Structural Engineering and Mechanics, Vol 5, No.5 (1997) 587-598 587
DOI: http://dx.doi.org/10.12989/sem.1997.5.5.587

Structural dynamics: Convergence properties in
the presence of damage and applications
to masonry structures

Alfonso Nappit, Giovanni Facchint and Claudio Marcuzzit

Department of Civil Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy

Abstract. A numerical model for masonry is proposed by following an internal variable approach
originally developed in the field of elastic-plastic analysis. The general features of the theoretical framework
are discussed by focussing on finite element models applicable to incremental elastic-plastic problems.
An extremum property is derived and its implications in terms of convergence for convenient algorithms
are briefly discussed, by including the case of softening materials and damage effects. Next, a numerical
model is presented, which is suitable for masonry, can be developed according to the same internal
variable formulation and enjoys similar properties. Some numerical results are presented and compared
with the response of a masonry shear wall subjected to pseudodynamic tests.
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1. Introduction

In previous papers (Martin and Reddy 1988, Martin and Nappi 1990, Nappi 1991 and 1995,
Rajgelj, et al. 1993) an internal variable approach for elastic-plastic analysis was discussed, by
pointing out convergence properties of algorithms based upon the backward difference time integra-
tion scheme. In this area, both the finite element method and the boundary element method were
considered. Basic convergence properties, which are of interest for incremental elastic-plastic
analysis, essentially depend upon the hypothesis of using elastic perfectly-plastic or elastic hardening
materials, ie., materials whose behaviour is stable in Drucker’s sense (Drucker 1964).

Some emphasis, however, was also given (in the case of finite element discrete models) to
the possibility of using the same approach and obtaining the same convergence properties also
in the presence of soffening materials (ie., unstable materials) provided that dynamic actions or
viscous effects be taken into account. Indeed, inertia forces, damping and viscosity tend to intro-
duce a stabilising effect. In this way, sufficiently small time increments may ensure convergence
of convenient algorithms.

The above concepts are briefly discussed and revisited in the present paper. Next, they are
applied to an elastic plastic numerical model, that is characterised by a piecewise linear yield
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surface, accounts for damage effects and is suitable for masonry structures. More specifically,
the model presented in the paper is meant to describe the macroscopic behaviour of masonry
in a simple way and to provide satisfactory results also in the presence of cyclic and dynamic
loads. Of course, the simulation of masonry response is a highly difficult task and more sophisti-
cated models may be desirable. A large selection of such models is currently available (see,
e.g, Gambarotta and Lagomarsino 1997, Lourenco 1996, Maier, et al. 1985 and 1991, Page 1978,
Pande, et al. 1989, Papa 1996, Papa and Nappi 1997). However, as models become more and
more complex the estimate of the relevant parameters often becomes a critical task. A reasonable
estimate of such parameters may become even impossible in the case of ancient masonry. As
a consequence, there seems to be practical interest in the development of models that represent
a reasonable compromise among four key requirements: (i) easy implementation, (ii) estimate
of the relevant parameters by means of traditional, simple tests, (iii) possible application to
dynamic loads and (iv) capability of describing the overall structural response of masonry struc-
tures in terms of displacements, average stresses and damage pattern.

In the following sections, the general features are described of the internal variable approach
utilised in the paper and a possible extension applicable to masonry structures is discussed.
Next, experimental data provided by a pseudodynamic test on a masonry shear wall are compared
with the numerical response obtained by using a simplified (elastic, perfectly plastic) version
of the model.

2. An internal variable approach

The internal variable approach followed in the paper was originally developed by Martin
(1975, 1981) in the field of Plasticity. The relevant formulation does not make explicit use of
yield functions, while a central role is played by the dissipated energy. The basic concepts are
casily presented by considering a simple mechanical model subject to uniaxial stress states and
concerned with an elastic plastic material characterised by linear kinematic hardening. The model
is depicted in Fig. 1. It consists of two elastic springs and one slip device. The stress x acting
on the slip can not exceed given thresholds (x* and x ). as shown in Fig. 2. When y= x"
or y=yx , unlimited inelastic strain rates A are possible. A dissipation function D)= )(/1 can
also be introduced (cf. Fig. 3). The slopes of the straight lines are such that y= dD/dA\ when
A#0. On the other hand, ¥ may attain any value between y~ and y* when A=0. Therefore,
the response of the model shown in Fig. 1 is governed by the equations

o=k (=), —y=—k (e—A+hA with y=dD/d\ if A#0. yEdD() if A=0 (lab.cd)
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Fig. 1 Stress vs. strain plot for a linear hardening material (a) and mechanical model (b).
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Fig. 2 Stress vs. plastic strain rate plot for a slip device.
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Fig. 3 Dissipation function for a slip device.

where k and 4 are constant, while the inelastic strain A represents an internal non measurable
variable. In addition, generalised stresses o and strains ¢ are assumed, so that their product has
the physical dimensions of work. Note that similar equations are applicable in the case of nonlinear
hardening. We only need to introduce a potential function ¥{A), such that the derivative (dV/dA)
denotes the stress acting on the left spring of Fig. 1. Of course, linear hardening simply implies
MA)=1/2hA%

Similar equations can be obtained in the case of isotropic hardening and of multiaxial stress
states, as discussed by Martin and Nappi (1990). The governing equations concerned with multia-
xial stresses are substantially identical to Egs. (1), but convenient matrices (k, #) and vectors
(0. £, A) need to be introduced instead of scalar quantities. Thus, the relevant equations
read

o=k (e=A), —X=—k (e—A)+h A with x=3D/d) if J#0, x€dD(}) if A=0 (2a, b, ¢, d)

Next, it is can be noted that discrete finite element models lead to governing equations which
are formally identical at the structural level. Indeed, we may focus on m strain points where
the constitutive law is to be enforced. At these points we can assume fictitious slip devices
subject to internal forces X ; conjugate to the internal variables X, (j=1, ... m). When X attains
convenient values, non-zero rates A, are allowed. The relevant dlss1pat10n rate will be D= X j
In addition, X;,= dD/ﬁ/l if A #0. Otherw1$e X; turns out to represent a subgradient of D(/l )
when /1 =0. Thus, by collectmg all the subvectors X, into a vector X, the governing equations
Loncemed with the incremental elastic plastic problem read
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AF=K Aut+L AL, —Xx=L" AutE AA+{VI/AM+L'u,+E A, (3a, b)

with
X, =dD/0AA, if AA=0, X,€dD(AA) if AL=0 3c, d)

The above equations are written by assuming a load history subdivided into time steps during
which finite increments of external actions (AF), free nodal displacements (Au) and internal
variables (AA) take place. The vectors u, and A, denote values attained by nodal displacements
and internal variables at the beginning of the current interval. In Eq. (3a) K is the structural
stiffness matrix, while L transforms internal variables into equivalent nodal loads. In Eq. (3b)
E is a block diagonal matrix that collects the material stiffness matrices E; at the m strain
points. Each matrix E; is analogous to the matrix k in Eq. (2b). The gradient {dV/JAA} implies
the general case of nonlinear hardening. When hardening is linear, that gradient becomes {H
A, +H AMA, where H=diag[H,] is symmetric and positive definite. Next, by considering Eq.
(3¢), it is worth noting that, in principle, X ;= dD/JA ;. However, by applying the backward difference
time integration scheme, which implies straight paths in the space of the inelastic strain increments,
we obtain JD/OAA= dD/d,
Eqgs. (3) represent the optimality conditions for the convex, unconstrained problem

min {% Ad" K Au+Ad” L Ai-l—% AN E AL
+D(AN+ VAN — AF" Au+ AN L™ u,+ANE A} 4

This extremum property has interesting applications under a computational point of view, since
it allows one to obtain a simple, straightforward proof of convergence for classical algorithms
based upon a prediction-correction technique (Martin and Reddy 1988, Nappi 1991).

Convexity of the function V{AA) is a basic requirement in order to obtain a convex objective
function in the above problem. In the case of sofiening materials and, hence, of non-convex
N(AA) functions, a regularisation technique can be adopted, which requires a fictitious viscosity.
To this aim, we can consider the model of Fig. 1 and introduce a dashpot in parallel with
the left spring and the slip device. Thus, the governing equations becomes

o=E(e—A)., —y=—E(e—A)+hA+zA, y=dD/dA if 30, y=dD(A) if A=0 (5a, b, ¢, d)

where z is a constant parameter that characterises the dashpot response. The above equation
can be rewritten in order to include multiaxial stress states. As we did in the case of Egs.
(2), we need to introduce convenient vectors and matrices, including a matrix z instead of the
scalar quantity z. Next, at the structural level, we derive the equation

AA
—X=LTAutE AAtZ—o + {oVIOAM+Lu,+E 4, (6)

that replaces Eq. (3b) and must be used together with Eqs. (3a, ¢, d). Thus, an optimisation
problem can be considered, which is fully analogous to the problem (4). but is characterised
by the new term (1/2A4r AA" Z AA). Of course, a positive definite matrix Z and a sufficiently
small time interval Ar may succeed in making the new objective function convex even if M(AA)
is not convex. When the viscous element is utilised with the purpose of developing a regularisation
technique, we can proceed as follows. First, for any given increment of the external actions,
we solve the problem governed by Egs. (6) and (3a. c¢. d). In this way. non-zero plastic strain
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rates {AA/At} are found. Next, we maintain the external actions constant and we continue to
solve the same problem until the vector {AA/Ar} is practically zero. Thus, we find the same
final conditions which are typical of a traditional elastic plastic analysis performed without
considering time-dependent effects. At this stage, the subsequent increment of the external actions
can be considered.

In the presence of softening, we may also derive a convex unconstrained problem such as
problem (4) by considering dynamic actions. It can be proved that convexity may depend upon
the length of the time step Az, which can often be made small enough to maintain an extremum
property and, hence, to ensure convergence. These topics will be briefly summarised in what
follows, since the relevent results will be needed in the next section.

In the case of structural dynamics, instead of Eq. (3a) we can write

{F,+ AF}=K {u,+Au}+B {u,+Au}+M {i,+Au}+L {A,+AA} (7)

where B and M are the damping matrix and the mass matrix, while # and & denote a velocity
vector and an acceleration vector. As usual, F,, u, and u, represent values at the beginning
of the current time step, while Au and Au are convenient increments. Next, by setting

Au=u(*) A, Au=u(t*) A, =1, At/2 (8a, b. ¢)
we obtain the equation
AF*=K* AutL AA (9a)
with
k=Kt e 2 B ap=ared i uf w2 B b, ©)
Ar At At

Thus, Egs. (9a) and (3b) become the governing equations for the incremental dynamic elastic
plastic problem. Even when F{(AA) is not convex, such equations can often be interpreted as
optimality condition of a convex, unconstrained problem fully analogous to the problem (4), provi-
ded that K* and AF* be used instead of K and AF. Indeed, in the presence of softening and,
hence, of non-convex V{AA) functions, we can consider the problem

min {710!—2 AuT K Aut A’ L A&+% Au” R Ang% AN E AL

+_§_L1—2a2 AN E AA+D(AN+VAD— AP Au+ AN LT u,+ ANE A} (10a)
with

R=K*——7 K (10b)

Let us now consider the quadratic form

1
28

é— AV Q A== A K AutAd L A&+%a2AI E AL (11a)

with
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1 K L
—| L T T —| & L
A) [a AglaAj_], 9 [QT E] (11b, ¢)
Note that Q is positive semidefinite, since the quadratic form on the left hand side of Eq. (11a)
represents the strain energy of a discretised elastic, perfectly plastic system. Therefore, the objective
function of the problem (10a) is convex if we can find a parameter ¢ that makes the mat-

rx

A N Al
- £+ 5 e 00 0 5| -

at least positive semidefinite. Finally, Egs. (9b) and (10b), allow one to define an upper bound
for the parameter @ beyond which the matrix R is not positive definite any more. Details on
this issue are given by Rajgelj, er al (1993). The same problem was originally discussed by
Comy, et al (1992) by considering a traditional approach centred on yield functions (rather than
dissipation functions), nonlinear constrained (rather than unconstrained) optimisation problems,
linear kinematic hardening and Mises’ yield condition.

3. A numerical model for masonry

Here, a material model is considered that belongs to the class of models discussed in the
previous Section. Hence, the same extremum properties and convergence properties are maintai-
ned. The model has been developed for masonry subjected to plane stress conditions. Thus,
three stress components will be considered (say oy, 0» and o), with oy normal to the mortar
beds). Tensile stresses will be assumed as positive. At first, the model will be introduced with
reference to a traditional approach based upon yield functions. More specifically, a piecewise
linear yield locus will be considered in the space oy-0-01,. Fig. 4 shows a partial view of
the surface. Eight yield planes are assumed in the half space 0,,20. One plane (shown in dark
grey) takes into account possible slips along horizontal joints by assuming Coulomb friction.
This plane is normal to the plane 0;,=0 and its equation reads

Fig. 4 Scheme of the piecewise linear yield surface.
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on=c+¢ o (13)

where ¢ and ¢ represent the cohesion and the tangent of the friction angle.

Similarly, eight yield planes are assumed in the half space 0,<0, which are symmetrical
with respect to the plane 6,,=0. Altogether the sixteen planes define a closed elastic domain.
Convenient evolution laws can be assumed and softening effects can be included.

With reference to the formulation introduced in the previous Section, a slip device is assumed
at each strain point. In addition, an associated flow rule is considered (i.e., in¢lastic strain increme-
nts are normal to the yield planes). Thus. the inelastic strain increment AA; at the jth strain
point (j=1, .., m) becomes

AL=N; Ay, with N=[n/|n?|..|n;"] (14a, b)

where n} represents the unit outward vector normal to the kth plane (k=1, ... Y and Y=16
in this case). The vector Ay; collects sixteen plastic multipliers Au/. Of course, no summation
1s implied in Eq. (14a). Then, the dissipation function related to each slip can be expressed
in the form

D:Zk=l.16 ’,’/k A,U_;'k (15)

where r* denotes the distance of the kth plane from the origin of the space 61-02-01.

The evolution law for the yield planes can be defined by using one function M{(Ay") associated
to each plastic multiplier Ay*. For instance, r*-Ay* plots such as the ones depicted in Fig.
5 can be obtained by introducing convenient functions M(Ay"). If the rf-Ayt relationship is
piecewise linear, the plastic multipliers are found by solving a linear complementarity problem
(Maier 1970, Maier and Nappi 1989). After determining the plastic multipliers, we can compute
the inelastic strain increments AA; through Eq. (14a). Such increments can be split in two parts,
one non-reversible (plastic strain), one associated to damage (i.c., to a decrease of stiffness and
strength). Thus, at the end of each time interval the total strain g; at the jth strain point
reads

£ :ﬁjo + Q J AQJ + Aﬁ.fp+ Aﬁ_lp with AﬁjD = AQ j {Q_IO + AQ /} (16& b)

where ¢/, o/ and C; denote the total strain, the stress and the compliance matrix at the beginning
of the current time step. On the other hand. Ag;, Ae/, Ae¢” and AC; represent increments
of stresses, plastic strains, additional strains associated to damage and compliance matrix. The

K () A rjk ’ (b)
4 i *
,atn(h”)

—
-}
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Fig. 5 Distance of a yield plane from the origin as function of the relevant. plastic multiplier (a) and
piecewise linear approximation (b).
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initial compliance matrix is related to the stiffness matrix in Eq. (3b): C;=[E ;17". In this context,
E; is to be interpreted as material stiffness matrix at the beginning of the current step (to be
updated at the end of each time interval).

In order to define the matrix AC; we can proceed as follows (Papa and Nappi 1997). First,
we introduce a relationship between the vectors Ag” and o*={c’+ Ag,}, which denotes the
final stress. Hence, by considering the Eucledean norms |Ag”| and |o*|, we can set

Ae P=|Ag P|n = plo*in .= AC,; c*=AC,|c*|n 17

where n, and n, are unit vectors that give the directions of Ag” and o* while p is the ratio
between |Ag | and |o*|. Next, from Eq. (17) we immediately obtain

AC; n,=p y_e:—p—n P (n.n/]n,— AQ,:—Q—TH (n.nt] (18a, b)

In the case of dynamic structural analysis the piecewise-linear material model leads to the
equations

AFP*=K* Au+L N Ay, —r=N"L" Au+S AAH{V/OAW+N" L u,+N" E 4, (1%, b)
with

rk=0D/dAu" if Aut+0, rfedD(AyY) if Ay=0 (19c, d)

N=diag [N]. S=N" E N=diag [S,]=diag [N/ E, N, (19, 1)

It should be noted that no summation is implied in Eq. (19f) and that r in Eq. (19b) collects
the m*Y scalar quantities /. In addition, when the r*-Ay* plots are piecewise linear, the gradient
{oV/dAu} is made of the m subvectors

pi=p/+H; {Au,— Ay} (19g)

with j=1, .., m. Thus, the scalar components of p; give (as functions of Au; and for each
yield plane at the jth point) the change of the distance from the origin of the stress space
o11-02-01>. The change of distance concerned with the kth plane at the jth point can be denoted
as p*. For any Ay', there is a characteristic slope of the rf-Ay* plot, say A* (cf. Fig. 5b). The
branch characterised by the slope A* starts at the point where Ay® and p' attain convenient
values Au* and p*. Therefore, as suggested by Fig. 5b, we can consider the equation pf= p*+h*
(Auf-Ap*), in which the scalar quantities p* and Ag* represent (for a certain value of Ay')
the kth entries of the vectors p/ and Ay, in Eq. (19g), while #* corresponds to the kth diagonal
term of the matrix H,

When hardening occurs, we can assume diagonal matrices H,. Clearly, during the hardening
phase all the properties pointed out in the previous Section continue to hold, since Egs. (19a,
b, ¢, d) represent the optimality conditions for the convex, unconstrained problem

min B— Au” K* Au+Au” L N AA+% Ay S Au

+D(AW+ AW —{AFT Au+ Ay NTL" u,+Au” N' E /10} (20)

When softening starts to occur at a strain point (i.c., when the distance of one plane from
the origin starts to decrease), we can assume the matrix
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where 7, <h,<---<hy represent, for each r*-Ay* plot, the steepest slopes of the softening branches.
On the other hand, the scalar quantities Ak, (k=1, .., Y) denote the increments to be added
in order to obtain the correct slopes along the main diagonal of the matrix H; (depending upon
the particular value attained by the plastic multiplier Ay"). Obviously, Ak, will always be non-
negative for any k.

The matrix H' in Eq. (21) can be expressed in the form

H'=[4:-B1+[4>B,]++[dy_-By_ ] +4, (22a)
where
[4-B1=(MT [h] MI-[M,_ 0" [h] (M,..] (22b)
M=[mIm?-|m)], h,=diag [h] (22¢. d)

with s=1, .., Y. In Eq. (22¢) m/* coincides with n/* if s>k, while m*=0 if s<k. Similarly, m},
coincides with n/ if (s+1)2k, while m*,,=0 if (s-1)<k. Therefore, by noting that M,=N,, Eq.
(22a) becomes

H'=[N]" [h] INJ+ M, [hy—h] IMo]+-+[My]" [hy—hy—] [My]
=[N, [h] [N]+H; (23)

In the above equation, the first product on the right hand side gives a negative semidefinite
matrix, while the other products lead to positive semidefinite matrices, since 7, <h,<---<hy.

At this stage we can recover the convergence property found in the previous Section. Indeed,
simple manipulations (already discussed above) allow us to transform the optimisation problem
(20) into the problem

min {—21;2 Au" K Aut+AuT L N Ag+—;— Au” R Au+t %az A S AutD(Aw)

A+ YT A S A APY Aut A N7 LTt A N E 4
with R defined in Eq. (10b). Further manipulations (fully analogous to those considered in the

previous section) show that the objective function of the problem (24) is convex if the mat-
rix

2
[(1—(22) s+—29V ]:diag [(1-) S,+H, +H}? (25a)

OAu JdAY

is made at least positive semidefinite. As a consequence, we simply need to make the matrix
[(1—a) E;+h,] at least positive semidefinite, as suggested by the equation

(1—a) S;+H/+H=[N]T [(1-&) E/+h] (N]+H/+H? (25b)

in which A}, defined in Eq. (23), and H/ are at least positive semidefinite.
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Fig. 6 Numerical response and experimental data concerned with a pseudodynamic test on a brick
masonry shear wall.

4. Numerical example

A simplified version of the model was utilised for the numerical simulation of a shear brick
masonry wall subjected to pseudodynamic tests at the University of Trieste in the framework
of a research project originally supported by the European Commission - Environment Progra-
mme. An elastic, perfectly plastic behaviour was assumed, without taking into account hardening,
softening and damage effects. The dimensions of the masonry wall were 146X200X39 c¢cm. It
was constrained at the lower edge and no rotations were allowed to the upper edge. Along
this edge a constant compression load was applied and horizontal displacements were imposed,
as required by the computer package developed for the pseudodynamic test. The El Centro
record was utilised in order to simulate a ground acceleration. The masonry panel was discretised
by sixteen isoparametric eight-node elements and the constitutive law was enforced at four strain
(Gauss) points in each element.

Fig. 6 compares the numerical results and the response during one pseudodynamic test. The
horizontal displacement of the top edge is reported as a function of time. Reasonable matching
can be noted, in spite of some discrepancy due to the crude approximation introduced by the
elastic, perfectly plastic behaviour of the simplified model.

5. Closing remarks

A numerical model suitable for masonry and, in general, for rock-like materials has been
presented. The model combines concepts developed in the context of Plasticity and Damage
Mechanics. An internal variable approach has been applied, that gives governing equations which
are centred on the use of dissipation functions, while yield functions (and consequent inequality
constraints) do not explicitly appear. Thus, extremum properties are derived that involve convex
unconstrained objective functions (instead of constrained optimisation problems, found with more
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traditional approaches based on the use of yield functions). In view of these properties, converge-
nce can be proved of convenient prediction-correction algorithms, that use the backward difference
time integration scheme. It has been shown that hardening or elastic, perfectly plastic materials
are required for a straightforward proof of such properties. An extension, however, is possible
in the presence of softening materials by exploiting fictitious viscous elements and (in the case
of dynamic systems) inertia forces.

Next, the paper discusses the main features of the model proposed for masonry. It is characteri-
sed by piecewise linear yield surfaces and the above properties have been extended in such
a way that they become applicable to the model presented here and, in general, to piecewise
linear numerical models.

Finally, a simplified version of the model has been used to compute the response of a brick
masonry shear wall subject to ground acceleration. The numerical results have been compared
with experimental data obtained by performing a pseudodynamic test on the same shear wall.
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