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The role of softening in the numerical
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Abstract. Reinforced Concrete beams with tension and compression softening material constitutive
laws are studied. Energy-based and non-local regularisation techniques are presented and applied to
a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness
matrix, restoring forces) are directly derived from their symbolic expressions through numerical integration.
In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample
the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to
the strain localization and the stabilization effects given by the regularisation techniques, both in the
case of tension and compression softening. The possibility to overestimate the ultimate load level when
the non-local strain measure is applied to a non softening material is shown.
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1. Introduction

Concrete is a material which shows, both in tension and compression, a marked softening
behavior. When this phenomenon is disregarded (Fig. 1a), the structural analysis gives way to
behaviors which fall into the boundaries defined by the limit analysis (Bontempi, et al. 1995).
When the softening is considered, new characteristic mechanical aspects and more detailed infor-
mation about the overall structural response can be gathered (Bazant, et al. 1987, Ghosh and
Cohn 1972, Kim and Lee 1992).

Usually the R.C. members are designed to have a ductile behavior and failure is due to the
yielding of the steel, before the concrete reaches its maximum capacity. As a consequence, a
particular relevance is given to the softening in the tensile states. In fact it controls the transition
modes from the uncracked to the cracked state (Crisfield 1982). In a cracked R.C. element the
tensile stress at a crack is zero in the concrete and is maximum in the reinforcement. Between
the cracks, the tensile stresses are transferred from the steel to the concrete by the bond action
which develops along the bars. The concrete, in this way, contributes in carrying the tensile
forces and in increasing the overall stiffness of the structure. Several models dealing with Tension
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Fig. 1 Concrete constitutive laws. (a) Standard parabola rectangle stress strain relationship. (b) (Tensile
softening)/(compression softening) stress-strain relationship.

Stiffening (T.S.) have been proposed (Gilbert and Warner 1978, Feenstra and de Borst 1993).
Many of these models consider the contribution of the concrete in tension which surrounds
the bars, by grading the length of the concrete softening branch, as shown in Fig. Ib.

However, Finite Element analysis of structures, made of strain-softening materials, may fall
into unstable computations and, with mesh refining, may converge to physically inconsistent
results (de Borst, et al. 1994). The solution may depend on the size, shape and orientation of
the mesh and the model gives rise to a non-objective representation of the structural problem.
As has been noted (de Borst, e al. 1994), these effects arise from modeling the continuum as
a standard, rate independent media.

The standard stress-strain relationships are deduced from the force-displacement curves ob-
tained from testing devices, simply by dividing the forces by the original load-carrying area
and by dividing the changes in length, by the original length of the specimen. No consequences
arise in the hardening phases (H) from this idealization; while, on the contrary, when tension
and/or compression softening branches (S) are present, a similar criteria doesn’t take the micro-
structure changes, which occur during the fracturing process, into account (Ottosen 1986, Planas.
et al. 1993).

To remedy such improper structural responses due to the use of the standard continuum
model, several regularisation techniques have been introduced.
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2. Regularisation techniques

The regularisation techniques can be substantially derived from two basic criteria:
(1) the affine transformation of the material constitutive law, deduced by energy constraints;
(2) the non-local measure of the deformations.

2.1. Energy based affine transformation of the standard material constitutive law

We consider a unit area fiber of a holonomic material. Let H be the nominal length and
u=¢H the measured displacement of the reference specimen. Similarly, let L>2H and u=¢-L
the corresponding quantities, referred to a fiber of the actual structure. In the precritical (H)
tension and compression branches, the energy constraint

ks - L [
du==- . 1
fo o-du H fﬂ o-du ()

is, in any case, satisfied, irrespective of the fiber length, so that we can assume these curves
as the effective stress-strain material laws.

In the postcritical (S) branches we impose the condition that, independently of the fiber length
L, the actual fiber in tension, as well as the actual fiber in compression, absorb respectively
the tension and compression energies, represented by the area below the corresponding softening
curves of the reference specimen of length Hr and Hc:
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The algebraic development of these constraints, gives rise to affine transformations of the
standard constitutive laws (see Fig. 2). As shown in Fig. 1b the original tension softening branch
BA, spanning from the peak strain ¢, to the ultimate strain £7;, becomes the branch B'A’, spanning
from the same peak strain £q, to the adjusted ultimate strain ey =¢m* (L—Hy)L+éem - Hr/L.
An analogous transformation holds for the softening branch in compression, which ends at
the adjusted ultimate strain ecry =&co* (L—H¢)/L+ecy* He/L. The lengths Hr, H are, in truth,
material parameters. In F.E. meshes of framed structures, an estimate which yields to objective
analysis assumes these lengths as nearly equal to the height of the beam element (Bazant, er
al. 1987): this rule (L2H,=H;=H) will be respected in the following.

2.2. Non-local R.C. beam element formulation

The R.C. beam element presented by the Authors (Malerba and Bontempi 1990, Bontempi,
et al. 1994) is improved by a non-local deformation estimate. With reference to the usual Bernou-
lli-Navier beam element of Fig. 3a, let g=[u, v; ¢; u; v, ¢;] the vector of nodal displacements,
Q the vector of forces which works for g. &(x) the vector of the generalized deformations (axial
strain & and curvature y at the section x), and &(x,y) the corresponding elongation of the fiber
at distance y from the beam axis.
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In the hardening phase (H), the energy densities of the reference specimen and of
the real structure are the same:
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In the softening phase (S), we impose that the total energies of the reference specimen
and of the real structure are the same:

E:%i———“’;“” coH F:%i—““zf‘“ oL
E=E VL = (0, ~u)=Ww.~u) = (@L—&l)=(eH—&H)
from which the following equivalent g, is derived:
&=& (1 —H/L)+&-(H/L)
Note that for L > H = g—¢, and for L>wo = &6

Fig. 2 Derivation of the energy-based regularisation technique.

At the section of abscissa (x) the axial and transversal displacements (4, vo) and the generalized
strains (&.y) depend on the nodal displacements by means of the following equations:

o Ll()(X) _ Nl 0 0 N4 0 0 o .
—LL(X)_[V()(X)] - ‘: 0 Ng ]\]3 0 NS N(,] Q_J_X(X) 1 (4)
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In a fiber at coordinate y, of the same section, the strain in x-direction can be expressed
as:

e(e.y)=L1-y]-BK):¢=L(y)Bx)q 7

and the corresponding virtual variation results:
e (x, y)=L(y) B(x) & ®)
For an incremental displacement step Ag the strain and the stress increments are respectively:
Ae(x.y)=L(y) B(x)- Aq ©)
Ao (x.y)=E 1(e) Ae(x,y)=E 1(6)-L(y)-B(x)- Ag (10)

and the Principle of Virtual Work states that:

!
&,:] de*(0+ Ao)-dAdx=8L . =& -Q (11)
0J 4
The internal work can be developed as follows:

!
&f:&rf ér(x)'f {_ly]~(a+Aa)-dA-dx: (12)
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and lead us to define:
1) the section tangent stiffness matrix H(x)

2) the vector of the generalized stresses (the internal axial force and bending moment) Hx)
3) the element tangent stiffness matrix Kr(g)

4) the element restoring force vector R (g)
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Fig. 3 a) Beam element characteristics; b) Non-local sampling technique.

Being the material non-linear, the integrals involved in such matrix operators are carried out
by means of Gauss-Legendre quadratures, by adopting an adequate number of sampling sections.
In dealing with the quadrature process, it must be pointed out that the sectional matrix H(e(x))
and the internal forces r ( £(x)) depend on the local strain vector €(x). This dependence is sensitive
to the strain localization and, with mesh refining. involves the sharp effects which lead us to
the wrong aforementioned results.

To avoid the effects of this punctual, but purely conventional, sampling of the material response.
a weighted strain evaluation can be introduced. With reference to Fig. 3b. let A a characteristic
length, & the distance between the actual Gauss point and another section of the beam, c€0—1
a tuning parameter, introduced to grade the contributions of the local and of the weighted defor-
mations in the neighborhood of the Gauss point and w(¢)=exp(—(&A)*) a weighting function
(Bazant and Chan 1984). As the non-local strain estimate, the following generalized deformations
are assumed:

5:0‘£+(1—0)'Jwﬁ(f)'W((f)df (13)

In dealing with computations A is assumed to be equal to the beam height and the integral
is computed by means of numerical quadratures in the interval — 24 <E<+2A.

3. Solution of the equilibrium equations. —Computational aspects—

In structures made of softening materials, a local region may soften or crack, while the adjoining
material unloads elastically (Crisfield 1982, de Borst 1987). The strain localization may induce
dynamic jumps to a new displacement state at a fixed load level (snap-through) or dynamic
jumps to a new load level under a fixed displacement state (snap-back). To catch these effects,
special pseudo-static solution techniques are required.

Let F(r)=Ar)-y a load vector given by the product of a scalar multiplier A(f) by a constant



The role of softening in the numerical analysis 791

A

Fig. 4 Equilibrium path and its singular points.

reference force vector y and let R(x(r)) the restoring force due to the stress state corresponding
to the displacement vector x(z). At the equilibrium state the vector of the residual forces

HO)=A@) "y —~Rx(@)=0 (14)

1s zero and x(f) defines an equilibrated configuration of the structure.

The variable (¢) is a fictittous time, introduced to have a reference searching parameter. By
varying (f), the coordinates {x(7), )L(t)-z} locate a point P, which moves along the structural
equilibrium path I" shown in Fig. 4. For non-linear but elastic materials, the point P can be
identified, along the path, instead of by (), by a curvilinear abscissa (s). By differentiating Eq.
(14) with respect to (s), one obtains:

L o) A RGO x - R
R ol B o 21 (1)
oS os = oxX 0o ox
in which gR/gx=K(x(s)) is the symmetric tangent stiffness matrix of the structure. For small

finite increments (As) of the abscissa (s), we can define Ax =x*As and AA=A+ As and state
the following incremental approximation

Ah-y —Kx () - Ax =0 (16)

When K is non singular, the displacement increment Ax =K ~' - Ay, corresponding to a
load increment AA - y . identifies a regular point on the equilibrium path.

When at least one eigenvalue w of the stiffness matrix is zero, then der(K) is zero and for
a load variation AA -y the uniqueness of the displacement increment is lost. This occurrence
identifies a singular point, defined in more detail as follows.

Let ¢ the eigenvalue associated to . By premultiplying by ¢” the terms of Eq. (16)

Alg" y—9" K- Ax =0 (17

and remembering that K - ¢ =0 and that ¢" - K" =¢"+ K=0", one of these two alternatives
is possible (Wagner and Wriggers 1988)

9"y =0 with AL£0 (18)
AA=0 with ¢ -y £0 (19)
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The former case represents the occurrence of a bifurcation point (simple at point A, non-simple
at point F on the diagram of Fig. 4); the second case represents the occurrence of a limit point
(points like B, E, G, in Fig. 4). If K has k zero eigenvalues, a point like F is called a non-
simple bifurcation point with multiplicity k: it has k distinct branched-off paths.

The shapes which can be assumed by the equilibrium path present other characteristic points
(Fig. 4y

—in C, D the slope of I' is infinite. However these two points can be considered all the

same limit points, since by rotating the diagram around the bisecting line of the first quadrant,
the tangent in C, D will once again result zero.

—H is the ultimate point defined on the basis of maximum allowable strains without material

failure.

Structural impertections or dynamic effects may shift the actual structural response from this
purely ideal representation of the equilibrium state.

Let v the velocity vector corresponding to x and let £a generic vector of structural imperfections.
From a mathematical point of view, making a reference to an ideal and perfect equilibrium
path corresponds to a projection of the true one, from the actual space, where {x. Y. Ay, ﬁ}
to an ideal one, where {x. y=0. Ay, £=0 | In this projection operation the uniqueness of
the solution is lost.

When random imperfections occur, ie.. the equilibrium path is perturbed, the singular limit
points tend to remain unchanged. The theory of dynamic systems calls this characteristic property
structural stability (Troger and Steindl 1991).

With reference to Fig. 4, P1 and P2 represent two possible quasi-static perturbed paths, resem-
bling the ideal ones identified by “17, “2”, “3”, but losing their bifurcation points.

In truth, when imperfections are present, the identity itself of the bifurcation points is lost.
Being the real structures always affected by imperfections, only limit points in fact exist. From
a theoretical point of view, the structural imperfections are accounted for so as, to assess the
structural sensibility to initial conditions. In dynamics this leads us to the Theory of Chaos
(Seydel 1995). In the case of R.C. structures the structural imperfections come either from non
homogeneous strength or stiffness of the concrete or from dimensional non homogeneity of
the structural elements and are, without any doubt, dominant aspects (Carmeliet and de Borst
1995). If on the one hand these effects lighten the computational procedures, since they tend
to clear the path from the presence of bifurcation points, on the other hand they make the
equilibrium paths extremely irregular, due to the softening behaviour as well as to discontinuous
mechanical aspects, like cracking and section partialization.

For the solution of the non-linear problem, the Newton-Raphson (N.R.) method in its original
or modified formulation, is usually adopted (Ramm 1981). The method can be considered compo-
sed of two parts: a predictor which involves the use of a load increment estimate, to make
a first prediction of the x (r) next value, followed by the application of a more accurate corrector
algorithm which then provides successive improvements.

Numerically, the predictor phase is the crucial one. The choice of the load increment is carried
out by means of the following criteria: with reference to the tangent matrix deduced in the
prediction phase, the incremental displacement vector results:

‘Ax ='K;'('Ad-y +'r) (20)

such an increment can be written as follows:
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'‘Ax ="AA - 8r+6k @n
where:

Sr="K;'-y 22)
is the displacement vector corresponding to a linear elastic structure as having stiffness matrix
K. and

Sk='K;'"r (23)
is the displacement vector due to the residual forces.

A load variation starting from the point {°x, °A -y} and moving along the equilibrium path
must be defined in direction (increment or decrement) and intensity. If the load increment is
too large, convergence will not occur or it will be very slow. Hence limiting criteria must be
introduced.

__To limit the load increment shown in Fig. 5, the tangent segment 01" is scaled on the segment
01. Through the notation

'Ax ='"AA- 8 1+8 ¢ (24)

such a limitation can be carried out by one of these two alternatives:
—through the choice of a suitable step A/, which extend the arc length between the already
stated solution and the predicted one (arc-length method), such an increment can be deduced
from the following quadratic equation

(Aly="Ax" - 'Ax =('AL- 8:+8x)" - ('Ak+ 81+ 84) 25)
which gives the opposite solutions:
+ Al
V87 8rty"ey

—or through a limitation on the work increment, by imposing that

AL =

(26)

Fig. 5 Predictor phase with limitation of the load increment.
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AW=('"AA-y") - (‘AL - 8H<SAW 27

where AW is a reference limiting value. The solution of the Eq. (27) gives

an=+ /AW (28)

y' o

Such limitations regard not only the intensity of the load increment but also its direction,
defined by one of the two signs. The choice of the sign can induce computational difficulties,
1.c., loops between local loading and unloading paths. These drawbacks occur in highly irregular
equilibrium paths, such as those which characterize the R.C. structures in presence of cracking
and section partialisation. The use of a suitable predictor leads us to avoid the aforementioned
effects. In this work, the Seydel predictor (Seydel 1984) has been used. It works through the
following steps:

—The displacement increment 'Ax, given by the previous step, is known, as well as the

displacement at the beginning of the actual step:

8r="K;'y="Ax (29)

—Let (k) the index of thc maximum absolute value of 87. The predicted increment load
is
_-lAXA
lA.\’A

This load increment must be limited to [. In other words the initial load increment, that
is the load increment at the origin, can't be exceeded. Eq. (30) is in fact a local parametrization
of the equilibrium path, focused on the displacement component which varies the most.

‘AL = (30)

4. Examples

Both the energy based and the non-local regularization techniques have been used in a compu-
ter code dealing with the analysis of R.C. structures. Three cases are studied. They regard the
structural response of the uniformly reinforced concrete beam shown in Fig. 6. In the first two
cases the section of the beam is under and over-reinforced. in order to induce, respectively,
softening behaviour in tension and in compression. The third case intends to show the possible
effects of the non-local regularization technique, when used in the analysis of structures made
of non softening materials.

4.1. Analysis of an under-reinforced concrete beam

The section of the beam is shown in Fig. 6. The aim of the example is to highlight the
effects due to the following choices (1) whether to consider the concrete softening or not; (2)
the different discretisations; (3) the different regularisation techniques. The mesh is progressively
refined by subdividing the two spans of the structure into (i+3i, i=1, 10) elements of equal
length. The results are given in terms of load displacement curves (P—¢). In order to have
a common reference behaviour, the beam is studied in advance by adopting the stress-strain
parabola-rectangle law of Fig. la. and through the direct iteration (secant) method. The results.
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Fig. 6 Geometrical and reinforcement characteristics of the beam analyzed in the examples.
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Fig. 7 (a) Load displacement curves obtained through non-softening and softening material constitutive
laws (Fig. la, b) without any regularisation technique. (b) Enlargement of the transition zone

to the cracked stage.
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Fig. 8 (a) Load displacement curves obtained through non-softening and softening material constitutive
laws and the energy based regularisation. (b) Enlargement of the transition zone to the cracked

stage.
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obtained respectively by means of (1+3), (2+6), (4+12) elements, are represented by the curves
identified by the black dots and are repeated in all the other cases which are studied.

4.1.1. Analysis without regularisation techniques

By modeling the concrete through the tension-compression softening constitutive law of Fig.
Ib and by subdividing the beam of Fig. 6 into (i+3i, i+ 1, 10) elements, the local sampling

without any regularisation technique, gives the family of curves shown in Fig. 7a, b. One observes
that:

(1) the ultimate load, for all the solutions, is almost the same;

(2) the introduction of a tension resistance strongly increases the stiffness in the initial nearly
elastic branch and no differences arise in this branch from the mesh refinement;

(3) the ultimate displacement values, for all the solutions, progressively decrease;

(4) in presence of softening, the transition from the first to the second branch of these curves
takes place with a sharp load fall, followed by a stiffening branch which moves towards
the conventional tension stiffening ascending curve, usually considered in the design;

(5) the close-up of the transition zone, shown in Fig. 7b, highlights how these solutions are
strongly affected by the density of the mesh, as far as converging to non-physical snap-
back effects for those more highly refined.

This mesh depending behaviour can be explained by observing the cracking patterns shown
in Fig. 10a, where the dark shadowed zones contour the crack development in their depth and
in their span directions, at the ultimate state: finer meshes reduce the span of the cracks and
the curvature localization induces the sharp effects already shown. This is also evident from
the displacement fields of Fig. 1la.

4.1.2. Analysis with energy based regularisation

Figs. 8a, b show the load displacement curves obtained for the same structure adopting the

non-tocal elasticity non-locat efasticity
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Fig. 9 (a) Load displacement curves obtained through non-softening and softening material constitutive
laws and the non-local regularisation technique. (b) Enlargement of the transition zone to the
cracked stage.
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O - ®
Fig. 10 Crack patterns on the surface of the beam. (a) Crack localization obtained adopting the softening

constitutive law and without any regularisation technique. (b) Cracked elements diffusion accor-
ding to the non-local deformation estimate.

energy adjusted material constitutive law. The snap-back effects disappear. With mesh refining
the load-displacement curves corresponding to the succession of the meshes, converge on a same
path and finish with the same ultimate displacement. Only the meshes (1+3), (2+6), (3+9)
are studied, because of the limiting condition H</, being [ the length of the element.

4.1.3. Analysis with non-local deformation estimate

With mesh refining, the effects of this regularisation technique clearly appear from the evolution
of the load-displacement curves drawn in Fig. 9a. In comparison to the results of the previous
case (Fig. 8b), the details of the transition zone (Fig. 9b), show, in this case, a more orderly
and faster convergence process. A physical explanation to this tendency can be deduced by
the inspection of Fig. 10b, where. as a consequence of the non-local sampling of deformations.
the cracks are spread over a wider area; the crack contours result more smoothly diffused on
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Fig. 11 Displacement fields for the beam: (a) Adopting the softening constitutive law and without any
regularisation technique, (b) according to the non-local deformation estimate.
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the surface of the beam and, furthermore, the envelope of the cracked zones results nearly constant
for all the meshes. In Fig. 11b the corresponding displacement fields are shown.

4.2. Analysis of an over-reinforced concrete beam

The section of the beam is shown in Fig. 6b. Being the beam over-reinforced, the compression
softening branch of the constitutive law will be activated. The load deflection curves, given by
the same mesh succession as in the previous case, are shown in Fig. 12. Neither snap-through
nor spurious snap-back effects are now present. With mesh refining, the curves converge to
an asymptotic behaviour near the one corresponding to the finest mesh. The softening branch
tends to exhibit an almost vertical load fall, which highlights the fragile character of the compres-
sion failure, typical of strongly reinforced beams.
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Fig. 12 Load displacement curves obtained through non-local regularisation technique for the overrein-
forced beam (648) having the section of Fig. 6b.
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Fig. 13 Load displacement curves obtained through non-local regularisation technique for the elastic-
plastic beam (6@8+64d8), having section of Fig. 6c.

4.3. Analysis of a beam having an ideal section made of non softening material

As shown in Fig. 6c, the section of the beam is composed of two bars, which work as top
and bottom stringers. Such stringers are ideally connected by the internal kinematic constraint.
which compels a segment, straight and normal to the axis of the beam. to remain straight
and normal in the deformed shape. The load deflection curves, given by the same mesh succession
as in the previous case, are shown in Fig. 13. Through simple hand calculations, the ultimate
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load results P, =17683N. Even if the constitutive law assumed for the steel doesn't present softening
branches, the non-local strain estimate has been adopted all the same. With mesh refining the
results converge to a stable solution having P, =19000N. This value of P, is 7.45% higher than
the exact one. This is due to the smoothing effects implicit in using non-local techniques, which
clearly underestimate the punctual deformation. This effect, however, can be easily corrected
by adjusting the nominal value of the material strength.

5. Conclusions

A non-linear analysis of under/over-reinforced concrete beams up to collapse and allowing
for strain softening effects has been presented.

In the presence of strain softening, the use of the smeared crack model and of the simple
strength criterion to analyze the crack propagation, may lead to non objective results, since
computational predictions may be strongly influenced by the choice of the element size.

The use of regularisation techniques permits us to avoid the spurious effects due to the strain
localization. The essentials of such techniques, based (a) on the affine transformation of the
material constitutive law or (b) on the non-local measure of the deformations, are recalled and
applied to a RC. beam element. The element characteristics are derived and the expressions
of the sectional tangent stiffness matrix, the generalized stresses, the element tangent stiffness
matrix and the restoring forces are given.

The search for the equilibrium path has been carried out by means of a tangent algorithm
based on the Seydel predictor, particularly robust in dealing with highly irregular equilibrium
paths.

The numerical examples present the load deflection curves up to collapse and a close-up
of the transition zones from the uncracked to the cracked state. For different reinforcement
amounts, the various results obtained by either adopting the regularisation techniques or not,
are shown and compared. A further comparison between the crack patterns at the load which
precedes the collapse, gives a physical explanation to the effects of the strain localization as
well as to the stabilization action of the non-local deformation estimate. When applied to an
elastic-plastic material, smoothing effects due to the non-local technique may lead to overestima-
ting the ultimate load level but that aspect can be easily corrected.
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