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Abstract. The material-based homogenization design method generates arbitrary topologies of initial
structural design as well as reinforcement structural design by controlling the amount of material available.
However, if a small volume constraint is specified in the design of lightweight structures, thin and slender
structures are usually obtained. For these structures stability becomes one of the most important require-
ments. Thus, to prevent overall buckling (that is, to increase stability), the objective of the design is
to maximize the buckling load of a structure. In this paper, the buckling analysis is restricted to the
linear buckling behavior of a structure. The global stability requirement is defined as a stiffness constraint,
and determined by solving the eigenvalue problem. The optimality conditions to update the design
variables are derived based on the sequential convex approximation method and the dual method. [llustra-
ted examples are presented to validate the feasibility of this method in the design of structures.
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1. Introduction

Material-based topology optimization using the homogenization method —homogenization de-
sign method —has been studied quite extensively for continuum structural design in recent years
(Bendsge and Mota Soares 1993). Since the homogenization design method is applied to the
generalized shape and topology design of optimum structures, different design criteria are consid-
ered depending on the design application. Such criteria include minimizing a mean compliance
in the static problem (Bends¢e and Kikuchi 1988, Suzuki and Kikuchi 1991), maximizing eigenfre-
quencies in the dynamic problem (Diaz and Kikuchi 1992, Ma, er al 1995), and maximizing
absorbed energy in the crashworthiness problem (Mayer, er al. 1996). The structural layout of
these design problems is controlled by the admissible amount of material within a specified
design domain. It is observed that with a low volume constraint the homogenization design
method usually results in a thin and slender structure which can be identified as a combination
of trusses, frames, and beams. For these structural elements, the stability requirement is one
of the most important measures that the structural designer must take into consideration.

As far as the optimum structural design for stability is concerned, the buckling load is consid-
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ered as the stability constraint for minimum weight design in the traditional sizing optimization
problem (Knot, et al. 1976). In this work, the generalized eigenvalue for linear stability is defined
and the optimal design is obtained by using optimality criteria based on an iterative scheme.
An alternative formulation, maximizing the buckling load for constant volume of material, is
proposed to optimize a two-bar and a four-bar shallow truss for nonlinear stability (Kamat,
et al. 1984). However, it is known that in these previous works, only the physical dimensions
of structural members are allowed to change.

Meanwhile, a significant weight reduction can be achieved by dealing with topology —the
number of holes and connectivity—of a structure. Using material-based topology optimization,
Neves, et al. (1995) presented a computational model to design a two-dimensional structure with
a buckling load criterion. In their work, the design domain is composed of a porous material
with square holes, which represents only isotropic material behavior. A single loading condition
is considered to calculate buckling load. and generalized gradients are employed to deal with
the nonsmooth optimization problem.

In this paper, an optimum reinforced structural design method considering a stability criterion
is proposed to generate a structure with a much higher buckling load under multiple load cases.
To evaluate orthotropic material properties, rectangular holes and orientation are introduced
to micro-structures in the design domain. The linearized buckling problem with a finite element
approxima-tion is formulated to analyze buckling behavior. The optimality criteria are presented
by the convex approximation method and the dual method with the Lagrangian function of
the optimization model. Finally, this method is applied to a two-dimensional as well as a three-
dimensional design problem.

2. Homogenization design method

The homogenization design method entails finding the optimal material distribution within
the elastic design domain while the criterion and constraints are satisfied. As shown in Fig.
1, the design domain 2 is composed of a porous material containing infinitely many microstructu-
res, and the amount of material available is specitied. In the design domain, boundary conditions
are given and loading conditions, including the body force f and the traction ¢ on the boundary
I, are applied. The porosity of a microstructure is represented by a rectangular hole in a two-
dimensional (2D) structure and a body hole in a three-dimensional (3D) solid structure as shown
in Fig. 2. Microstructure is classified as the void which contains no material (hole size=1),
the solid medium which contains isotropic material (hole size=0), and the generalized porous
medium which contains orthotropic material (O<hole size<1). The volume of a microstructure
is defined as p=pya+b—ab) for a 2D structure and p=pl1—(1—a) (1—b) (1—c)] for a 3D
structure, where p, is the mass density.

Since the porosity is different over the design domain, the theory of homogenization is employed
to evaluate equivalent elastic material properties of microstructures (Guedes and Kikuchi 1990).
In homogenization theory, a structure is assumed to be composed of periodic microstructures,
and the equivalent material properties are estimated by a limiting process that involves dimini-
shing the microscopic size. In addition, the orientation of material axes must be considered
to define mate-rial properties. A rotation angle € is used in a 2D structure and the Euler angle
{6, w. ¢ is used in a 3D structure to represent the orientation. Thus, elastic material properties
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Fig. 2 Microstructures used in the homogenization design method; (a) 2D structure, and (b) 3D structure.

of a structure can be defined by the dimensions and orientation of microstructural holes.

During the optimization process, microstructures are changed between the void and the solid.
This implies that material can be moved from one part of the structure to another if the total
amount of material available is specified. Thus, the optimal shape and topology design of structu-
res can be regarded as finding an optimal material distribution within a prescribed admissible
structural domain.

3. Problem formulation

In a typical design problem maximizing the stiffness of a structure, the design domain is
discretized into finite elements with the location of supports and applied loads as shown in
Fig. 3(a), and the optimal structure is obtained by using a prescribed amount of material. As
the amount of material is reduced, the homogenization design method tends to generate a thinner
and more slender structure as in Fig. 3(b). The post-processed structure shown in Fig. 3(c) is
considered as a two-bar truss structure. For this kind of structure, stability becomes one of the
most important requirements. Thus, the post-processed structure, called a core structure, is used
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Fig. 3 Structural design using the homogenization design method; (a) stiffness problem, (b) opti-mal
stiff structure, and (c) buckling problem.

as the starting point for reinforcement structural design subject to the buckling load. The core
structure £2€ is filled with a solid medium of isotropic material and §2% is the new design
domain where reinforcement material is distributed. The buckling load and mode shape of the
core structure are modified by adding reinforcement material. Thus, this approach results in
finding the optimal material distribution of reinforcement in 2% that maximizes the buckling
load of a structure.

It is often observed that the structure under the quasi—static loading responds linearly until
the critical load at which buckling occurs. Thus, the buckling problem can be defined as determi-
ning the critical load associated with structural instability for prescribed loading conditions. There
are two distinct instabilities which include the local buckling for an individual structure member
and the overall buckling for the whole structure. Only the overall buckling problem (that is,
the geometrically nonlinear problem) is considered in this work, and it is also restricted to
the linear buckling problem where small prebuckling displacements are assumed and equilibrium
in the initial state is of interest.

The method for analyzing the linear buckling problem is based on the displacement method
of the finite element model (Zienkiewicz and Taylor 1989). Introducing Green-Lagrange strain,
which is valid whether displacements or strains are large or small, the general strain can be

written as

|| ey, e 1w

ox 2\ ox 2\ oJx 2\ ox

v L(ﬂ)@i(ﬁ +L<@>'

(e ) o 2oy ) 2\ ay ) 2 aw ).

6 w A uY, v\, 1w

e\ _ or |, 2< z>+2< . +2<8z> | W

V("] o ow 1<L>(L>+<_&_><_@_>+<ﬂ><ﬂ>
Ve 0z dy ay )\ 0z oy )\ oz dy )\ oz
) | w ., du du _@) (L)(L) (i&)ﬁz
ox * 0z 0z Ox + z ox + 0z X
u v u du (v v [ dw) dw
o o (o s P83 (3 5

where all derivatives of displacements «, v, w are computed in the fixed cartesian system of



Optimal reinforcement design of structures 569

coordinates x, y, z. By substituting the nonlinear strain-displacement relation into the principle
of virtual work, the discretized system equations neglecting the large displacement stiffness matrix
can be written as

(K+K)p=F )

where ¢ and F stand for the system degrees of freedom and the applied load, respectively. K
represents the usual, small displacement stiffness matrix which is independent of the applied
force and is unique for a given structure. K, is known as the stress (or geometric) stiffness

matrix defined as
c00
Ko:f G'|0 oc0| GdV 3)
v 00oc

where G is obtained from the following relation between appropriate differentiation of shape
functions and nodal displacements ¢,
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and the stress matrix, which depends on the stress level,

O Ty T
o= o T (5)
Sym o.
is determined by equilibrium equations of the multiple loading problem written as
Ko'=F =12 ..p (6)

where F' is applied load vectors, ¢' is the corresponding deformation vectors, and p is the number
of loading cases. Here the stress level is taken to be the maximum value (that is, ?;lfg o’)
among stresses evaluated in each loading case.

When a reference level of loading F,, is applied, the corresponding stress stiffness matrix
(K,).r can be obtained by carrying out linear static analysis. For another load level AF,, where
A is a scalar multiplier, the stress stiffness can be defined as A(K,), where the distribution
of stresses is not changed. As buckling displacement d¢ takes place from a reference configuration
¢, there is no change in the externally applied load. Accordingly, when the onset of overall
buckling stability occurs, the relation is given by

[K+A(K)) 0=[K+AK)ni (¢+de)=AF,, (7)

By subtracting the first equation from the second equation, Eq. (7) yields the following eigenvalue
problem:

K+ A(K,),r] dop=0 (8)

where eigenvalues A give critical load factors and eigenvectors d¢ associated with A represent
buckling modes. Among eigenvalues, only the smallest positive eigenvalue A, is of interest, and
hence, the buckling load of a structure is given by A/F.

The formulation of this eigenvalue problem is similar to that of the free vibration eigenvalue
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problem. The difference is that only the fundamental buckling mode is usually of concern in
the linear buckling problem whereas all of the modes within a certain frequency range is of
concern in the vibration problem. In addition, the stress stiffness matrix K, in the linear buckling
problem is not always positive definite whereas the mass matrix M in the vibration problem
is usually of full rank and positive definite.

4. Optimization problem

The design domain, including a core structure and a reinforcement region, is discretized by
N finite elements. 4-node (2D) and 8-node (3D) nonconforming elements (Hughes 1987) are
utilized to attain improved behavior in bending situations. Thus, the design variables are hole
dimension x;(i=1, .., n,) and orientation @.(i=1, .., ng) of elements, where n, represents the
number of size design variables (n,=2N for the 2D problem, n,=3N for the 3D problem) and
ne the number of orientation design variables (ng=N for the 2D problem, ng=23N for the 3D
problem).

The design goal is to find the best distribution of material that avoids overall buckling. To
maximize the buckling load, the optimization problem can be described in a discretized form
as follows: Determine x and @ for a prescribed amount of material V, that

maximize A, or mimimize (—A;)

x, O x, © )

subject to Z p<V, (10)
i=1

and 0< x/<x<x4<1 (11)

including equilibrium equations and the eigenvalue problem, where p; is the element volume,
and x/ and x;* represent the lower and the upper values of the size design variable, respectively.
The Lagrangian function associated with the optimization problem is given by

L:—A,+K(Z p— > X La/x!—x)+ a e, —x)] (12)

where A, ¢/, and ¢ are Lagrangian multipliers with x>0, />0 and >0. Here, to make the
optimization problem convex, a shift parameter u is introduced into the objective function and
the Lagrangian function can be written as

(Z pi— )+A(Z pi— ) 2 La/(x! —x)+ a(xi—x/)] (13)

where A= «+ u Using a generalized reciprocal approximation, an intermediate variable is sugges-
ted as the £th power of a design variable and then Lagrangian function is linearized with
a sequential approximate approach in the xth iteration as
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where /" is a constant. The approximated optimization problem can be solved by using the
dual method defined as

max min L* (x, A, @)  subject to A>0, a=0 (15)
A a x

since the approximated Lagrangian function is convex and separable (Haftka and Gurdal 1992).
Thus, the stationarity of L with respect to x; leads to the following updating scheme of size
design variables for the kth iteration as

x/! if ielf={ilz’x}* /(A< x/}
xfH= zhx ARy if il ={il x/<zfx AL x 1 (16)
x/ if ielr={il x<z/x} (A}

where 7 is a given parameter. The scale factor z* and the Lagrangian multiplier A* are defined
as

o\ 5 2
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In order to accommodate the updating scheme, it is necessary to evaluate the sensitivity of
the objective function and the constraint. The differentiability of A, must be guaranteed to obtain
the sensitivity of the objective function with respect to design variable x. For simplicity, the
problem is restricted to the case in which the lowest eigenvalues are not repeated. Thus, the
sensitivity of the objective function can be obtained as

oK
d/l. (d¢)| <“— +A~1 Ox ) (d¢)1

ox () KAd®), (18

where (d¢), stands for the buckling mode corresponding to the buckling load. The stationarity
of L with respect to @, can be regarded as aligning the angle ®; to the principal stress direction
(Pedersen 1989). The overall procedure for optimization is shown in Fig 4.

5. Examples

In order to show the optimal reinforcement design subject to the buckling load, two examples
are provided. The first example illustrates finding the optimal reinforcement configuration of
a plane stress 2D structure, and the second is for general 3D reinforcement structure design.
The isotropic material has the property of Young's modulus £=100, Poisson’s ratio v=0.3, and
mass density p=7.56X107".

5.1. 2D example

Fig. 5 (a) shows the square design domain for the stiffness problem under compressive multiple
loadings (L, and L,). With 1,600 (40X40) QUAD4 finite elements discretization and 30% volume
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Fig. 5 Design domain of 2D problem; (a) stiffness problem, (b) optimal stift structure, and (c) buckling
problem.

constraint, the homogenization design method generates a frame—like structure, in which the
stability criterion is important, as shown in Fig. 5 (b). In the buckling problem, the optimal
stiff structure is regarded as a core structure £2¢, which is not changed in the optimization
process, and the inside domain of a core structure is specified as reinforcement region 2F in
Fig. 5 (¢). A uniformly perforated design domain (¢=5b=0.2 and 6=00) is assumed as an initial
configuration, and the volume constraint is given as 40% of total material including a core
structure and reinforcement region. Material distributions during the optimization procedure are
shown in Fig. 6, and the corresponding buckling mode shapes are illustrated. It is seen that
reinforcement is added to resist the largest deformations in the buckling mode shape. Finally.
the optimal reinforced structure is generated in Fig. 7 (a), and it can be interpreted as a combina-
tion of cross frames. Fig. 7 (b) shows the convergence history of the objective function and
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Fig. 7 Results of 2D problem; (a) optimal reinforced structure, and (b) convergence history.

the constraint function. The buckling load of the optimal reinforced structure is increased by
about four times compared to the initial structure of uniform material distribution, and the
volume constraint is satisfied.

5.2. 3D problem
A simple table-like structure is chosen as a core structure £2¢ at the beginning and the interior

space is assigned as a reinforcement region £2% as shown in Fig. 8. The whole design domain
is discretized by 1.000 (10X10X10) HEXAS finite elements, and a distributed force is applied
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Fig. 9 Material distributions of 3D problem.

to the top surface of the structure. The prescribed amount of material, including a core and
a reinforcement, is constrained with 40% of total material available, and the reinforcement design
domain is initially considered as uniform material distribution in which size design variables
are set to 0.1 and the Euler angles are assigned to zero. Fig. 9 illustrates the history of the
structural generation for optimal reinforcement. The material is moved from one part of the
reinforcement domain to another part, and converges to the final optimal reinforced structure—a
supporting structure—shown in Fig. 10 (a). The convergence history of the objective function
and the constraint function is presented in Fig. 10 (b). It shows that the proposed method generates
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Fig. 10 Results of 3D problem; (a) optimal reinforced structure, and (b) convergence history, and (c)
cross sections of the reinforced structure.

the reinforced structure of a higher buckling load and satisfies the volume constraint. Several
cross-sectional views in Fig. 10 (¢) are provided to identify the reinforced structure.

6. Conclusions

The topology design methodology associated with a homogenization method is proposed to
find the best configuration of structural reinforcement of a structure subject to the buckling
load. To analyze the buckling problem, linear buckling behavior is assumed, and the optimization
problem is formulated to maximize the buckling load while the amount of material is specified.
The sequential convex approximation method is utilized to derive the optimality conditions.
The results of the optimal reinforced structure design indicate that the buckling criterion can
be incorporated into the homogenization design method. Even though the linearized buckling
model has limitations in estimating the actual collapse of structures, the buckling mode can
be utilized to detect the imperfection of structures. Therefore, this method can provide the structu-
ral designer with an effective tool for designing reinforcement structures.
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