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Boundary element analysis of singular thermal
stresses in a unidirectional laminate

Sang Soon Leet and Beom Shig Kimi
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Abstract. The residual thermal stresses at the interface corner between the elastic fiber and the viscoelas-
tic matrix of a two-dimensional unidirectional laminate due to cooling from cure temperature down
to room temperature were studied. The matrix material was assumed to be thermorheologically simple.
The time-domain boundary element method was employed to investigate the nature of stresses on the
interface. Numerical results show that very large stress gradients are present at the interface corner and
this stress singularity might lead to local yielding or fiber-matrix debonding.
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1. Introduction

Residual thermal stresses introduced into fiber-reinforced composites can have a major effect
on the microstresses present in such materials. Such stresses are due to the differences between
the thermal expansion coefficients of the components. Residual thermal stresses may cause distor-
tion of finished components and premature failure upon tensile loading.

Residual stresses in fiber-reinforced composites have received much attention. A linear elastic
stress analysis shows that the residual thermal stresses may be large enough to cause ply failure
in the absence of applied external stress or premature failure upon external loading (Hahn
and Pagano 1975, Hahn 1976, and Kim and Hahn 1979). Griffin, Jr. (1983) has performed a
three-dimensional finite element analysis of residual thermal stresses in symmetric cross-ply lami-
nates with temperature-dependent properties. The assumption of linear elastic behavior, however,
tends to overestimate the residual stresses by ignoring the time and temperature dependence
of the resin’s response. As several investigators have indicated, the matrix has viscoelastic proper-
ties during cure (Roy and Murthy 1976, Weitsman 1979, Weitsman and Harper 1982, and Lee
and Sohn 1994). Residual stresses may be reduced by changing the cool-down path in a cure
cycle because the resin is inherently viscoelastic. Therefore, any analytical model predicting resi-
dual stresses in composite laminates must incorporate the viscoelastic response of the matrix
resin.

In this study, the residual thermal stresses at the interface corner between the elastic fiber
and the viscoelastic matrix of a two-dimensional unidirectional laminate due to cooling from
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the cure temperature down to room temperature are investigated. A graphite/epoxy laminate
was selected and thermorheologically simple material behavior for matrix was assumed. A unidi-
rectional laminate is usually not used in structural components due to the low strength in the
transverse direction. In order to be optimal for all external loading conditions, a multidirectional
laminate is employed in structural application. A detailed investigation of a unidirectional lami-
nate problem is the first step to solving the more complex problem of a multidirectional laminate.
A detailed analysis is performed by using the time-domain boundary element method (BEM)
proposed by Lee and Westmann (1995).

2. Analysis model

Fig. 1(a) shows a unidirectional laminate, idealized as an infinite layered solid, and Fig. 1(b)
represents the two-dimensional plane strain model for analysis of the microstresses at the interface
corner due to cooling from cure temperature down to room temperature. In this study, the fiber
volume fraction is assumed to be 0.5. To apply the two-dimensional boundary element technique
to the interface stress analysis, the following additional assumptions are made:

1) The fiber-matrix bond is perfect without any defects or any cracks.

2) For sufficiently thin layers and slow fluctuations of the ambient temperature, the transient
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Fig. 1 Idealized model.
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state throughout the thickness is neglected resulting in the quasi-static case of uniform temperature
T, 1) ~ T(t) during the cooling down process.

The analysis model of Fig. 1(b) is divided into two subdomains, one matrix zone and one
fiber zone; in each zone the material is isotropic and homogeneous. This problem can be treated
using a viscoelastic boundary integral formulation for the matrix zone and a separate elastic
boundary integral formulation for the fiber zone. These boundary integral equations formulated
for every homogeneous zone plus the displacement continuity and traction equilibrium conditions
over the common interface produce a system that can be solved once the external boundary
conditions are considered.

3. Boundary element formulation

It is assumed that the fibers are linearly elastic while the matrix is linearly viscoelastic in
tension and elastic in bulk. The material properties of the fiber are considered to be constant,
while the matrix material is assumed to be thermorheologically simple.

The uniform temperature changes T()H(f) in each zone of analysis model are equivalent
to increasing the tractions by ¥T{t)n, and y"@Xr)n, where

Y"=3K" (D

and H(f) is the Heaviside unit step function. Here superscripts ‘f’ and ‘m’ represent the fiber
and matrix zones, respectively, K is the bulk modulus, n, are the components of the unit outward
normal to the boundary surface, and «a is the coefficient of thermal expansion.
The “pseudo-temperature” @(r) and « are defined by
)

@(z):?:o fr a™(T")dT" )

0

a=a"(Ty)

where a™ is the coefficient of the thermal expansion of the matrix.

The fundamental solutions for a viscoelastic body in an isothermal state can be obtained
from the solutions of Kelvin's problem of elasticity by applying the elastic-viscoelastic correspon-
dence principle (Lee 1995). With a uniform temperature change in thermorheologically simple
media, it is convenient to use the Laplace transform with respect to reduced time & instead
of real time 7. In effect, the viscoelastic fundamental solutions are obtained in reduced time
space. Assuming that no body forces exist, the boundary integral equations for the model under
uniform temperature change can be written as follows:
for the fiber zone

c,(nu(y O+ J A0 OT(r y)dS(y)

S.

= f f H(y, HUN(y, y)dS (y’)+f fyf T(EnUl(p, y)dS(y) (3)
S

S

for the matnx zone
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where %, and 7, denote the displacement vector and the traction vector in reduced time space,
respectively, and S is the boundary of the given domain. ¢;(y) is dependent only upon the
local geometry of the boundary. For y on a smooth surface, the free-term c¢;(y) is simply a
diagonal matrix 0.5 §;. U; and T} represent the fundamental solutions and

S R S N
é:—jn ar[TA)] di. ¢ _f() ar[T(A)] ar )

The shift function ar(T) is a basic property of the material and must, in general, be determined
experimentally.

Closed-form integrations of Egs. (3) and (4) are not, in general, possible and therefore numerical
quadrature must be used. Approximations are required in both time and space. Egs. (3) and
(4) can be solved in a step-by-step fashion in time by using the modified Simpson’s rule for
time integrals and employing the standard BEM for the surface integrals (Lee and Westmann
1995).

The resulting systems of equations are obtained in the matrix form as follows:

u!
H H 0 G- ut? B G' 0 {tl } B { BTI } 6)
o6 | w | Loe] Lef T UB+R ¢
£

In Eq. (6), superscripts ‘1’ and ‘2’ represent the fiber zone and the matrix zone, respectively,
while ‘12" and ‘21’ represent the common interface. H and G are influence matrices, By is
the known input due to temperature change, and R represents known viscoelastic input from
earlier time steps. The above Eq. (6) can be solved by taking account of the external boundary
conditions. The length L of the analysis model is taken as 2.5a. The boundary conditions for
the model are given as follows:

T =0, u,=0 along A-B

7 =0, u,=0 along B-C

z,=0, 0,=0 along C-D

f 6,dL=0, t,=0, u,=c along D-A4 @)
L

where the integral expression for line D-A represents the traction equilibrium condition on that
line. L denotes the length of line D-4, and ¢ represents unknown uniform displacement. Normal
displacements of lines 4-B and B-C are prescribed as zero to prevent rigid body motion of
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the model. Due to the symmetry of the model, the shear stresses on every line are zero.

The two-dimensional BEM requires two traction components and two displacement compone-
nts to be prescribed at each node on the external boundary. As shown in Eq. (7). only one
component of tractions is prescribed and normal components of tractions and displacements
are given as equilibrium condition and displacement constraint condition on line D-4. To enforce
Eq. (7). the BEM computer program should be modified.

Let the total number of nodes on line D-4 be N, then the integral expression for line D-A
can be written as follows:

J qi"dL: Z b"(ofv,\')i: 0 ®)

where (o,,); represents the normal traction at each node on the line D-4, and b; is the coefficient.
Displacement constraint condition can be written as follows:

(u}, )l = (uy)Z = (uy)3 T eeeree — (uy)N: c (9)

where (), (i=1, 2, 3, -+, N) represents the normal displacement at each node on line D-A.
The BEM computer program has been modified to include the above equation.
The properties for the matrix are from experimental data (Weitsman 1979):

32X
E™)= 100336 &

K" (&)=K,=3.556X10° MPa

MPa (¢: min)

ar=exp [&8—0 — 21.82J
T
a”"=05Xx10"* °C"! (10)

The following material properties for the fiber were assumed

K'=224X10° MPa
V=029
&’ =0 (11)

If the temperature drops linearly between cure temperature 7; and room temperature 7, over
a time interval 7, then

T(z):w (t: min) (12)

In this study, ,=45 min, T,=165°C, and 7,=24°C were taken.

To solve the boundary integral Eq. (4), the viscoelastic fundamental solutions, Uj and Tj.
should be known. The relaxation function E™(£), as given in Eq. (10), can be expanded by
employing a collocation scheme as

E"(E)=E,+ ZE,»exp(— %) (13)
i=1

The numerical values of E; and A are listed in Table 1. The fundamental solutions U and
T} for the relaxation function given by Eq. (13) are obtained numerically by using elastic-viscoelas-
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Table 1 The constants of Eq. (13)

A:(min) E,(MPa)

0.5X10" 0.10817 E+03
0.5%10" 0.12935 E+03
0.5X10" 0.18168 E+03
0.5X 10! 0.23739 E+03
0.5X10" 0.28994 E+03
0.5X10° 0.32514 E+03
0.5X108 033116 E+03
0.5X107 0.30568 E+03
0.5X10° 0.25760 E+03
0.5X10° 0.20145 E+03
0.5X10° 0.14720 E+03
0.5X10° 0.10934 E+03
0.5X10° 048615 E+02
0.5X10 0.15854 E+03

- Ey=0.16876 E+03

tic correspondence principle. The detailed calculation procedure is provided in Lee (1995). The
resulting expression for Uj and 7j is presented as follows:

Uj(y. x: )=o) 8+ A:(£)R.R I HE)

Ty, % €= =2l [R o, ()8 n,OR,—, OR,  H(E)

— ) SR RRHE) (14

where H(&) is the Heaviside unit step function, and

R
R

R,‘:x,'_y,' (15)
R*=RR,

R/':

vi coordinate of field point
x;; coordinate of integration point

The coefficients 4,(£) are obtained as follows:

28

A(E)=a'+ D alexp(—c/ &)
i=1
28

A (E)=a"+ Z a’'exp(—c,' &)

14
As(&)=a+ Z a}'.exp(_cﬁ'f)
i=1
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14
A§)=al+ 2 alexp(—ci€) (16)

The values of a; and c; are listed in Tables 2 and 3.

4. Numerical results

A suitable mesh density was determined for the analysis based upon the results of a convergence
study for mesh refinement. The refined mesh was used near the interface corner. The boundary
element discretization consisting of 60 line elements was employed. In this study, quadratic shape
functions were used to describe both the geometric and functional variations.

Viscoelastic stress profiles are plotted along interface to investigate the nature of stresses. Fig.
2 shows the distribution of normal interface stress o,, on the interface. Except near the interface
corner, this stress is approximately zero. A large gradient in o,, is observed in the vicinity of
the free surface. Fig. 3 is a plot of shear stress t,, vs. x/L. This profile shows a stress singularity

Table 2 Numerical values of constants in 4,(¢) and 4x(¢) of Eq. (16)

ai’(MPa™!) a’(MPa™!) ¢y ¢ (min™)
—0.10409 E-03 —0.10409 E-03 0.18946 E-00
—0.34529 E-04 —0.34529 E-04 0.19657 E-01
—0.81264 E-04 —0.81264 E-04 0.19221 E-02
—0.12016 E-03 —0.12016 E-03 0.18909 E-03
—0.18802 E-03 —0.18802 E-03 0.18423 E-04
—0.29187 E-03 —0.29187 E-03 0.17814 E-05
—0.45356 E-03 —0.45356 E-03 0.17088 E-06
—0.70416 E-03 —0.70416 E-03 0.16303 E-07
—0.10921 E-02 —0.10921 E-02 0.15534 E-08
—0.16925 E-02 —0.16925 E-02 0.14850 E-09
—0.26246 E-02 —0.26246 E-02 0.14292 E-10
—0.39079 E-02 —0.39079 E-02 0.14030 E-11
—0.60269 E-02 —0.60239 E-02 0.13663 E-12
—0.13776 E-01 —0.13773 E-01 0.11913 E-13
—0.71150 E-05 0.71150 E-05 0.19756 E+00
—0.22207 E-05 0.22207 E-05 0.19924 E-01
—0.50442 E-05 0.50442 E-05 0.19829 E-02
—0.69285 E-05 0.69285 E-05 0.19768 E-03
—0.97456 E-05 0.97456 E-05 0.19679 E-04
—0.12936 E-04 0.12936 E-04 0.19583 E-05
—0.16092 E-4 0.16092 E-4 0.19494 E-06
—0.18423 E-04 0.18423 E-04 0.19438 E-07
—0.19183 E-04 0.19183 E-04 0.19431 E-08
—0.18102 E-04 0.18102 E-04 0.19478 E-09
—0.15578 E-04 0.15580 E-04 0.19561 E-10
—0.12769 E-04 0.12630 E-04 0.19660 E-11
—0.89298 E-05 0.89281 E-05 0.19751 E-12

—0.77076 E-05 0.77061 E-05 0.19789 E-13
a,"=033335 E-01 a-'=0.32241 E-01 -
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Table 3 Numerical values of constants in 4x(¢) and 4« of Eq. (16)

a;’ a4’ ('3’. c4’(min_’)
0.18973 E-01 —0.18973 E-0I 0.19756 E+00
0.59219 E-02 —0.59219 E-02 0.19924 E-01
0.13451 E-01 —0.13451 E-01 0.19829 E-02
0.18476 E-01 —0.18476 E-01 0.19768 E-03
0.25988 E-01 —0.25988 E-01 0.19679 E-04
0.34495 E-01 —0.34495 E-01 0.19583 E-05
042912 E-01 —042912 E-01 0.19494 E-06
049128 E-01 —049128 E-01 0.19438 E-07
051153 E-01 —0.51153 E-01 0.19431 E-08
048267 E-01 —048267 E-01 0.19478 E-09
041517 E-01 —041521 E-01 0.19561 E-10
0.33074 E-01 —0.32691 E-0l 0.19660 E-11
0.24233 E-01 —0.24234 E-01 0.19751 E-12
0.20764 E-01 —0.20764 E-O1 0.19789 E-13
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Fig. 2 Distribution of normal stress o, on the interface at room temperature.
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Fig. 3 Distribution of shear stress z, on the interface at room temperature.
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at interface corner. Figs. 2 and 3 suggest that the thermal stress singularity on the interface
dominates a very small region relative to layer thickness for the case examined. It is not known,
however, if the size of this region is large compared to that of intrinsic flaws.

5. Conclusions

The time-domain boundary element method was used to investigate the singular thermal stresses
at the interface corner between the elastic fiber and the viscoelastic matrix of a unidirectional
laminate due to cooling from cure temperature down to room temperature. Numerical results
show that very large stress gradients are present at the interface corner and this stress singularity
dominates a very small region relative to layer thickness. Since the exceedingly large stresses
at the interface corner can not be borne by matrix materials, local yielding or fiber-matrix debon-
ding may occur in the vicinity of free surface.
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