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Abstract. A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking
and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of
flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonli-
nearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are
incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spand-
rel beams and columns are successfully modelled. The proposed method incorporating the nonlinear
constitutive models for concrete and steel is implemented in a finite element program. Test specimens
including a series of reinforced concrete beams and beam-column-slab connections of flat plates are
analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both
flexural and shear cracking up to failure.

Key words: layered finite element; crack; failure analysis; reinforced concrete; beam; beam-column-
slab connection; flate plate.

1. Introduction

In the analysis of reinforced concrete structures such as flat plates, slabs and beams, predicting
the transverse shear failure is one of the most formidable tasks. Three-dimensional solid elements
are commonly used to analyse both flexural and shear failures. However, the disadvantage of
using three-dimensional elements lies in the excessive number of unknown degrees of freedom
associated with a large bandwidth. As a result, a large amount of computing time is required
and the computer output is relatively complicated which necessitates special management effort.

The layered finite element method has been used to solve three-dimensional problems of
reinforced concrete structures, particularly in analysing the flexural behaviour of plates and shells.
Incorporating the layered approach, Owen and Figueiras (1984) and Harmon and Ni (1989)
studied the transverse shear response of reinforced concrete plates and shells. However, the shear
failure analysis of beam-column-slab connections in flat plates by the finite element method
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has not been adequately studied.

A semi-three-dimensional layered model is developed by encompassing all the in-plane and
out-of-plane stress components in a finite element formulation. Incorporating the nonlinear consti-
tutive models for concrete and steel, the proposed procedure is capable of analysing both flexural
and shear cracking up to failure. In addition, the spandrel beams are modelled by using the
stiffness transformation technique and the transverse reinforcement is included by adding its
contributions to the material matrix which corresponds to the normal strain in the transverse
direction. These made possible the simulation of spandrel beams and closed ties.

2. Semi-three-dimensional layered approach

In the layered approach (Guan and Loo 1994), each element is subdivided into a chosen
number of layers which are fully bonded together (see Fig. 1). The concrete characteristics are
specified individually for each layer over its thickness. On the other hand, each layer of the
reinforcing bars is represented by a smeared layer of equivalent thickness.

An eight-node degenerated shell element with bi-quadratic serendipity shape functions is adop-
ted in conjunction with the layered approach. The model makes use of the transverse shear
deformations associated with the Mindlin hypothesis. Five d.of. are specified at each nodal
point. They are the in-plane displacements, # and v, transverse displacement w, and two indepen-
dent bending rotations about the x and y axes, ic., Oy and Ox respectively.

In a nonlinear analysis, the material statc at any Gauss point located at the mid-surface
of a layer, can be elastic, plastic or fractured according to the loading history. To account for
the mechanical change of the materials throughout the incremental loading process, cracking
and nonlinear material response are traced layer by layer.

By incorporating all the in-plane and out-of-plane stress components in the finite element
formulation, the proposed layered element is capable of simulating inclined cracks. As a result,

Concrete Layer number Smeared

layers steel layers \[ te

Fig. 1 Layered model.
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the prediction of transverse shear failure and punching shear failure of flat plates becomes possible
without resorting to the use of expensive fully three-dimensional elements.

3. Modelling of spandrel beams

Reinforced concrete flat plates usually incorporate spandrel beams or band beams to strengthen
the slab-column connections and reduce the possibilities of punching shear failure. These slabs
have arbitrarily and eccentrically stepped thicknesses in their geometry. The upper surface of
the slab is flat and the variation of the thickness is restricted to the lower surface. Hence the
location of the mid-surface varies according to the variation of the thickness. However, it can
be assumed that the mid-surface of the entire slab is located at the plane that bisects the slab
thickness.

Consider a flat plate stiffened by an offset spandrel beam along its edge, as shown in Fig.
2. The nodal points of the beam do not coincide with those of the slab. The boundary conditions
are simulated by carrying out the coordinate transformation technique to “slave” the degrees
of freedom of the beam to the “master” degrees of freedom of the slab in the assembled structure.
Based on the concept of “rigid links” (Cook, er al 1989), a simplified approach is developed
to take into account the eccentricities of the spandrel beams and the columns in flat plates.

In general, a typical node of the beam is to be transferred to the corresponding node of
the slab. This is accomplished by adding an imaginary, weightless but rigid link between nodes
Ipeam and iy, Assuming that the spandrel beams are also built up of layered elements, the coordi-
nate transformation can be achieved as follows

U, 100 d, 0 u;
v, 010 0 —d, v,
w; = 001 0 O w; (1)
0. 000 1 O 6.
9\‘[ beam 0 0 0 0 1 9_1!1' slab
/ ’
TZ
e >
K| Iibeam Mid-surface of slab
1 Mid-surface of spandrel beam
Wiy vy O
islabf 4[] e eyi
1
Nodal variables of beam and slab
do Wi Vi 7 exi
ibeam‘LZ)—»'Gyi
uj

Fig. 2 Description of nodal variables of spandrel beam and adjoining slab.
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or {U} beam = [ To] { U}xluh (2)

where {Uly., and {U},, contain the nodal displacements of the offset beam element and the
slab element, respectively; [7,] is the transformation matrix of the offset element; d, is the distance
between the mid-surface of the beam and that of the slab. In Eq. (1), the products d,6, and
—d,8, are the displacements in x- and y- directions, respectively. This transformation procedure
can be applied wherever the offset element exists.

Correspondingly the element stiffness matrix [K,] and internal force vector {r.}, associated
with a slab element, can be obtained through the transformation from [K,] and {r,}. of the
offset element. Or,

(K ]=[T]" [K,] [T] 3)
and {r=011"r,} 4
[ (1] B
L7,]
(7,] 0
where [T]mxm: 0 [T,,] [To] (5)
,:T()]
(7,]
[7,]
= [~

for an 8-node element.

The layered procedure used for simulating the slab and the beam is also applied to the monoli-
thically cast concrete columns. As a result the columns may crack or fail should such conditions
exist under load. The column supports are modelled in such a way that they are provided
at their bottom surfaces, rather than at the mid-heights of the slab. Hence the real support
conditions can be modelled correctly. This was achieved by doubling the distance d, between
the mid-surface of the slab and bottom surface of the column.

4. Analytical model

~In the proposed analysis, the failure of reinforced concrete is considered to be a result of
either tension cracking in concrete or plastic yielding which leads to the crushing of concrete
(Guan and Loo 1996).

Concrete is assumed to be linear elastic and its behaviour is characterised as isotropic until
the specified fracture surface is reached. The constitutive equation for isotropic material, in the
material coordinate system (x'y’z’), can be expressed as

dio}=[DJd{e} (©6)
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in which K and G are the bulk and shear moduli, respectively.

The tension cut-off representation is adopted to model the concrete in tension in which cracking
is governed by the maximum tensile stress criterion. Cracked concrete is treated as an orthotropic
material using a smeared crack approach. After cracking has occurred, the tensile and shear
stresses acting on the crack plane are released and redistributed to the neighbouring elements.
Under subsequent loading, concrete loses its tensile strength normal to the crack direction, but
retains the tensile strength in the directions parallel to the crack plane. The constitutive equation
for cracked concrete is given as

dlot=[D,]dle} (8)
- -
E 0 0 0O 0 0
g, WEE_ o
I—v—2V
B E, 0 0 0
where [(D.,]= Gy 0 0 (9a)
Symm G 0
i Gy
C E 0 00 0 0]
E 0 0 0 0
B E, 0 0 0
Symm G 0
G

for concrete cracked in one and two directions, respectively. In Egs. (9a) and (9b), E; is the
fictitious modulus of elasticity which accounts for the tension stiffening effect; G}>, Gf;, Gs; and
Gi», Gf, G353 are the modified cracked shear moduli (Guan 1996).

The strain-hardening plasticity approach used by Owen and Figueiras (1984) is adopted to
model the concrete in compression. This approach involves loading surfaces, loading function,
normality rule as well as unloading. The elasto-plastic constitutive equation is expressed as

dio}=[D,,ld{el (10)



650 Hong Guan and Y.C. Loo

dD dDT

where (D,]= (D'.]— o +d'a

(11a)

and dp=[D'Ja (11b)

In Egs. (11a) and (11b), [P’ J=[T,1"[DJ{T.] if the principal axes do not coincide with the
reference axes x’, y' and z’; a is the flow vector and H' is the hardening parameter associated
with the expansion of the yield surface. Note that [T,] is the transformation matrix for strain
components between the local and material coordinate systems.

After the compression type of fracture occurs, the concrete material is assumed to lose some,
but not all, of its strength and rigidity. This requires that in Eq. (7)., the bulk modulus K retains
its original value and this leads to the following constitutive matrix

[ K K K000 ]
K KO00O
. K00O
Symm 00
0

Numerical modelling of either cracking or crushing of concrete involves the modification of
material stiffness and the release of the appropriate stresses partially or completely in the fractured
elements.

The reinforcing steel is assumed to be elastic-plastic uniaxial material. The reinforcing bars
at a given level in an element are modelled as a smeared steel layer of equivalent thickness.
For a steel layer, the constitutive equation may be given as

dio}=[D,]d{e} (13)

where the material matrix in the material coordinate system

pE. 0 0000

0 0000

— 0000
[D]= 000 (14)

Symm 00

0

in which p, (s=x’,y") is the reinforcement ratio (in the x’- and )’-directions) in the steel layer
and E, is the Young’s modulus of steel.

Once concrete has cracked, the material axes coincide with the principal stress directions,
therefore [D,] in Egs. (9a) and (9b) must be transformed from the principal axes to the local
xyz coordinate system. Or,

(D 1=[1.1D,IT,] (15)

Similarly, if the directions of the steel bars do not coincide with the x-axis, [D,] in Eq. (14)
must also be transformed into the local coordinate system as
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(D' J=[T,J[DILT.] (16)

The total element material constitutive matrix, containing the contributions of concrete and
steel, can be calculated by direct superposition. Or,

(D= Z[EH Z[T)’J (17)

where [D,] can be taken as [D'.] (Eq. (15)). [D,,] (Eq. (11a)) or [D.,] (Eq. (12)) depending
on the stress condition considered; n, and n, respectively are the total number of concrete and
steel layers (see Fig. 1).

In Eq. (17), [D'] is of size 6X6. However due to the conventional plane stress assumption
(6:=0), [D'] must be condensed into [D] (of size 5X5). Or,

[(D'(i+m,3)] [D'3,j+n)] (18)
LD'(3.3)]

where m=0, (1< i <2); m=1, 3L i <5); n=0, (1L j L2), n=1, 3L j <5).
In Eq. (I8).

(DG j)]=[D'i+m, j+n)]—

[D'(3.3)]=[D33)1+ p.E, (19)

which implies that the effect of the out-of-plane reinforcement can be included by adding its
contributions to the material matrix which corresponds to the normal strain in the transverse
direction.

Having the total material matrix determined for each element, the stiffness matrix for the
corresponding element can be evaluated and the global stiffness matrix is then assembled using
the standard procedure. An incremental and iterative procedure is used to obtain the nonlinear
solution and the computer program (Guan 1996) developed in this study is capable of reproducing
the nonlinear behaviour caused by both material and geometric nonliearities.

5. Numerical investigations
5.1. Simply supported beams with or without web reinforcement

The results from the series of simply supported, reinforced concrete beams tested by Bresler
and Scordelis (1963) have become a benchmark for checking computer based reinforced concrete
analyses. This is because the tests which included both brittle and ductile failure cases covered
a wide-ranging variation in beam geometry, and tensile and web reinforcements. These test results
are used herein to verify the capability of the proposed layered model in simulating transverse
reinforcements.

Bresler and Scordelis’s tests (1963) were to determine the cracking load and ultimate strength
of a specially designed series of 12 beams. Each beam is subjected to a concentrated load applied
at mid-span as illustrated in Fig. 3. The test beams were grouped into four series (Series OA,
A, B, and C). The first two groups, the OA-series (Which were without web reinforcement) and
the A-series (with web reinforcement), are analysed herein. The dimensions of the beams and
their corresponding material properties given in the original publication (Bresler and Scordelis
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Fig. 3 Simply supported beam under central concentrated load.
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Fig. 4 Finite element idealisation of a typical beam (0A4-2).

1963) are adopted in the present analysis. Owing to the existence of two planes of symmetry
only one quarter of each beam is analysed. The finite element idealisation of a typical beam
(04-2) is presented in Fig. 4.

5.1.1. Beams without web reinforcement

Fig. 5 compares the predicted load-deflection curves at the mid-span section of the OA-series
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Fig. 5 Comparison of load-deflection results for OA-series beams.
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beams with the experimental results. Good correlations are observed. Note that the ultimate
loads shown in this and subsequent load-deflection plots are the measured values. As may be
seen in the figure, some horizontal steps may be seen in the load-deflection curves. They are
caused by a tensile or compressive failure in one of the elements which is followed by a decrease
in the structural stiffness under additional load.

In the experiment, all the beams in the OA-series failed in a “shear-tension” mode (Loo 1990).
Fig. 6 shows the crack patterns for beam OA-2 which characterise this type of failure. Included
in the same figure is the predicted crack patterns (for half of the beam). The agreement is
reasonably good.

5.1.2. Beams with web reinforcement (closed ties)

For the A-series beams which were with web reinforcement, the load-deflection response compa-
res fairly well with the experimental results, as evident in Fig. 7. It may be seen in the figure

that for Beams A-1 and 4-2, failures occurred immediately after the measurement of the maximum
deflection. On the other hand, Beam A4-3 sustained a much larger deformation before collapse.

Correspondingly, the predicted load-deflection curve for Beam A4-3 shows a rapid increase of
deflections due to the yielding of steel. As a result, the ultimate deflections of Beam A-3 is
much larger than that of 4-1 and A4-2.

The predicted and observed crack patterns for a typical beam, 4-2, with web reinforcement,
are compared in Fig. 8. Again good agreement is obtained.

5.1.3. Comparison of ultimate loads

The comparison of predicted and measured ultimate load values for all the beam series is
summarised in Table 1. The analytical load-deflection curves (Figs. 5 and 7) replicate, with accep-
ted accuracy, the experimental responses. However, the analysis leads to a slightly lower ultimate
load, except for Beams OA4-1 and OA-3. The ratios of the predicted and measured ultimate loads
range from 0.86 to 1.04, with a mean of 0.94. This is considered a satisfactory prediction.

To demonstrate the accuracy achievable using the proposed semi-three-dimensional layered
element model, a further comparison of results is carried out. For Beams OA4-1 and 4-1, Table
2 shows in addition to the experimental ultimate loads, the predicted values due to the proposed

Table 1 Comparison of ultimate load of simply supported beams

Ultimate load

Beam Failure mode Experiment  Proposed method Proposed
(kN) (kN) Experiment
04-1 shear 333.60 340.00 1.02
0A-2 shear 355.84 312.50 0.88
043 shear 378.08 392.50 1.04
A-1 shear -467.04 442.50 0.95
A4-2 shear 489.28 430.00 0.88
A-3 flexural 467.04 402.50 0.86

Mean: 0.94
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Table 2 Comparison of experimental and analytical ultimate loads (kN)

‘Experimental and analytical work Method 04-1 A-1
Bresler and Scordelis (1963) experiment 333.60 467.02
Proposed method semi-three-dimensional 340.0 4425
Gonzalez-Vidosa, et al. (1991) three-dimensional 3000 450.0
Cedolin and Dei Polif two-dimensional 400.0 500.0
Bedard and Kotsovost two-dimensional 4100 4700
Balakrishnam and Murray! two-dimensional 3430 4270

Note: ' from Gonzalez-Vidosa, er al. (1991)

Edge column

Spandrel beam ' "Contraflexure" point

Corner column ?Vu

Zero-moment section

+Vu

Fig. 9 Spandrel beam-column-slab connections.

methos as well as other finite element procedures as summarised by Gonzalez-Vidosa, et al
(1991).

The comparison indicates that the two-dimensional (plane stress) analyses, in general, overesti-
mate the strength of the beams with or without web reinforcements. The proposed analysis
and the method given by Gonzalez-Vidosa, e al.. on the other hand, yield better predictions.
It appears that the proper modelling of the confinement caused by the closed ties may only
be achieved by means of semi and full three-dimensional approaches.

5.2. Beam-column-slab connections in flat plate models
5.2.1. Structural details and modelling

As part of a long-term research program on the punching shear strength of concrete flat
plates, a total of nine half-scale reinforced concrete models, each weighing about five tonnes.
were constructed and tested to failure (Falamaki and Loo 1992). Fig. 9 shows a portion of a
typical reinforced concrete flat plate structure with spandrel beams. Note that for a spandrel
beam-column-slab connection, the punching shear strength, V,, is defined as the net ultimate
reaction at the column contraflexural point. The plan dimensions of the models and a typical
cross section of spandrel beam-column-slab connection are shown in Figs. 10(a) and (b), respec-
tively. Seven models having different spandrel beam depths, designated as W1 to W4 and M2
to M4, are investigated herein. The material properties and reinforcement details of the models
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Fig. 10 Flat plate model with typical spandrel beam section details.

Fig. 11 Flexural reinforcement mesh in Model M2.

are based on those published by Falamaki and Loo (1992).

Each of the models had two layers of flexural reinforcement mesh near the top and bottom
of the slab. A portion of the reinforcement mesh in a typical model (M2) is shown in Fig.
11. In addition, top reinforcing bars were added at column positions and bottom bars, at mid-
span of the critical slab strips. They were provided to resist the large negative and positive
bending moments at the respective positions. The longitudinal and transverse reinforcements
of a typical spandrel beam are shown in Fig. 12.

To effectively model the reinforcement and construction details, a relatively fine mesh is re-
quired. For example, for Model M2, where a line load was applied and additional top and
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Fig. 13 Finite element mesh for Model M2.

bottom reinforcing bars were provided throughout the slab, a 17X12 mesh is used (see Fig.
13). Each element is subdivided into eight concrete layers of different thicknesses. The top and
bottom reinforcement meshes are simulated by four steel layers. For other test models, a 14X12
mesh is adopted (Guan 1996).

5.2.2. Punching shear strength and collapse load

The predicted punching shear strength results (V) for the seven models with spandrel beams
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Table 3 Comparison of punching shear strength V,

. Experiment Proposed method
Connection  Column type* - -
V. (kN) Predicted Predicted

V. (KN) Measured
W1-4 C 50.15 58.58 1.17
W2-A C 48.08 52.88 1.10
W3-A C 4338 46.30 1.07
Wa-4 C 47.07 52.14 1.11
W1-B E 117.63 116.21 0.99
W2-B E 120.36 104.79 0.87
W3-B E 93.57 96.47 1.03
W2-C C 45.17 46.70 1.03
Ww3-C C 4433 48.65 1.10
wa-C C 46.32 50.79 1.10
M2-A C 5390 56.21 1.04
M3-4 C 2570 34.10 133
M4-A4 C 5897 65.79 1.12
M2-B E 12322 11543 094
M3-B E 76.50 68.37 0.89
M4-B E 130.24 149.69 1.15
M3-C C 2430 29.75 1.22
M4-C C 60.09 74.50 1.24

Mean: 1.08

Note: *C-corner column; E-edge column

Table 4 Comparison of collapse loads

Experiment Proposed method
Model ) .
(kPa) Predicted Predicted
(kPa) Measured
Wi 30.63 29.50 0.96
w2 2891 30.00 1.04
W3 24.69 23.60 0.96
w4 2895 25.75 0.89
M2 32701 37.501 1.15
M3 17.84 15.60 0.87
M4 33.85 37.00 1.09
Mean: 0.99

Note: TLine load in kN/m

are presented in Table 3. Also included in the table are the measured V, as well as the ratios
of the predicted and measured values. It can be seen that the proposed method is able to predict.
with good accuracy, the punching shear strength results. The mean ratio of the predicted and
measured V, is 1.08 which is considered a satisfactory correlation.

Summarised in Table 4 is the comparison of the experimental and predicted collapse loads.
The measured collapse loads are accurately predicted by the proposed method, with a mean
ratio of 0.99 for the seven models.
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5.2.3. Load-deflection responses

In Fig. 14, both the experimental and the predicted load-deflection results are presented for

Load density (kN/m)

8 10 15 20 25 30 35 40
Deflection (mm)

o  Experiment® (point 1) Proposed method (point 1)
A Experiment® (point2)  -..-.-- Proposed method (point 2)
X  Experiment® (point3) = —.—=-— Proposed method (point 3}

(* Falamaki and oo, 1992)
Fig. 14 Comparison of load-deflection responses for Model M2.
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a typical model (M2). The proposed procedure is able to predict the actual load-deflection response
reasonably well except that the predicted curves appear to be stiffer after cracking occurs. This
discrepancy is mainly due to the relatively coarse (but effective and economical) mesh selected
for modelling the real structure. The use of a finer but of course more expensive mesh will
improve the correlation. The assumption of rigid support conditions in the analysis also contribu-
tes to the discrepancy. However, despite the discrepancies, the trends of the load-deflection beha-
viour are correctly predicted.

5.2.4. Crack patterns

The comparisons of the analytical and observed crack patterns at bottom and top surfaces
of Model M2 are shown in Fig. 15. The crack directions predicted by the proposed method
are consistent with the observations. Note however that analytically there are more cracks around
the column regions at the bottom surface. In the proposed procedure, which is not unlike other
similar nonlinear analyses, cracking can occur at any Gauss point once the concrete tensile
strength has been reached. This means that any number of Gauss integration points can crack
simultaneously. This unfortunately results in more cracks than reality where cracks tend to open
relatively slowly and at fewer locations (Cope 1986). Further, physical cracks are only visible
after a relatively large strain has been exceeded.

6. Conclusions

A nonlinear layered finite element method for cracking and failure analysis of reinforced
concrete beams and the spandrel beam-column-slab connections of flat plate is presented. Both
material and geometric nonlinearities are taken into consideration. Proper material models are
established for concrete in tension and compression as well as for steel reinforcement. The spand-
rel beam and transverse reinforcement are also successfully modelled.

Comparisons with published test results are made for a series of simply supported beams
and beam-column-slab connections. Analytical results obtained are in good agreement with the
experimental observations in terms of load-deflection response, ultimate load as well as crack
patterns. This confirms the capabilities and accuracy of the proposed method in analysing both
flexural and shear failures as well as simulating transverse reinforcements.

The proposed layered procedure is capable of providing a simple and effective means of analy-
sing the nonlinear behaviour and cracking of reinforced concrete beam-column-slab connections
in flat plates. It is equally applicable to other similar three-dimensional problems.
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