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Abstract. The design of robust plate and shell elements has been a very challenging area for several
decades. The main difficulty has been the shear locking phenomenon in plate elements and the shear
and membrane locking phenomena together in the shell elements. Among the various artifices or devices
which are used to develop elements free of these problems is the field-consistency approach. In this
paper this approach is reviewed. It turns out that not only Mindlin type elements but also elements
based on higher-order theories could be developed using the technique.
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1. Introduction

The design of a robust plate/shell element based on the Mindlin plate theory (Mindlin 1951),
especially the 4-node quadrilateral, the work-horse QUAD4 element of all general purpose prog-
rams has been one of the most challenging tasks faced by element designers. The main difficulty
was in understanding the shear locking phenomenon and eliminating it without producing other
deleterious side-effects. Shear locking was first observed, not in the formulation of a plate element
ab initio from a shear flexible plate theory such as the Mindlin plate theory but from the attempt
to represent the behaviour of shells using what is called the degenerate shell approach (Ahmad,
Irons and Zienkiewicz 1970). In this the shell behaviour is modelled directly after a slight modifi-
cation of the 3D equations and shell geometry and domain are represented by a 3D brick
element but its degrees of freedom are condensed to three displacements and two section rotations
at each node. Unlike classical plate or shell theory, the transverse shear strain and its energy
is therefore accounted for in this formulation. These elements behaved very poorly in representing
even the trivial example of a plate in bending and the errors progressed without limit as the
plates became thinner.

When the locking phenomenon was first encountered, the remedy proposed at once was the
reduced integration of the shear strain energy (Zienkiewicz, Taylor and Too 1971, Pawsey and
Clough 1971). This was only partially successful and many issues remained unresolved. Some
of these were,

1) the 2X2 rule recommended in Zienkiewicz, Taylor and Too (1971) failed to remove shear

locking in the 8-node serendipity plate element,

2) the 2X2 rule in the 9-node Lagrangian element removed locking but introduced spurious

zero energy modes,

t Deputing Director



854 Gangan Prathap

3) the selective 2X3 and 3X2 rule for the transverse sh. . strain energies from 7, and 7,
recommended for a 8-node element in Pawsey and Clow *h (1971) also failed to remove
shear locking,

4) the same selective 2X3 and 3X2 rule when applied to a 9 noded element is optimal for
a rectangular form of the element but not when the element was distorted into a general
quadrilateral form,

5) even after reduced integration of the shear energy terms, the degenerate shell elements
performed poorly when trying to represent the bending of curved shells, due to an additional
factor, identified as membrane locking (Stolarski and Belytschko 1982), originating now
from the need for consistency of the membrane strain interpolations.

It was not possible to generalise the reduced integration rules for higher precision elements
(8-node, 9-node, etc) and it seemed impossible to derive a robust general quadrilateral using
reduced integration only. Many methods now exist which make it possible to design robust
elements. In this paper, we review the field-consistency approach which we believe offers a scienti-
fic paradigmatic basis (Prathap 1993).

2. Shear locking and field-consistency

It is useful now to review the shear locking phenomenon and the field-consistency explanation
using the linear Timoshenko beam element as an example. An element based on elementary
theory needs two nodes with 2 degrees of freedom at each node, the transverse deflection w
and slope dw/dx and uses cubic interpolation functions to meet the C' continuity requirements
of this theory (Fig. 1). A similar two-noded beam element based on the shear flexible Timoshenko
beam theory will need only C° continuity and can be based on simple linear interpolations.
It was therefore very attractive for general purpose applications. However, the element was beset
with problems, as we shall presently see.

2.1. The conventional formulation of the linear beam element

The strain energy of a Timoshenko beam element of length 2 / can be written as the sum
of its bending and shear components as

| 2
w w
w’x w'x
| 2
w w
e ©

Fig. 1 Classical and Timoshenko beam clement.



A field-consistency approach to plate elements 855

Table 1 Normalised tip deflections

No. of elements “Thin” beam

1 0200x10#

2 0.800x 10+

4 0320X107°

8 0.128 X103

10 0.512X1073
j (1/2 EI & x+1/2 kGA YY) dx h

where

k=0, (2a)
Y=0—w, (2b)

In Egs. (2a) and (2b), w is the transverse displacement and @ the section rotation. £ and G
are the Young's and shear moduli and k the shear correction factor used in Timoshenko’s
theory. I and 4 are the moment of inertia and the area of cross-section, respectively.

In the conventional procedure, linear interpolations are chosen for the displacement field varia-
bles as,

N=(1-¢)2 (3a)
No=(1+¢)/2 (3b)

where the dimensionless coordinate ¢=x// varies from —1 to +1 for an element of length 2/
This ensures that the element is capable of strain free rigid body motion and can recover a
constant state of strain (completeness requirement) and that the displacements are continuous
within the element and across the element boundaries (continuity requirement). We can compute
the bending and shear strains directly from these interpolations using the strain gradient operators
given in Egs. (2a) and (2b). These are then introduced into the strain energy computation in
Eq. (1), and the element stiffness matrix is calculated in an analytically or numerically exact
(a 2 point Gauss Legendre integration rule) way.

We shall now model a cantilever beam under a tip load using this element, considering the
case of a “thin” beam with E=1000, G=37500000, /=1, L=4, using a fictitiously large value
of G to simulate the “thin” beam condition (Hughes, Taylor and Kanok-Nukulchai 1977). Table
1 shows that the normalized tip displacements are dramatically in error. In fact with a classical
beam element model, exact answers would have been obtained with one element for this case.
We can carefully examine Table 1 to see the trend as the number of elements is increased.
The tip deflections obtained, which are several orders of magnitude lower than the correct answer,
are directly related to the square of the number of elements used for the idealization. In other
words, the resulting answer has a stiffness related to the inverse of N°. This is clearly unrelated
to the physics of the Timoshenko beam and also not the usual sort of discretization errors
encountered in the finite element method. It is this very phenomenon that is known as shear
locking.

The error in each element must be related to the element length, and therefore when a beam
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of overall length L is divided into N elements of equal length /. the additional stiffening introduced
in each element due to shear locking is seen to be proportional to 4% In fact. numerical experime-
nts showed that the locking stiffness progresses without limit as the element depth ¢ decreases.
Thus, we now have to look for a mechanism that can explain how this spurious stiffness of
(h/ty can be accounted for by considering the mathematics of the discretization process.

The magic formula proposed to overcome this locking is the reduced integration method.
The bending component of the strain energy of a Timoshenko beam element of length 2/ shown
in Eq. (1) is integrated with a one-point Gaussian rule as this is the minimum order of integration
required for exact evaluation of this strain energy. However, a mathematically exact evaluation
of the shear strain energy will demand a two-point Gaussian integration of the shear strain
energy component causes the shear related stiffness matrix to change to lower rank. The performa-
nce of this element was extremely good, showing no signs of locking at all.

2.2. The field-consistency paradigm

It is clear from the formulation of the linear Timoshenko beam element using exact integration
(we shall call it the field-inconsistent element) that ensuring the completeness and continuity
conditions are not enough in some problems. We shall propose a requirement for a consistent
interpolation of the constrained strain fields as the necessary paradigm to make our understanding
of the phenomena complete.

If we start with linear trial functions for w and € as we had done in Egs. (3) above, we
can associate two generalized displacement constants with each of the interpolations in the follo-
wing manner

w=ay+a (/) (4a)
0= b() + b] (X/l) (4b)

We can relate such constants to the field-variables obtaining in this element in a discretized
sense; thus, a/I=w, at x=0, by=6 and b/[=06, at x=0.
If the strain-fields are now derived from the displacement fields given in Eqgs. (4), we get

k=(b\/I) (5a)
Y=(by—a/D)+b, (/) (5b)

An exact evaluation of the strain energies for an element of length A=2/ will now yield the
bending and shear strain energy as

Us=1/2 (ED) 21 {(b/DHF (6a)
Us=1/2 (kGA) 1) {(by—a/}+1/3 b2} (6b)

It is possible to see from this that in the constraining physical limit of a very thin beam modelled
by elements of length 2/ and depth t, the shear strain energy in Eq. (6b) must vanish. An
examination of the conditions produced by this requirement shows that the following constraints
would emerge in such a limit

b0~a1/l - 0 (73)
b = 0 (7b)



A field-consistency approach to plate elements 857

In our new terminology (Prathap 1993) constraint (7a) is field-consistent as it contains constants
from both the contributing displacement interpolations relevant to the description of the shear
strain field. These constraints can then accommodate the true Kirchhoff constraints in a physically
meaningful way, ie, in an infinitesimal sense, this is equal to the condition (6—w,) — 0 at
the element centroid. In direct contrast, constraint (6.7b) contains only a term from the section
rotation 6 A constraint imposed on this will lead to an undesired restriction on € In an infinitesi-
mal sense, this is equal to the condition &, — 0 at the element centroid (i.e., no bending is
allowed to develop in the element region). This is the ‘spurious constraint’ that leads to shear
locking and violent disturbances in the shear force prediction over the element, as we shall
see presently.

2.3. The consistent formulation of the linear element

We can see that reduced integration ensures that the inconsistent constraint does not appear
and so is effective in producing a consistent element, at least in this instance. We must now
satisfy ourselves that such a modification did not violate any variational theorem.

The field-consistent element, as we now shall call an element version free of spurious (ie.,
inconsistent) constraints, can and has been formulated in various other ways as well. The ‘trick’
is to evaluate the shear strain energy, in this instance, in such a way that only the consistent
term will contribute to the shear strain energy. Techniques like addition of bubble modes, hybrid
methods etc. can produce the same results, but in all cases, the need for consistency of the
constrained strain field must be absolutely met.

We explain now why the use of a trick like the reduced integration technique, or the use
of assumed strain methods allows the locking problem to be overcome. It is obvious that it
is not possible to reconcile this within the ambit of the minimum total potential principle only,
which had been the starting point of the conventional formulation.

To eliminate problems such as locking, we look for a consistent constrained strain field to
replace the inconsistent kinematically derived strain field in the minimum total potential principle.
By closely examining the strain gradient operators it is possible to identify the order up to
which the consistent strain field must be interpolated. In this case, for the linear displacement
interpolations, Egs. (5b), (7a) and (7b) tell us that the consistent interpolation should be a constant.
At this point we shall still not presume what this constant should be, although past experience
suggests it is the same constant term seen in Eq. (7a). Instead, we bring in the Hellinger-Reissner
theorem in the following form to see the identity of the consistent strain field clearly. For now,
it is sufficient to note that the Hellinger-Reissner theorem is a restricted case of the Hu-Washizu
theorem. In this theorem, the functional is stated in the following form

f (—1/2 EI 7 k+EI k7 k—1/2 kGA YTY+kGA YY) dx (8)

where x and 7 are the new strain variables introduced into this multi-field principle. Since we
have difficulty only with the kinematically derived ¥ we can have k=« and recommend the
use of a 7 which is of consistent order to replace ¥. A variation of the functional in Eq. (8)
with respect to the as yet undetermined coefficients in the interpolation for 7 yields

j &7 (¥—7) dx=0 )
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This orthogonality condition now offers a means to constitute the coefficients of the consistent
strain field from the already known coefficients of the kinematically derived strain field. Thus,
for ¥ given by Eq. (5b), it is possible to show that ¥=(b,—ay/l). In this simple instance, the
same result 1s obtained by sampling the shear strain at the centroid, or by the use of one-point
Gaussian integration. What is important is that, deriving the consistent strain-field using this
orthogonality relation and then using this to compute the corresponding strain energy will yield
a field-consistent element which does not violate any of the variational norms, ie., an exact
equivalence to the mixed element exists without having to go through the additional operations
in a mixed or hybrid finite element formulation. at least in this simple instance. We say that
the variational correctness of the procedure is assured (Prathap 1993). The substitute strain interpo-
lations derived thus can therefore be easily coded in the form of strain function subroutines
and used directly in the displacement type element stiffness derivations.

24. Some concluding remarks on the linear beam element

So far we have seen the linear beam element as an example to demonstrate the principles
involved in the finite element modelling of a constrained media problem. We can demonstrate
that a conceptual framework that includes a condition that specifies that the strain fields which
are to be constrained must satisfy a consistency criterion is able to provide a complete scientific
basis for the locking problems encountered in conventional displacement type modelling (Prathap
1993). We can also show that a correctness criterion (which links the assumed strain variation
of the displacement type formulation to the mixed variational theorems) allows us to determine
the consistent strain field interpolation in a unique and mathematically satisfying manner (Pra-
thap 1993).

3. Rectangular four-node bi-linear plate bending element

Mindlin's approximations permit a simple description of plate behaviour. Only first order
derivative terms appear in the strain-displacement relations-therefore compatible Mindlin elements
require the fields w. 6, and 6, to be only " continuous, where x, y are Cartesian co-ordinates,
w is the transverse displacement, 6, and 6, are the section rotations, and hence low order shape
functions suffice to represent these fields.

The 4-node rectangular bi-linear element is the simplest element based on Mindlin theory
that could be devised. It was established (Hughes. Taylor and Kanok-Nukulchai 1997) that an
exactly integrated Mindlin plate element would lock. Locking was seen to vanish for the rectangu-
lar element if a reduced I[-point Gauss integration rule was used for the shear strain energy.
This rectangular element behaved very well if the plate was thin but the results deteriorated
as the plate became thicker. Also, after distortion to a quadrilateral form, locking re-appeared.
We can now demonstrate from our consistency view-point why the I-point integration of the
shear strain energy is inadequate to retain all the true Kirchhoff constraints in a thin plate
element and also why such a strategy cannot preserve consistency if the element was distorted.

The strain energy for an isotropic, linear elastic plate element according to Mindlin theory
is constituted from its bending and shear energies as
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U:UB+US‘
—____E.ﬁ_ 2 2 _ ¥
- 24(1‘_‘/2) {‘[J'[Br u‘+9y ,y+2v exueyw"_(l V)/2 (exeyd}—evw)] dX dy
e f f (0w +0-w, )] dr dbf (10)

where E is the Young's modulus, v is the Poisson’s ratio, k is the shear correction factor and
¢ is the plate thickness. The factor & is introduced to compensate for the error in approximating
the shear strain as a constant over the thickness direction of a Mindlin plate.

The bending energy causes no problem. It is the shear energies which must be looked at
carefully. Let us now examine the field-consistency requirements for one of the shear strains,
Yw, in the Cartesian system. The admissible displacement field interpolations required to describe
this shear strain field can be written in terms of the Cartesian co-ordinates itself as

w=atax+aytaxy (11a)
0=by+b\x+by+bixy (11b)

The shear strain field derived from these kinematically admissible shape functions is,
Ye=(by—a)+(b—a)y+bx+bsxy (12)

As the plate thickness is reduced to zero, the shear strains must vanish. The discretized constraints
that are seen to be enforced as ¥. — 0 in Eg. (12) are

by—ay = 0 (13a)
by—a; = 0 (13b)
by = 0 (13¢)
by = 0 (13d)

The constraints shown in Egs. (13a) and (13b) are physically meaningful and represent the
Kirchhoff condition in a discretized form. Constraints (13c) and (13d) are the cause for concern
here-these are the spurious or ‘inconsistent’ constraints which lead to shear locking Thus, in
a rectangular element, the requirement for consistency of the interpolations for the shear strains
in the Cartesian co-ordinate system is easily recognized as the polynomials use only Cartesian
co-ordinates. Let us now try to derive the optimal element and also understand why the simple
l-point strategy led to zero energy mechanisms.

It is clear from Egs. (12) and (13) that the terms b x and b;xy are the inconsistent terms
which will contribute to locking in the form of spurious constraints. We must now find an
optimal integration strategy for removing shear locking without introducing any zero energy
mechanisms. We shall consider first, the part of the shear strain energy contributed by 7. An
exact integration, that is a 2X2 Gaussian integration of the shear strain energy leads to the
four constraint quantities seen in Eq. (13). The first two reproduce the true Kirchhoff constraints
and the remaining two act as spurious constraints that cause shear locking by enforcing 6.,
— 0 and 6., — 0 in the element. i

If a 1X2 Gaussian integration is used only the true constraints are retained and all spurious
constraints are removed.
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By a very similar argument, we can show that the part of the shear strain energy from %,
will require a 2X1 Gaussian integration rule. This element would be the optimal rectangular
bi-linear Mindlin plate element.

Let us now look at the 1-point integration strategy. This will give shear energy terms which
reflect only one true constraint each for the shear energy from Y. and 7, respectively while
th other Kirchhoff constraints (6.—w.), ,, = 0 and (6,—w,),, = 0 are lost. This introduces
two zero energy modes and accounts for the consequent deterioration in performance of the
element when the plates are thick or are very loosely constrained.

We have seen now that it is a very simple procedure to re-constitute field-consistent assumed
strain fields from the kinematically derived fields such as shown in Eq. (12) so that they are
also variationally correct. This is not so simple in a general quadrilateral where the complication
arising from the isoparametric mapping from a natural co-ordinate system to a Cartesian system
makes it very difficult to see the consistent form clearly. We shall see the difficulties associated
with this form in the next section.

4. The four-node quadrilateral plate element

The Cartesian co-ordinate system is mapped from the natural co-ordinate system using the
isoparametric shape functions and these are also used to interpolate the degrees of freedom
w, 6, and 6, (Fig. 2). Note that the section rotations are described in the Cartesian system and
this fact assumed a crucial importance when consistency of the shear strain definitions of an
arbitrarily deformed quadrilateral are sought. Thus the geometry of the element and the displace-
ment fields are now expressed in terms of the isoparametric 4-node shape functions as

(X, Y w 8\‘« 9\)’:2 M‘“(é 77) (X,‘, Vi Wi 9.\’1‘* e_vi) (14)

where the subscript " indicates the nodal values. The superscript ‘o’ is used to denote that

7
I\
y l
b :

4 } 3
|

2h L__r_..__)
§

2L

1 2

Y

Fig. 2 Cartesian and natural coordinate system for a 4-noded ¢ rectangular plate element.
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these are the original isoparametric shape functions. Later, we would have to derive substitute
shape functions (or smoothed shape functions as they are sometimes called) for the sole purpose
of achieving consistent shear strain interpolations and these we will separately designate using
superscripts ‘1’ etc. The usual bi-linear shape functions are used, where N(& 7)=0.25 (1+ &)1
+nm) and (& n) are the local co-ordinates of the node i.

The Jacobian [J] will play an important role in locating the special difficulties that originate
in trying to define consistent expressions for shear strain for a quadrilateral element. The elements
of this matrix (¢; of [J]), and its inverse (b; of [J]™'), are obtained as: @, =x.5 d=V.s t =X,
an=y,, and by=aull, bn=—an/). byy=—a/J, and byn=ayn/J where J is the determinant of
the Jacobian matrix. The shear strain component %. in the Cartesian system is

}/xzzgx-(wvf é\’+wﬂ] nt\') (15)

The consistent interpolations must now be worked out for an arbitrary orientation and shape
of the element because of the presence of the terms from the inverse Jacobian. We introduce
a set of covariant shear strain tensor components or covariant definitions of rotations 6: and
0, such that we can describe the Cartesian shear strain component in the following form,

y\z:(gg’-_ wﬁ(:) éx+(9r)_wﬂﬂ) N (16)

where Ye=(0:—w,;) and ¥,,=(6,—w,,) are the covariant shear strains. The components of the
shear strains in the two systems can now be readily transformed using the following relationship:
Ye=anlet anly, V= Vet anly Ye=buYetbnle, Y.=buVetbynl.

We conclude at once that consistency must now be maintained for the covariant shear strains
Y and 7. This means that there must be a consistent form of interpolation between 6: and
w,e and 6, and w,,. If the original shape functions N?(& n) are used to interpolate these covariant
base rotations from the nodal values of these same quantities, then it is clear from Eq. (15)
that the interpolations will lead to spurious constraints. It is necessary therefore to introduce
a consistent form of the interpolation so that no spurious constraints are seen. The consistent
assumed shear strain field can then be represented as (see Prathap and Somashekar 1988)

zz:(_éf—wsf) éx—"-(@rl—wsn) Nx (17)

We interpolate 85 6, in Eq. (17), using the values of (8, and (6,); at the nodes and the consistently
derived shape functions N/ and N,!, but transform (6, and (6,); at the nodes to the Cartesian
co-ordinate definitions of the rotations (6); and (6); using the Jacobian transformation given
earlier. This will ensure that the shear strains defined in the natural co-ordinate system continue
to be consistently maintained within the element domain and across element edges so that
they can vanish without generating any spurious constraints. Thus, in the case of the shear
strain ¥, we have

YAE )= ; {6, [(@)NS): by+(a) @V, by

+ 6, (NS but(an)®,) bi]l—w,[(Ng) bu+ONg) b} (13)

where b; are evaluated at the integrating points and ¢; are computed at the nodal points. Similarly,
the shear strain definition for 7, can be obtained.

A note on the form of the consistently derived shape functions N/ and N,' will be in order
here. Once these are derived for a specific application, i.e., a 4-node or 8-node or 9-node element
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s the case can be, the description of the shear stiffness formulation given above is very general
as long as the summation is done correctly over the n nodes and the appropriate original N°
functions and smoothed (N/), (V,) functions are used. We can derive N¢ and N,' as follows.
We need, for example, a consistent 7 to be derived from 7z In (Prathap and Somashekar
1988) this was done using a variational condition of the form

f J‘ 81l (Ye—Te) d§ dn (19)

The element developed on this basis does not lock, passes all the patch tests prescribed for
this element, is invariant to node numbering and is the simplest and most efficient 4-noded
plate bending quadrilateral element known to us. A simple application of reduced or selective
integration would never have satisfied the consistency requirments seen to exist in the general
quadrilateral form.

5. Numerical experiments

Elements formulated using the field-consistency approach have been rigorously tested using
the accepted benchmark single-element and patch tests (Prathap and Somashekar 1988, Prathap
1993, Prathap 1994) and appear to meet the various requirements expected of elements to be
used for prodcution-run analysis tasks. We shall briefly review this here,

Our numerical studies here will consider the inconsistent and field-consistent versions of the
element:

I—6, and 6, interpolated by the original shape functions, ie., field-and edge-inconsistent.

C—6: and 6, interpolated by the smoothed shape functions, but transformed to 6, and 6,
at the nodes, ie., field- and edge-inconsistent.

These studies will confirm that the C version is the optimal element. Our subsequent tests
will place particular emphasis on the effects of distortion and arbitrary orientation on this quadri-
lateral element (henceforth called QUAD4) in meshes in several benchmark tests.

5.1. Cantilever plate test

A cantilever plate of dimensions 100 by 100 and thickness 0.1 is modelled by two elements
in the configurations A and B shown in Fig. 3. The elastic propertics chosen are E=10° and
v=0.0. The free edge is loaded by a bending moment distributed at nodes 5 and 6 equally
as shown in the Figure. The deflections ws and we at the nodes 5 and 6 and the bending
moment resultant M,, at the centroid of the second element are given in Table 2. It is clear
that even with a rectangular grid, field-inconsistency (the 1 element) leads to very large locking
effects. However, the C element is totally free of locking. The distorted Mesh B now shows
that the field-inconsistent element has a significant degree of locking. However, the optimal
C element is totally free of any difficulties.

5.2, Constant strain patch tests

The most frequently used patch test is a configuration of five arbitrary quadrilateral elements
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A\
y‘}
# M/2
2 %0 e P 40
100 100
1 s0 |3 5 N 60 ;*M/Z
100
(a) Mesh A (b) Mesh B

Fig. 3 Two eclement cantilever plate test.

Table 2 Deflections at nodes 5 and 6 and bending stress resultant M, at centroid of element

2 (Fig. 3)
Ele. Ws We M,
Mesh A Mesh B Mesh A Mesh B Mesh A Mesh B
I 0.58e-6 0.57¢-6 0.58¢-6 0.54e-6 097e-7 0.97e-7
C 0.60e-1 0.60e-1 0.60e-1 0.60e-1 1.00e-2 1.00e-2
Exact 0.60e-1 1.00e-2

as shown in Fig. 4a. We shall consider four types of straining configurations as in the sub-
sections below.

5.2.1. Constant bending strain test

A distributed edge couple of constant intensity on the right hand edge is simulated by two
concentrated edge couples as shown in Fig. 4b. Version I fails this test. However, version C
satisfies it exactly.

5.2.2. Constant shear strain test

A uniformly distributed edge load is simulated by two equal concentrated loads as shown
in Fig. 4b. Note that the imposed conditions imply that all rotations are zero and that only
pure shear is possible. No field-inconsistency problem can therefore manifest itself here and
as expected, both versions 1 and C pass this simple test.

It is in this form that this test is used in the literature and it is clear from the present experiment
that this test fails to bring out the essential nature of the inconsistency problems faced by the
I version of the element. In the next sub-section, we offer a more useful patch test to highlight
this feature.
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(0,10} (10,10)
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8,:0
everywhere
W=0 Q/2 Wz0 W=0
80

Shear case b Twist case

(b) Various loading cases

Fig. 4 Constant strain patch tests.

5.2.3. Constant shear and linear bending strain test
To understand more realistically how field-inconsistencies are induced under shearing, the
shear test is repeated allowing the rotations 6, to develop. This corresponds to a constant shear

and linear bending strain patch test (Shear case b of Fig. 4). Again, only the version C is able
to satisfy this patch test.

5.24. Constant twisting strain test

The plate is now supported at three comner points and is loaded by a concentrated shear
force at the fourth corner (Twist case of Fig. 4b). Classical thin plate theory predicts that a
pure constant state of twisting strain is developed in the patch. For a thin plate (thickness r=0.001
in.) only version Cg passes this patch test.
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6. Conclusions

We believe (Prathap 1993, Prathap 1994) that the field-consistency paradigm offers a complete
scientific framework to understand the locking problem and also provides procedures to design
efficient plate and shell elements based on first-order or higher-order plate theories. If the ambition
is to be able to derive plate and shell elements in a unified and generic way from a simple
set of first principles, the field-consistency principle offers a rational basis to achieve this.
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