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Ultimate behavior of RC hyperbolic
paraboloid saddle shell

Chang-Shik Mint
Ocean and Civil Engineering, Cheju National University, Cheju 690-756, Korea

Abstract. The ultimate behavior of a reinforced concrete hyperbolic paraboloid saddle shell under
uniformly distributed vertical load is investigated using an inelastic, large displacement finite-element
program originally developed at North Carolina State University. Unlike with the author’s previous study
which shows that the saddle shell possesses a tremendous capacity to redistribute the stresses, introducing
tension stiffening in the model the cracks developed are no longer through cracks and formed as primarily
bending cracks. Even though with small tension stiffening effect, the behavior of the shell is changed
markedly from the one without tension stiffening effect. The load-deflection curves are straight and
the slope of the curves is quite steep and remains unchanged with varying the tension stiffening parame-
ters. The failure of the shell took place quite suddenly in a cantilever mode initiated by a formation
of yield lines in a direction parallel to the support-to-support diagonal. The higher the tension stiffening
parameters the higher is the ultimate load. The present study shows that the ultimate behavior of the
shell primarily depends on the concrete tensile characteristics, such as tensile strength (before cracking)
and the effective tension stiffening (after cracking). As the concrete characteristics would vary over the
life of the shell, a degree of uncertainty is involved in deciding a specified ultimate strength of the
saddle shell studied. By the present study, however, the overload factors based on ACI 318-95 are larger
than unity for all the cases studied except that the tension stiffening parameter is weak by 3 with and
without the large displacement effect, which shows that the Lin-Scordelis saddle shell studied here is
at least safe.

Key words: reinforced concrete shells; hyperbolic paraboloid saddle shell; nonlinear finite element
analysis; ultimate behavior.

1. Introduction

Reinforced concrete (RC) hyperbolic paraboloid shells can be used for roofs and foundations
where long, column free spans are needed and can be a logical choice for economic and aesthetic
virtues. One of typical form of hyperbolic paraboloid shell with two corners supports is so called
‘saddle’ shape shells that can be reached 24-40 m (80-130 ft) width in square with 76-102 mm
(3-4 inch) of concrete shell thickness (see Figs. 1 and 2). Currently, the design of such a shell
is based on a pointwise limit design method with stresses obtained from membrane or linear
elastic bending analysis (ACI 31895 1995, Akbar and Gupta 1985, Gupta 1981). Not like other
type of structures (Cheng 1995, Choi and Chung 1995), general applicability of the present design
practice for the shell is still not yet established.

Interest in understanding the ultimate behaviors and safety of hyperbolic paraboloid saddle
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Fig. 1 Lin-Scordelis hyperbolic paraboloid saddle sheli (Lin and Scordelis 1975) (inchX254=mm,
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Fig. 2 Edge beam reinforcement (inchX254=mm).
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shells have been accelerated by the collapse of a saddle shell roof in Cheyenne, Wyoming in
1975, 15 years after its construction (ENR 1975). In the previous study, we (Min and Gupta
1994) studied the ultimate behavior of the Lin-Scordelis saddle shell (Lin and Scordelis 1975).
The inelastic computer program we used was developed by us on a Cray Y-MP with implementing
the vector algorithm (Min and Gupta 1992, 1995, 1996), and has incorporated with smeared
rotating crack model (Gupta and Akbar 1984) and layered to account for the effect of bending
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on the cracking of concrete and yielding of steel (Hand. er al. 1973, Lin and Scordelis 1975).
The program was a comprehensively revised version of the program developed originally by
Akbar and Gupta (1985). Without the vector algorithms implemented in the previous program,
we would not be able to perform the mesh convergence study for a cooling tower and a saddle
shell problem (Min and Gupta 1992, 1994). We reported that the Lin-Scordelis saddle shell
at the ultimate can sustain a large live overload (7.47 kPa=156 psf) and behaves quite closely
with the one predicted by the membrane analysis (ACl 1988).

As a follow-up study, Mahmoud and Gupta (1993) modified the program to include the effects
of geometric nonlinearity due to large displacement along with tension stiffening, nonlinearity
of concrete stress-strain curve and the possibility of two orthogonal cracks within the element.
It is the purpose to study the Lin-Scordelis saddle shell with the Mahmoud-Gupta model for
a better understanding of the ultimate behavior and the strength of the shell, which can possibly
be used for establishing a relationship between the design method and safety of the shell. The
Mahmoud-Gupta program migrated to a Cray Y-MP C90 at Systems Engineering Research
Institute (SERI) in Taejeon, Korea and is used in the present study.

The Lin-Scordelis saddle shell has studied by several investigators (Lin and Scordelis 1975,
Mueller and Scordelis 1977, Akbar and Gupta 1986, Cervera, et al. 1986, Min and Gupta 1994).
As discussed in our previous study (1994), only the Mueller and Scordelis’s result (1977) remain
without conflicts, such as numerical problems and too coarse finite element meshes. Mueller
and Scordelis discretized a quarter of the shell by 105 layered triangular shell elements and
the tension stiffening effect accounted is similar to the present study. They used a tension stiffening
parameter, ¥=3.5 in the analysis. They also presented some analyses with long term effects
but did not include the effect of large displacement. Mueller and Scordelis reported that a 7.8
kPa (163 psf) of live load followed by the dead load can be sustained by the shell with a
0.11 m (036 ft) tip displacement at the ultimate.

2. Method of analysis

As stated earlier, the Mahmoud-Gupta program was a modified version of the Min and Gupta’s
program (Min and Gupta 1992) developed on a Cray Y-MP. Additional features they included
are: .
(1) Large displacement effects represented using the Lagrangian approach in which dis-
placements are referred to the original configuration (Zienkiewicz 1977);

(2) Tension stiffening as a linear unloading of the stress-strain curve of concrete in tension
was proposed by Lin and Scordelis (1975) (Fig. 3);

(3) Nonlinearity of concrete stress-strain curve (Liu and Nelson 1972) with the failure envelope
under biaxial stresses based on the strength envelope (Kupfer and Gerstle 1973); and

(4) The possibility of two orthogonal cracks within the element. As before, the smeared rotating
crack mode is included, which was proposed by Gupta and Akbar (1984) with a selective integra-
tion algorithm (Ahmad, er al. 1970, Zienkiewicz, er al. 1971) for 4-node superparametric shell
element to avoid shear-locking behavior. The Mahmoud-Gupta program was migrated with minor
changes to a Cray Y-MP C90 at SERI in Taejeon, Korea and is used in the present study.

Fig. 1 shows the general views, plans, elevations and shell reinforcement of the Lin-Scordelis
saddle shell. The reinforcement and location of the reinforcing steel for the edge beams is shown
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Fig. 3 Tensile stress-strain curve for concrete including tension stiffening effect.

in Fig. 2. The edge beams and the shell modeled by the same shell element, and the edge
beams are placed concentric with the shell as shown in Fig. 2. The edge beam elements are
divided into ten concrete layers and three steel layers; and the shell elements are divided into
ten concrete layers and one reinforcement layer, both direction steels placed at the center of
the cross-section. Considering the previous convergence study (Min and Gupta 1992, 1994) the
most refined model, 64 by 64 mesh (element size=0.38X0.38 m=1.25X1.25 ft) is used in the
present study.

The shear retention factor, =0.1 is used. Reinforcing steel is assumed to be an elastic-perfectly
plastic material both in tension and in compression. Volume change effects, such as creep, shrin-
kage and temperature for concrete are not considered. The solution is driven by displacement
increment (applied at the tip of the shell) that can give a more stable solution, especially near
the ultimate stage. The stiffness matrix is updated at each iteration to minimize the possible
problems associated with abrupt stiffness changes caused by cracking of concrete. 100% of the
dead load for the shell and the edge beam is applied first followed by proportionally increasing
live load. A convergence tolerance equal to 1% of the maximum applied nodal force at any
load step is used.

Only one quarter of the shell (divided by the orthogonal diagonals) is needed to be analyzed
by recognizing two planes of mirror reflection symmetry and by using appropriate constraint
equations for 4-node rectangular elements (Noor and Camin 1976, Min and Gupta 1992). The
numbers of total elements are 1121 with 1285 nodes. The material properties are identical with
the previous study (1992, 1994) and the Mueller-Scordelis’s study (1977). Uniaxial cracking strength,
£,=3247 kPa (471 psi) is used without modification as with the Mueller and Scordelis, which
is comparable with the modulus of rupture based on ACI 31895 (1995). As we will see in
the present study, the saddle shell studied here resisted applied loads by not only membrane
stresses, but also quite large bending moments. Significant stress gradient changes through the
thickness, therefore, can exist, and the stress level at which cracking is initiated is more likely
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based on the rupture beam test than the split cylinder test.

3. Numerical results
3.1. Small displacement analyses
3.1.1. Effects of doubly cracked element and nonlinear concrete stress-strain relationship

It can be expected that the effect of doubly cracked element reduces the stiffness and strength
of the shell somewhat. Including the nonlinearity of concrete stress-strain relationship and the
doubly cracking in the model, the analysis shows that the effects of these added features on
the behavior of the saddle shell are insignificant. The analysis was stopped early due to the
compressive failure of the bottom layer in the edge beam near the support with an applied
live load of 6.70 kPa (140 psf) and a tip displacement of 048 m (1.56 ft), which is about 10%
reduction in the ultimate applied live load than the previous analysis. As we discussed before
(Min and Gupta 1994), the analysis we made was not shown an apparent numerical failure
until a 747 kPa (156 psf) applied load and a 0.61 m (2.0 ft) tip displacement. We stopped
the analysis because the slope of the load-deflection curve toward the end is quite small and
the pattern of concrete cracking and steel yielding shows that the failure of the shell seemed
imminent.

3.1.2. Tension stiffening effect

Mahmoud and Gupta (1993) modeled tension stiffening as a gradual unloading of the concrete
stress-strain curves in tension (Fig. 3). The parameter ¥ is the ratio of the strain at which tensile
strength of concrete becomes zero and the cracking strain of concrete. Thus, a ¥ of unity means
no tension stiffening. Fig. 4 shows the load-deflection curves for the saddle shell with tension
stiffening (¥=5) and without tension stiffening (¥=1). With tension stiffening in the model the
shell behaves very much differently. The load-deflection curve is straight and quite steep in
the slope. As observed before (1994), without tension stiffening the Lin-Scordelis saddle shell
shows continuous redistribution of stresses and reaches a 747 kPa (156 psf) applied live load
at the ultimate. As shown in the figure, the actual load-deflection curve with tension stiffening
goes down after it reaches the ultimate by a 4.84 kPa (101 psf) live load and a 0.085 m (0.28
ft) vertical tip displacement. Similar observation at the ultimate was made by Mueller and Scorde-
lis (1977), also. The flat part of load-deflection curve is for pictorial. It is, therefore, rather contrary
that the ultimate strength of the shell is reduced when including the tension stiffening effect
in the model.

A possible explanation for this unreasonable phenomenon is as follows. Without tension stiffe-
ning the cracks developed on the shell are inherently through cracks as we saw from the previous
study (1994). Therefore, the shell stiffness is significantly reduced by concrete cracking and the
shell is getting flexible. That makes the shell deform more while increasing the applied live
load. Even though the shell has a large deformation, it is unlikely that an analysis has any
problems with a numerical convergency because of neglecting the effect of large displacement
in the model. Therefore, by increasing the applied loads the cracks can propagate into the vast
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Fig. 4 Load-deflection curves for models with and without tension stiffening by small displacement
analysis.

area of the shell as far as the analysis reaches a numerical convergency. In this process the
shell appears that can sustain more applied loads, resulting a large ultimate load and a tip
displacement with no tension stiffening effect. As we will see in the later large displacement
analysis, unbalanced forces generated by the effect of large displacement in the model cause
an early stop in the analysis when the shell has relatively large deformation.

On the other hand, with tension stiffening the cracks are not likely through cracks as we
will see in the later discussion. Therefore, concrete cracking has very little effect on the shell
stiffness and the shell remains stiff in the course of entire loading step. Because of relatively
small tension stiffening effect, deferring a development of yield lines on the shell is rather limited
and subsequently the cracks have little chances to expand in the neighboring elements. Thus,
when relatively small tension stiffening effect (¥=35) is included in the model, the ultimate load
is reduced by 28% to a 4.84 kPa (101 psf) that obtained from the analysis without tension stiffening.
The failure of the shell is quite sudden and the shell shows lack ductility. The analysis with
the tension stiffening shows that the tensile characteristic of concrete is responsible for stress
redistribution capability of the shell. As we will see in the later analyses, increasing tension
stiffening effect will eventually lead to a larger ultimate load than obtained from an analysis
with no tension stiffening éffect.

3.1.3. Load-deflection curves

The load-deflection curves for varying tension stiffening parameters from 3 to 20 are presented
in Fig. 5. As we increase the tension stiffening parameters the load-deflection curves are remain
unchanged except increasing the ultimate load and tip displacement. The load-deflection curves
are straight and fairly steep in the slope. As the parameter of tension stiffening is increased
in the range of 3. 5, 10, 15 and 20, the ultimate applied load is increased from 2.73 kPa (57
psf) to 484 kPa (101 psf) and to 694 kPa (145 psf), 8.38 kPa (175 psf) and 9.62 kPa (201 psf).
The corresponding vertical tip displacement is 0.07 m (023 ft), 0.085 m (0.28 ft), 0.104 m (0.34
ft), 0.116 m (0.38 ft) and 0.128 m (042 ft), respectively. The higher the tension stiffening parameter
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Fig. 5 Load-deflection curves for different values of ¥=3-20 by small displacement analysis.

the higher is the ultimate load. The behavior of the actual load-deflection curves for all cases
goes down after reaching the ultimate like the Y=35 case.

3.1.4. Crack and yield patterns

Figs. 6(a) and (b) show comparisons of the crack patterns for the top and bottom concrete
layers at the last converged step and the following unconverged step for the tension stiffening,
Y=>5. Fig. 6(c) gives the failure pattern by showing the yielded reinforcement at the center of
the element and at the four integration points. The following numerically unconverged step
(right-hand side figures) is presented for the purpose of comparison. Initial cracks are developed
on the bottom concrete layer in the early stage of the loading beside of the edge beams to
adjust the compatibility between the shell and the thick edge beam, which cause a little effect
on the behavior of the shell. Near the tip region the cracks start to develop on the top concrete
layer when 1.82 kPa (38 psf) live load and 0.061 m (0.2 ft) tip displacement is applied. As the
applied live load is increased to the last converged step, which can be considered as the calculated
ultimate loads, the cracks on the top concrete layer developed near the tip have a form of
crescent shapes. These cracks are penetrated only to the 4th concrete layer from the top at
the ultimate, which indicates that bending moment plays a major role to form cracks in these
areas. The cracks do not significantly affect the stiffness of the shell until the failure (see Fig.
4). The cracks are formed mainly in a direction parallel to the support-to-support diagonal.
At the bottom concrete layer no major cracks are developed until the failure except the cracks
near the edge beams, which were formed at the early loading step. No yielding of reinforcement
is observed up to the ultimate.

As we saw from the cracking patterns of unconverged step in Figs. 6(a) and (b), a failure
of the shell is initiated by a formation of yield lines in the concrete layers near the tip of
the shell in a direction parallel to the support-to-support diagonal. When the yield lines are
formed on the concrete layers and generate unbalanced forces, the reinforcing steel starts to
yield. which will finally lead a failure of the shell (Fig. 6(c)). Even doubling the steel yield
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Fig. 6 Crack and yielding patterns at the ultimate and the following unconverged step, ¥=35, by small
displacement analysis.

stress did not delay or stop the formation of yield lines on the concrete layers because of large
unbalanced forces generated from a formation of the triangular-shape edge failure area. The
shell shows a quite sudden cantilever type failure by a formation of yield lines near the tip.
The edge beams do not develop any concrete cracking or reinforcement yielding for the entire
analysis, which shows that the edge beams are really the compression flanges as a negative
moment on cantilever.

3.2. Large displacement analyses

3.2.1. Large displacement effect

A large displacement analysis is performed without tension stiffening effect similarly with
the previous small displacement analysis. The large displacement effect is represented using the

Lagrangian approach in which displacements are referred to the original configuration (Zienkie-
wicz 1977). The large displacement analysis does not converge beyond a live load of 2.15 kPa
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Fig. 7 Load-deflection curves for models with and without tension stiffening by large displacement analy-
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(45 psf) and a tip displacement of 0.177 m (0.58 ft), the point at which the load-deflection curve
is terminated (see Fig. 7). Except early stopping for the analysis with large displacement effect
the behavior of load-deflection curve is quite similar to the curve obtained from the previous
study (Min and Gupta 1994). The shell behaves considerably flexible and ductile as we saw
in the previous small displacement analysis without tension stiffening.

3.2.2. Tension stiffening effect

Fig. 7 shows the load-deflection curves for the saddle shell with tension stiffening (¥=5) and
without tension stiffening (¥=1), both include the large displacement effect. As the large displace-
ment effect is in the model, a larger ultimate load is obtained with tension stiffening, as expected.
A live load of 546 kPa (114 psf) and a tip displacement of 0.088 m (029 ft) is obtained at
the ultimate with the ¥=5. As we saw from the earlier small displacement analysis, the shell
behaves completely different again with tension stiffening effect. The actual load-deflection curve
with tension stiffening effect goes down after it reaches the ultimate, as before. The failure of
the shell is quite abrupt and the load-deflection curve is again straight and steep in the slope.

3.2.3. Load-deflection curves

The load-deflection curves for varying tension stiffening parameters from 3 to 20 are presented
in Fig. 8 The behaviors of the actual load-deflection curves for the all cases again go down
after reaching the ultimate. As the parameter of tension stiffening is increased to 3, 5, 10, 15
and 20, the ultimate applied load is 3.06 kPa (64 psf), 546 kPa (114 psf), 795 kPa (166 psf),
9.0 kPa (188 psf) and 9.29 kPa (194 psf), and 0.070 m (023 ft), 0.088 m (0.29 ft), 0.107 m (0.35
ft), 0.116 m (038 ft) and 0.119 m (0.39 ft) of vertical tip displacements, respectively.

3.2.4. Crack and vyield patterns
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Fig. 9 Crack and yielding patterns at the ultimate and the following unconverged step, Y=10, by large
displacement analysis.
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Fig. 9 shows that a comparison of the crack patterns for the top and bottom concrete layers
and the yield patterns for the steel layer with the tension stiffening, ¥=10. The cracks developed
on the top concrete layer expanded to the whole shell surface like a ring at the ultimate. Those
cracks are partially penetrated to the 6th layer from the top near the tip area and the 5th layer
near the support area at the ultimate. No cracks are formed on the bottom concrete layer on
the same area. The shell is failed again by a formation of yield lines in a sudden cantilever
type failure. As the tension stiffening effect is increased in the model, the analyses show that
the shell has the better capability of stress redistribution. One can explain this phenomenon
by that increasing the tension stiffening would delay a formation of yield lines due to the extra
tensile strength provided by this effect. Therefore, the cracks have more chance to propagate
in the neighboring elements, in resulting a ring shape cracking zone. Thus, the shell has better
stress redistribution capability as increasing the tension stiffening effect.

3.2.5. Comparison with and without large displacement effect

A comparison of two sets of analyses, one for the small displacement analysis and other
for the large displacement analysis, for the ultimate load with varying tension stiffening parameters
(¥=3-20) is presented in Fig. 10. As we saw from Figs. 4 and 7, the behavior of the shell is
quite different when not including the tension stiffening effect in the model. The behavior of
the shell after cracking is predominantly controlled by the tension stiffening, not.by yield stress
of steel as our current design philosophy prescribed (ACI 318-95 1995). Therefore, ignoring the
tension stiffening effect, which is a function of not only the reinforcement quantities, but also
both bar size and spacing in each direction, is unrealistic, and we dropped the Y=1 case (no
tension stiffening) from a comparison. The higher the tension stiffening parameter the higher
is the ultimate load for both of the analyses. For the small displacement analysis, the rate of
increase in the ultimate load is higher in the smaller parameters (¥=3 to 5) and is almost
linear in the larger parameters. On the other hand for the large displacement analysis, the rate
of increase in the ultimate load is gradually decreased as the parameters are increased.

The analysis shows that including large displacement effect the ultimate load is increased
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Fig. 10 Variation in ultimate load with different tension stiffening for small and large displacement
analyses.
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than an analysis without this effect up to the ¥=15 cases. It is contrary that, generally, the
shell stiffness should decrease with including the large displacement effect. It can be possibly
explained by a view of the shell’s capability of stress redistribution. Decreasing the shell stiffness
due to the effect of the large displacement in the model would help the cracks to expand into
neighboring elements. Therefore, the shell has a better stress redistribution capability, which
will result a higher ultimate load for a model with the large displacement effect. As increasing
the tension stiffening parameter to 20, this phenomenon is no longer prevailed when the shell
has plenty of capability with a large tension stiffening.

4. Comparison with other results

The hyperbolic paraboloid saddle shell studied here was originally studied by Lin and Scordelis
(1975) and subsequently by several other investigators (Mueller and Scordelis 1977, Akbar and
Gupta 1986, Cervera, et al. 1986, Min and Gupta 1994). As discussed in the previous study
(1994), only the Mueller and Scordelis (1977) result remains without many conflicts, such as
numerical problems and too coarse meshes. As discussed before (1994), the mesh size is a major
parameter influencing the behavior of the saddle shell because of rapid changes in stress-strain
gradients near the edge beams. Since the previous result (1994) was actually a numerical phenome-
non caused by lacking the tension stiffening and the large displacement effects in the numerical
model, our previous result is dropped also from the comparison.

Results from two sets of analyses, Mueller and Scordelis (1977) and the present study, are
summarized in Table 1. The overload factors in Table 1 are based on the strength design relation-
ship, (14D + 1.7L)/09<nominal strength, in accordance with ACI 318-95 (1995), in which D repre-
sents stresses due to the dead loads and L due to the live loads. The nominal strength of the
shell would obtain by a summation of total dead load plus calculated ultimate live load from
a nonlinear analysis, such as the present study. Total dead load (340 kPa=71 psf) is consists
of dead load of the shell, 2.39 kPa (50 psf) and dead load increased due to the edge beams,
approximately 1.01 kPa (21 psf), which is obtained by calculating dead load of the edge beam
uniformly distributed on the shell (Min and Gupta 1992). Thus, for example, for Y=3 case
with the large displacement effect, nominal strength will be 3.40+3.06=6.46 kPa. From the stre-
ngth design relationship, the maximum applicable live load (L), will be 0.62 kPa. The overload
factor is, then, the maximum applicable live load divided by the design live load, 0.96 kPa
(20 psf), and the over load factor becomes 0.65 for ¥=3.

Mueller and Scordelis (1977) discretized a quarter of the shell by 105 layered triangular shell
elements and Y=3.5 of tension stiffening is included in the analysis. Mueller-Scordelis’s 7.80
kPa (163 psf) ultimate load is comparable with our ¥=10 to 15 cases [for the small displacement
analyses]. As discussed in the previous study (1994), their mesh seems relatively coarse to present
the stress-strain gradients properly. It is still believed that a convergence study of the type reported
by the author and Gupta (1994) might bring the Mueller-Scordelis’s and the present results
into closer agreement. Except that the tension stiffening parameter is lowest as 3, the overload
factors based on ACI 31895 are larger than unity for all the cases of the present study, which
means that the shell is safe for the design load and can sustain as much load as the design
live load, 0.96 kPa (20 psf). multiplied by the factor.

Fig. 8 shows also the load-deflection curves for both of the analyses. The slopes of the load-
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Table 1 Comparison of ultimate loads from various nonlinear analyses for Lin-Scordelis saddle

shell
Element Initial tip  Tension Large Ultimate
type displacement stiffening displacement live load Over-load
(Number of  (Dead load parameter effect (kPa) factor*
elements) only) (cm)
Mueller-
Scordelis Triangle (105) 44 35 No 7.80 33
(1977)
3 No 2.73 046
Yes 3.06 0.65
5 No 4.84 1.6
Yes 546 20
Present 4-node (1121) 4.8 10 No 6.94 2.8
study Yes 795 34
15 No 8.38 36
Yes 9.00 39
20 No 9.62 43
Yes 9.29 4.1

*Overload factor for live load at the ultimate based on ACI 31895 (1995)

deflection curves are quite similar for both of the analyses shows that the various differences
between two analyses, such as elements used, mesh size, etc., has little or no effect in the overall
stiffness of the shell.

5. Conclusions

Inelastic, large displacement behavior of the Lin-Scordelis hyperbolic paraboloid saddle shell
under uniformly distributed vertical loading is studied using a layered 4-node superparametric
shell element. It is shown that introduction of tension stiffening increases the overall shell stiffness
markedly, and the load-deflection curves are straight and the slope is quite steep and remains
unchanged with varying the tension stiffening parameters from 3 to 20. The failure of the shell
is quite sudden and initiated by a formation of yield lines in the concrete layers near the tip
of the shell in a direction parallel to the support-to-support diagonal, which will eventually
lead a yielding of steel reinforcement. The tension stiffening is a major factor to enhance the
shell’s capability of stress redistribution.

The cracks on the concrete layers which formed near the tip as a pair of crescent shape
for the small tension stiffening (¥=3-5) at the ultimate, penetrated only to the 4th concrete
layer from the top. That shows bending moment plays a major role to form cracks in these
areas. As increasing the tension stiffening parameters (¥=10-20), the shell develops cracks on
the whole shell surface like a ring at the ultimate, which shows that a gain is in the stress
redistribution capability. The higher the tension stiffening parameters the higher is the ultimate
load.

As the large displacement effect is included in the analysis, the behavior and the stiffness
of the shell have no noticeable changes, except that including this effect the ultimate load is
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increased than an analysis without this effect when the tension stiffening effect is relatively weak.
The cracks can expand into neighboring elements more easily from decreasing the shell stiffness
by the effect of large displacement and a higher ultimate load resulted by a better stress redistribu-
tion. This trend is reversed when the tension stiffening is increased to 20.

As we compared with the Mueller-Scordelis result (1977), Mueller-Scordelis gives higher ultimate
load with lower tension stiffening parameter, ¥=3.5. Their mesh seems relatively coarse and
we believe that a convergence study of the type reported previously (1994) might bring the Mueller-
Scordelis’s and the present results into closer agreement.

Not only the effective tension stiffening (after cracking) and concrete tensile strength (before
cracking) would very over the life of the saddle shell, but also little experimental data is available
to quantify tension stiffening in particular for the shell structures. Therefore, it is only able
to predict the ultimate strength with a degree of uncertainty. It is clearly shows that a numerical
value of the tension stiffening to convert experimental information for a specified concrete strength
and steel arrangement is indispensable for accessing the ultimate strength of the reinforced conc-
rete saddle shell, such as the Lin-Scordelis saddle shell studied in the present analyses.

By the present study, the overload factors based on ACI 318-95 are larger than unity for
all the cases studied except that the tension stiffening parameter is lowest as 3 with and without
the large displacement effect, which shows that the Lin-Scordelis saddle shell is at least safe
and can sustain more loads than the design snow load. The present type of nonlinear analyses
can perform with a wide availability of supercomputing resources at reasonable price for design
purpose to assure safety of the shell and to accomplish economy.
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