurations of the suspended cable 

 

 
known and important methods in nonlinear dynamics. The abundant nonlinear phenomena of the 

suspended cable were studied by the multiple scales method (Rega 2004a, Zhao and Wang 2006, 

Wang and Zhao 2009) and the Lindstedt-Poincare method (Hagedorn and Schafer 1980, Luongo et 

al. 1984). However, these methods should be based on the assumption that the nonlinear systems 

need to include the small parameters, the so-called perturbation quantity, so we often scale the 

damping and forcing terms to balance the influence of the nonlinearities (Arafat and Nayfeh 2003). 

However, tremendous nonlinear cases which do not contain any small parameters exist in both 

science and engineering, for instance, the free vibrations of the suspended cable. Given the fact 

that there are some restrictions in the classical perturbation method, so some other techniques have 

been proposed recently in order to overcome the above mentioned limitation, such as the δ 

expansion method (Bender at al. 1989), the Lyapunov’s artificial parameter method (Lyapunov 

1992) and the Adomian decomposition method (Adomian et al. 1994). Nevertheless, all these non-

perturbation methods cannot provide a simple way to control the convergence of the 

approximation series and adjust regions of convergence. 

A basic idea of homotopy from the topology is introduced by Liao (1992), then a general 

analytic method for solving nonlinear problems was proposed in 1992, namely the homotopy 

analysis method (HAM). Different from the other perturbation and non-perturbation techniques, 

the analytical method is indeed independent of the small parameter assumption (Liao 1995) and 

also provides a simple way to adjust and control the convergent regions of the approximate series 

solutions by means of an auxiliary parameter. Besides, it was proved that this approach logically 

includes other non-perturbation methods (Liao 2003). Therefore, the method has been successfully 

applied in many types of nonlinear problems in engineering (Hoseini et al. 2008, Pirbodaghi et al. 

2009, Qian et al. 2012) and theoretical studies (Wen and Cao 2007, Feng and Chen 2009, Chen 

and Liu 2009) in the last few years. Nevertheless, to the best of our knowledge, there is little 

literature on the oscillate analysis of suspended cables based on the HAM up to now, so such an 

attempt is made in this study. 

The structure of the paper is organized as follows: firstly, we obtain the nonlinear equation of 

an elastic cable based on the Hamilton’s principle, which takes into account the effects of the 

geometric nonlinearity and the quasi-static stretching assumption. In addition, the partial 

differential equation of planar motion is reduced to one ordinary equation via the Galerkin 

procedure by assuming a modal deflection shape in section 2. We extend the application of the 

HAM to construct the approximate solutions for the governing equation and pursue the numerical 

series solutions through the HAM in section 3 and 4, respectively. In the end of the paper, the 

conclusions and future directions of the research are made and given (section 5). 
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2. Governing equation 
 

2.1 Model of the suspended cable 
 
Fig. 1 displays the homogeneous elastic cable with uniform cross-sectional hanging between 

two fixed supports at the same level. Two different configurations are distinguished: the initial 

deformed configuration of static equilibrium under its own weight and the dynamic configuration 

occupied during the vibration. The displacements are described by u(x,t) and w(x,t) along the 

longitudinal x and vertical y directions, respectively. 

In the present paper, the Cartesian coordinate system O-xy is chosen and the origin dot O is 

placed at the left fixed point. By applying the Hamilton’s principle and the quasi-static stretching 

assumption, we could express the in-plane nonlinear partial differential equation of motion of the 

suspended cable without considering the bending, torsional, shear rigidities, the damping and 

forcing terms as (Rega 2004b) 

22 2 2 2

2 2 2 2 0

d d 1
d 0

d 2d

Lw w EA w y w y w
m H x

L x x xt x x x

       
        

         
               (1) 

where, m, the mass per unit length of the cable; A, the uniform cross-sectional area of the cable; E, 

the modulus of elasticity of the cable; H, the horizontal component of the cable tension 

(H=mgL
2
/8f, H/EA<<1); L, the span of the cable; f, the sag of the cable at the mid-span; g, the 

acceleration due to gravity. 

In our study, because the sag-to-span ratio is sufficiently small (f/L≤1/8), the static equilibrium 

configuration of the cable is described well through a parabola 

 
2

4
x x

y x f
L L

  
   

   

                             (2) 

 

2.2 Development of the equations of motion 
 

In order to make the subsequent section be more general, the following non-dimensional 

quantities are adopted (Zhao et al. 2005) 

w
w

L

    
x

x
L

    
y

y
L

    
f

f
L

    
8

g
t t

f

    
EA

H
                (3) 

As a result, Eq. (1) can be written as 

22 2 2 2
1

2 2 2 2 0

d d 1
d 0

d 2d

w w w y w y w
x

x x xt x x x


       
        

         
                 (4) 

where the asterisks in Eq. (4) are omitted for simplicity and y(x)=4fx(1−x) is the non-dimensional 

initial parabolic shape of the suspended cable. 

The boundary conditions associated to Eq. (4) are given by 

 , 0w x t   at 0x   and 1x                           (5) 
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Neglecting the nonlinear terms in Eq. (4), the linearized equation of motion could be obtained 

2 2 2
1

2 2 2 0

d d
d

dd

w w y w y
x

x xt x x


  
 

                             (6) 

The mode shapes and natural frequencies of the suspended cable can be ascertained by solving 

Eqs. (5) and (6), so the in-plane nth (n=odd) symmetric mode shapes are derived by 

     
1

1 cos tan sin
2

n n n n nx x x    
  

     
  

    1,3,5...n               (7) 

where the mode shapes φn(x) are normalized, so 

 
1

2

0
1n x                                   (8) 

One obtains 

 

 

22 cos / 2

2 cos( ) 3sin( )

n n

n

n n n

 


  


 
                          (9) 

where the natural frequency ωn in Eq. (9) is obtained by solving the following transcendental 

equation 

3

2

1 1 1
tan

2 2 2
n n n  



 
  

 
    1,3,5...n                     (10) 

where λ
2
=EA/mgL(8f/L)

3
 is the Irvine parameter. The eigenvalue problems specified by Eq. (10) 

are strongly nonlinear with respect to this parameter. 

The nth (n=even) in-plane anti-symmetric mode shapes and corresponding natural frequencies 

are 

   2 sinn x n x     
n n      2,4,6...n                  (11) 

 

2.3 Discrete modal 
 
The suspended cable could be assumed to be a multi-degree-of-freedom (MDOF) dynamic 

system, which is composed of symmetric modes and anti-symmetric modes with respect to the 

mid-span of the cable. The Galerkin method can be employed to simplify the nonlinear oscillation 

equation of motion. Considering the boundary conditions, the solutions of Eq. (1) could be 

expanded into the following expression 

     
1

,
N

n n

n

w x t v t x


                            (12) 

where N is the number of modes used in the approximation, vn(t) is an unknown function of time 

which is a generalized coordinate of system response and φn(x) is a space coordinate function 

which satisfies the associated linear problem. 

A set of nonlinear ordinary differential equations are yielded by substituting Eqs. (12) into (4). 

For the sake of simplicity, the present study is only restricted to N=1. By multiplying the first 
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symmetric mode shape function φ1(x) and integrating the outcomes over ]1,0[x , the equation of 

motion is finally reduced to 

       2 3

1 1 1 2 1 3 1 0v t b v t b v t b v t                           (13) 

where the dots indicate differentiation with respect to t and the expressions of the coefficients 

bi(i=1,2,3,) in the Eq. (13) are presented in Appendix. In Eq. (13), the initial conditions are 

assumed to be 

 1 00v b       1 0 0v                            (14) 

where b0 is the initial condition which denotes the non-dimensional maximum amplitude of 

oscillations and δ is the non-zero equilibrium position term. 

 
 
3. Solution via homotopy analysis method 
 

In this section, the nonlinear response of the suepended cable is explored by the HAM which 

transforms a nonlinear problem into an infinite number of linear problems with an embedding 

parameter q that typically varies from 0 to 1. As have been discussed in section 2.3, the first order 

discrete equation of motion via the Galerkin procedure could be obtained. Introducing a new time 

scale τ=ωt (ω is the nonlinear vibration frequency) and taking into account the quadratic nonlinear 

term, we suppose 

   1v t u                                   (15) 

Under the new time scale transformation, the new form of Eq. (13) is expressed as 

       
2 32

1 2 3 0u b u b u b u                                       (16) 

where the notation    2 2d / du u    is used to alleviate the text.  

The corresponding initial conditions are 

  00u b     0 0u                             (17) 

It should be pointed out that our HAM approximation highly depends on the initial condition 

b0. Given the fact that the free oscillations of a conservative system without damping effect could 

be expressed by a series of periodic functions which satisfy the initial conditions, the displacement 

solution in Eq. (16) can be denoted by the following base functions 

  cos 1,2,3...k k                              (18) 

Obviously, the solutions of Eq. (16) could be expressed as 

   
1

cosk

k

u C k 




                             (19) 

Considering the rule of solution expression and the initial conditions in Eq. (17), it is 

straightforward that the initial guess of u(τ) could be chosen as 

 0 0 cosu b                                (20) 
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To construct the homotopy function, one could define the linear auxiliary operator as 

 
 

 
2

2

0 2

;
; ;

q
q q


  



  
        

L =                      (21) 

which has the property 

   1 2sin cos 0C C    L                         (22) 

where C1 and C2 are integral constants to be determined by the initial conditions. Furthermore, it is 

noticed that the rule of solution expression plays an important role in defining the linear operator. 

According to Eq. (16), we could define the nonlinear operator as 

     

 
 

           
2

2 32

1 2 32

; , ,

;
; ; ;

q q q

q
q b q q b q q b q q




  



     

  
                          

N
     (23) 

where the unknown function Ф(τ;q) is a mapping of u(τ), the unknown functions Ω(q) and ∆(q) are 

some kinds of mapping of the unknown frequency ω and the equilibrium position δ. In accordance 

with the HAM, we construct the so-called zeroth-order deformation equation as 

             01 ; ; , ,q q u q H q q q               L N              (24) 

which is subjected to the initial conditions 

  00;q b    
 

0

;
0

q











                        (25) 

where  0,1q is an embedding parameter, is an auxiliary convergence control parameter and H(τ) 

is an auxiliary function, /L N is an auxiliary linear/nonlinear operator and u0(τ) is an initial guess 

of u(τ). 

For the sake of simplicity in our research, we choose 

  1H                                   (26) 

Therefore, with the increase in the embedding parameter q from 0 to 1, Ф(τ;q) varies 

continuously from the initial guess u0(τ) to the exact solution u(τ). So does Ω(q) from its initial 

frequency ω0 to the nonlinear physical frequency ω. Similarly, ∆(q) varies from the initial 

approximation δ0 to the equilibrium position δ of the system. Herein, the ω0 and δ0 are unknown 

zeroth-order parameters which would be determined later. 

Using the Taylor series expansion and considering the so-called deformation derivatives, we 

yield 

     0

1

; m

m

m

q u u q  




        0

1

m

m

m

q q 




        0

1

m

m

m

q q 




          (27) 

where 

 
 

0

;1

!

m

m qm

q
u

m q


 

 



   

 
0

1

!

m

m qm

q

m q
 

 



   

 
0

1

!

m

m qm

q

m q
 

 



        (28) 
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The ħ is an important auxiliary parameter that determines the convergent regions of the system. 

Furthermore, assuming that the auxiliary parameter ħ is properly chosen, all the series solutions 

are converged at q=1, thus the series solutions could be written as 

       0

1

;1 m

m

u u u   




         0

1

1 m

m

  




         0

1

1 m

m

  




          (29) 

For the sake of brevity and simplicity, we define the following vectors 

      0 1, ,...,m mu u u  U     0 1, ,...,m m  Δ     0 1, ,...,m m  Ω          (30) 

Differentiating the zeroth-order deformation equation m times with respect to the embedding 

parameters q, then dividing the resulted equation by m! and finally setting q=0, we could obtain 

the mth-order deformation equation as 

     1 1 1 1, ,m m m m m m mu u        L U Δ ΩR                    (31) 

which is subjected to the initial conditions 

 0 0mu      0 0mu      1m                        (32) 

where 

0, 1

1, 1
m

m

m



 


                               (33) 

and 

 

 

     

   

     

     

 

1

01

1

1 1 1 1

0 0
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2 1 1 1

0

1 1

3 1 1

0 0 0 0

3
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2

3

m

m qm

m k

p k p m k m m

k p

m

k m k k m k k m k

k

m k m k

p k p m k k k p m k

k p k p

p k

q q q

m q

u b u

b u u u

b u u u

b u u



    

     

     









    

 



     



 

     

   

     


 

    

 
     

 

 
  

 







 

R
N

   
1 1

1 1

0 0 0 0

m k m k

p m k p k p m k

k p k p

u    
 

     

   

 
 

 
 

             (34) 

It could be observed that um(τ), δm−1 and ωm−1 are three unknown functions. Considering that 

only one equation could be utilized to solve um(τ), so two additional algebraic equations are 

required to determine the δm−1 and ωm−1. Moreover, it is found that the right hand side of the mth-

order deformation equation could be expressed as 

       1 1 1 ,0 1 1 , 1 1

1

, , , , cos
m

m m m m m m m m k m m

k

c c k


      



 U Δ Ω Δ Ω Δ ΩR            (35) 

where cm,0 is the coefficient of the constant term, cm,k is the coefficient of cos(kτ) and μm is the 

positive integral dependent on order m. According to the property of the auxiliary linear 
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operator L , it is worth noticing that if cm,1≠0, the solution of the mth-order deformation equation 

would contain the so-called secular term ( cos  ) which breaches the rule of solution expression. 

Moreover, when cm,0≠0, the solution contains a drift constant term cm,0/ω
2
, which breaks the rule of 

solution expression as well. Hence, in order to avoid the presence of such terms, their coefficients 

must be set to zero 

 ,0 1 1, 0m m mc   Δ Ω     ,1 1 1, 0m m mc   Δ Ω     1,2,3,...m               (36) 

which provides us with two additional algebraic equations for solving ωm−1 and δm−1. 

Consequently, as long as the values of b1, b2, b3 and b0 are given, the periodic solutions can be 

determined by the analytical approach. 

For instance, when m=1 

         

 

   

2 32

1 0 0 0 0 0 1 0 0 2 0 0 3 0 0

3 2 2

0 1 0 3 0 2 0 0 3 0 0 0

2 2 3

0 2 0 3 0 0 3

2 2 2 3

0 2 1 0 0 3 0 2 0 3 0
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b b b b b b b

          

   

  

   

                    

 
     
 

   
     
   

 
     
 

R

         (37) 

Satisfying the rule of solution expression, the coefficients c1,0(δ0, ω0) and c1,1(δ0, ω0) must 

vanish, so we could get two additional algebraic equations about ω0 and δ0 

2 2 2 3

0 2 1 0 0 3 0 2 0 3 0

2 2 2

1 0 3 2 0 3 0 0

1 3
0

2 2

3
2 3 0

4

b b b b b b b

b b b b b

   

  


    


     


                     (38) 

The solutions of Eq. (38) are 

2 3

2 2 12 1 3
30

2 3
3 3 32 2 1

2 2

0 1 0 3 2 0 3 0

322 1

3 3 6 232

1
4 3 8 12

2

b

b b b

b b b b b



  


        

     


   


              (39) 

where 

2 2 2

1 2 1 3 0 32 6 9b b b b b        3

2 2 1 2 316 72b b b b                      (40) 

Eliminating the secular term and considering the expression of linear operator, the first-order 

deformation equation becomes 

       2 2 2 3

0 1 1 0 2 0 3 0 0 3

1 2 1
cos 2 cos 3

2 3 4
u u b b b b b b     

    
          

    
          (41) 

It is easy to solve the linear ordinary differential equation with the initial conditions (u1(0)=0, 

 1 0 0u  ), so the first-order approximation is 
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Fig. 2 First eight in-plane mode shapes and natural frequencies of the suspended cable: (a)-(d) the first 

four symmetric mode shapes and natural frequencies; (e)-(h) the first four anti-symmetric mode shapes 

and natural frequencies 
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    (42) 

Following the same procedure, the mth-order (m≥2) approximation of ωm−1, δm−1 and um(τ) can 

be obtained and their expressions become more and more complicated. Therefore, the general 

periodic solution um(τ) of Eq. (16) is obtained from 

   
 , 1 1

1 1 2 2 2
20

,
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1
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m k m m

m m m
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c
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

 





   



Δ Ω

            (43) 

where C1 must be forced to zero in order to obey the rule of solution expression and C2 is a 

constant that could be determined by the initial conditions given by Eq. (32). Accordingly, the mth-

order analytic approximate solutions of the δ, ω and u(τ) are derived 

     0

1

m

m

m

u u u  


     0

1

m

m

m

  


     0

1

m

m

m

  


                 (44) 

 
 
4. Numerical results and discussions 
 

In this study, to represent the condition currently found in the civil and electric engineering, the 

following non-dimensional parameter values are chosen: α=EA/H=198.25, f/L=0.042, with the 

associated value of the Irvine parameter: λ
2
=22.563.The first eight symmetric and anti-symmetric 

natural frequencies and mode shapes are shown in Fig. 2. 

It is certainly worthy to note that the series solutions contain the auxiliary parameter , which 

provides us a simple way to adjust and control the convergent regions of the solutions. Fig. 3 

shows the influence of the auxiliary parameter ħ on the series solutions ω and δ by the 5th-order 

approximation in the case of three different initial conditions. The regions where the distribution of 

ω and δ versus ħ to different values of b0 are horizontal lines which are so-called convergent 

regions for the corresponding functions. As shown in the figure, the initial condition b0 is likely to 

have a quite significant effect on the region of convergence, and these regions vary as a result of 

the variation of the initial conditions b0 for the same order approximations. 

As the Fig. 3 shows, the nonlinear frequency ω does not increase as the rise in the value of  
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(a) nonlinear frequency ω (b) equilibrium position δ 

Fig. 3 Influences of the auxiliary parameter on the approximate series solutions given by the 5th-order 

approximation in the case of three different initial conditions 

 
Table 1 Analytic approximations of the frequency and equilibrium position when b0=0.0025 and ħ=−1.0 

Order of 

approximation 
Frequency  Error: 1| | 100%n n

n

 




  Equilibrium 

position  
Error: 1| | 100%n n

n

 




  

1
st
 5.22787876 0.0660663% −1.0218394×10

−4
 2.8354553% 

2
nd

 5.22778464 0.0018004% −1.0227150×10
−4

 0.0856098% 

3
rd

 5.22778235 0.0000437% −1.0227308×10
−4

 0.0015467% 

4
th

 5.22778268 0.0000063% −1.0227279×10
−4

 0.0002848% 

5
th

 5.22778268 0.0000001% −1.0227279×10
−4

 0.0000069% 

 

 
b0(ω0.1≥ω0.0025≥ω0.05), so in a large range of low values of δ0, the dynamic behavior is generally 

softening while at high values it becomes hardening due to the definite prevailing of the cubic 

term. Correspondingly, the values of equilibrium position b0 increase due to the rise in the values 

of b0. Moreover, results show that, in order to determine the region of convergence, higher order 

approximation should be adopted provided that the initial condition b0 is large. Hence, we can 

choose the appropriate value of ħ corresponding to different b0 in order to ensure the convergence 

of all the series solutions. For the sake of convenience and simplicity, we select ħ=−1.0 in this 

study.  

In order to ascertain the order of the approximate solutions, different orders of the frequency 

and equilibrium position are given in Table. 1, and also the errors are listed. In this table, it is 

found that the series solutions converge very quickly, for the sake of simplicity, we could make the 

order of approximate series solutions equals third in our following computation. 

By substituting the convergent analytic results of the equilibrium position into the initial  

conditions (  1 00v b   ,  1 0 0v  ), the fourth-order Runge-Kutta method is utilized to solve the 

ordinary differential equation of the suspended cable. Fig. 4 shows the solutions of displacement 

and velocity obtained by using the zeroth and third order HAM approximations and the Runge 

Kutta method. As shown in Fig. 4, the zeroth-order and third-order analytic solutions obtained by 

using the HAM are in line with the numerical results based on the Runge-Kutta method. The Fig. 5  
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(a) displacement v1(t)  (b) velocity 
1( )v t  

Fig. 4 Comparison of the HAM approximations and numerical solutions when ħ=−1.0 and b0=0.0025 

 

  

Fig. 5 Phase-space curves of the suspended 

cable by means of ħ=−1.0 when b0=0.0025 

Fig. 6 The ratio between nonlinear and linear 

frequency versus initial condition b0 

 

 
shows the phase-space curves obtained with the HAM and numerical integrations. The comparison 

of the numerical integrations and the analytical series solutions show that using approximation of 

low order results in satisfactory accuracy. Furthermore, it is quite remarkable that the higher-order 

HAM approximate solutions are more accurate than the lower-order ones.  

Fig. 6 illustrates the frequency ratio between the nonlinear and linear one in the case of 

different initial conditions. As shown in Fig. 6, it is interesting to find out that the response of the 

suspended cable is softening at low initial conditions due to the great value of the coefficient of the 

quadratic term, but it becomes hardening as the amplitude increases due to the large value of the 

coefficient of the cubic term. However, a limited range of initial conditions should be considered 

for the curve if the error must be taken under a prescribed value. 
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5. Conclusions 
 

In this paper, an analytical technique, namely the homotopy analysis method (HAM) is 

implemented in nonlinear free oscillations of the suspended cable successfully. Particularly, the 

initial curvature leads to the quadratic nonlinear term in the equation of motion, so an equilibrium 

position is introduced to guarantee the rule of solution expression. 

As long as the physical parameters of the suspended cable are given, the first eight in-plane 

symmetric and anti-symmetric mode shapes and natural frequencies can be achieved. The -curve 

illustrates that the valid regions of convergence of the series solutions are related with the initial 

conditions. Moreover, as to the large value of the initial condition, higher order approximations 

should be adopted. The approximate series solutions of the corresponding frequency, equilibrium 

position, displacement and velocity are explicitly obtained, which agree well with the 4th-order 

Runge-Kutta numerical results. It is found that the series solutions converge very rapidly and the 

lower-order approximation achieve high degree of accuracy. Numerical results obtained by using 

the HAM show that the response of the suspended cable is softening at low initial conditions, but it 

becomes hardening as the amplitude increases. 

Our experiences in the study and some other related researches reveal that the HAM is indeed a 

promising analytic technique for many types of nonlinear problems in engineering practices and 

theoretical studies, as long as the auxiliary linear and nonlinear operator, initial guess, auxiliary 

parameter and auxiliary function are properly chosen. 

However, it should be pointed out that in this study, we only consider the first-order discrete 

model and just take into account the free vibrations of the system, so it is necessary to carry out 

further investigations and achieve more improvements in the future. 
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Appendix 
 

           
1 1 1

1 1 1 1 1
0 0 0

d d db x x x y x y x x x x x         
                    (1) 
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d d d d
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             (2) 
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