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Concrete stiffness matrices for membrane elements
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Abstract. The concrete stiftness matrices of membrane clements used in the finite clement analysis
of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane
elements is first described by summarizing the constitutive laws of concrete and steel established for
the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss
model). These constitutive laws are then related to the concrete stiffness matrices of the two existing
cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the
existing models, a general model of the matrix is proposed. This general matrix includes two Poisson
ratios which are not clearly understood at present. It is proposed that all five material properties in
the general matrix should be established by new biaxial tests of panels using proportional loading and
strain-control procedures.

Key words: concrete; constitutive laws; cracking; material matrix; membrane element; poisson ratio;
reinforced concrete; shear; stiffness; stress-strain relationship.

1. Introduction
1.1. Membrane elements

Large wall-type structures can be visualized as assemblies of two-dimensional membrane ele-
ments. The behavior of a whole structure may thus be predicted if the collective behavior of
all its component membrane elements can be determined. Finite element analysis is the most
powerful method to integrate the load-deformation responses of the component membrane eleme-
nts (panels) into the load-deformation responses of the whole siructure (ASCE 1982, ASCE-ACI
1993).

Cracking in a reinforced concrete membrane element transforms it from a linear, isotropic
material into a non-linear, orthotropic material. Being more complex, the behavior of cracked
reinforced concrete are not yet clearly understood. Currently, two types of models have been
advanced to formulate the post-cracking concrete stiffness matrix for finite element analysis,
namely the rotating-crack model and the fixed-crack model. The constitutive laws of concrete
and steel for the rotating-crack model are described in the rotating-angle softened-truss model
(Belarbi and Hsu 1994, 1995, Pang and Hsu 1995), while those for the fixed-crack model are
described in the fixed-angle softened-truss model (Pang and Hsu 1996).

1.2. Fixed-angle vs. rotating-angle
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Fig. 1 Coordinate systems and stresses in reinforced concrete membrane elements.

Fig. 1(a) shows a reinforced concrete membrane element subjected to shear and normal stresses.
The stresses, 7, o) and o, are defined in the /-t coordinate of the reinforcing steel. The direction
of the first batch of cracks is determined by the direction of the principal tensile stresses of
the applied stresses. The two principal directions of the applied stresses are defined by the 2-
1 coordinate shown in Fig. 1(d). The angle between the 2-1 coordinate and the /- coordinate
is called the fixed-angle @, because this angle remains constant under proportional loading.

Once the concrete is cracked, the subsequent cracks develop in increasingly divergent directions
away from the first crack as a result of changes in the direction of the principal tensile stresses
in the concrete, Fig. 1(b). This post-cracking principal direction of concrete depends on the
relative amounts of “smeared steel stresses” (pf; and pf) in the longitudinal and transverse
directions, Fig. 1(c), and is defined by the d-r coordinate in Fig. 1(¢) at any stage of loading.
The angle between the d-r coordinate and the /- coordinate is called the rotating-angle «, because
this angle continues to rotate away from the fixed-angle @ under increasing proportional loads.
The actual angle of each new crack is observed to lie between a and a,.

1.3. Softened-truss models

Two types of softened-truss models — rotating-angle softened-truss model and fixed-angle softe-
ned-truss model— have been developed to date to predict the behavior of cracked reinforced
concrete membrane elements. In the rotating-angle model, the direction of cracks is assumed
to orient in the post-cracking principal d-r coordinate of concrete at any loading stage. In the
fixed-angle model, the direction of cracks is assumed to orient in the principal 2-1 coordinate
of the applied stresses. Both these two models satisfy the two-dimensional stress equilibrium,
Mohr's circular strain compatibility and the softened biaxial constitutive laws of concrete. They
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both can predict the strength as well as the load-deformation history of a membrane element.
However, they have two distinct differences: The simpler rotating-angle softened-truss model
is unable to predict the “contribution of concrete” (¥.) and has a small range of applicability.
The more complex fixed-angle softened-truss model, however, is capable of predicting V, and
has a larger range of applicability (Pang and Hsu 1996, Hsu and Zhang 1997).

2. Constitutive laws of concrete and steel

The key to predicting the behavior of a membrane element by the two softened truss models
is the establishment of a set of accurate constitutive laws for concrete and reinforcing bars.
These constitutive laws have been determined from full-size (1397X1397X 178 mm) reinforced
elements using a high capacity and versatile Universal Panel Tester at the University of Houston
(Hsu, Belarbi and Pang 1995). The panels were made of concrete with normal strength of 42
MPa (Belarbi and Hsu 1994, 1995, Pang and Hsu 1995, 1996), with medium-high strength of
65 MPa (Zhang 1992), with high strength of 100 MPa (Zhang 1995).

In the finite element method, the concrete and steel bars embedded within concrete can be
modeled using the smeared-crack concept. This concept treats cracked concrete as a continuous
material. As such, the stresses and strains of concrete and steel in a cracked element are evaluated
by averaging (smeared) values. The average stress value between any two adjacent cracks is
taken by averaging the stresses occurring between one crack and the midpoint to the adjacent
crack. An average strain value is calculated from the displacement measured over a length that
traverses several cracks, thus includes the gaps that constitute the cracks.

The average stress-strain relationships of concrete (compression, tension and shear) and mild
steel embedded in concrete are proposed for the fixed-angle softened-truss model as follows:

Concrete in compression [Fig. 2(a)]
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where o> is the average compressive stress of concrete in the 2-direction; & is the average strain

in the 2-direction; f’ is the maximum compressive strength of standard 6 in. by 12 in. (152

mm by 305 mm) concrete cylinder; g, is the concrete strain at maximum compressive strength,

taken as 0.002 for normal strength concrete of 42 MPa and 0.0024 for the high strength concrete

of 100 MPa; ¢ is the softening coefficient; and n is a parameter defined as (p.f,— a)/(p.fy,— o).
Concrete in tension [Fig. 2(b)]
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Fig. 2 Average stress-strain curves of concrete and steel in membrane elements.

where o,° is the average tensile stress of concrete in the 1-direction; & is the average strain
in the 1-direction; E, is the elastic modulus of concrete, taken as 3,875 \/f.; and f,, is the concrete
cracking stress, taken as 0.31 /£’ (f/ and /f are in MPa).

Concrete in shear [Fig. 2(c)]
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where 1) is the shear stress of concrete in 2-1 coordinate; y», is the shear strain of concrete
in 2-1 coordinate; 13, is the maximum shear stress of concrete in 2-1 coordinate; ¥, is the
shear strain of concrete at maximum shear in 2-1 coordinate; f,,, and f,, are average steel stresses
at maximum load determined by Eq. (7).

Mild steel [Fig. 2(d)]
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where &, is the average yield strain of mild steel bars embedded in concrete at the beginning
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of yielding, defined as &=¢(0.93-2B) [1—(2— a/45°)/1000p]; £, is the average stress in mild steel
bars and becomes f; or f; when applied to longitudinal steel or transverse steel, respectively;
& is the average strain in the mild steel bars embedded in concrete and becomes & or g when
applied to the longitudinal and transverse steel, respectively; p is the reinforcement steel ratio
not less than 0.005, and becomes p or p when applied to the longitudinal and transverse steel,
respectively; a, should be between 0 and 90°.

Because the equilibrium and compatibility equations for fixed-angle softened-truss model dege-
nerate into those for the rotating-angle softened-truss model (Hsu 1996), Egs. (1) to (6) can be
simplified when applied to rotating-angle softened-truss model: First, all the subscripts 2 and
1 in the equations should be replaced by d and r, respectively, because the concrete cracks
are defined by the d-r coordinate in the rotating-angle model. Second, Egs. (4) to (6) for concrete
in shear become irrelevent, because the shear stress ¢ and the shear strain y,, in the d-r coordinate
must vanish. Third, the softened coefficient ¢{ in Eq. (2) can be simplified by taking n=1.

3. Models for concrete stiffness

Using the above constitutive laws the concrete stiffness matrices for the two cracking models
(rotating-crack model and the fixed-crack model) are determined as follows:

3.1. Rotating-crack model

In this model the cracks are assumed to orient in the principal directions of the concrete
(d-r coordinate), and the stress-strain relationships of concrete are:

Oy E d 9 0 &
o (=| 0 E O & (8)
rdr 0 0 Ga'r ydr

The 3X3 matrix represents the cracked concrete stiffness matrix [D, ], in which the diagonal
elements E, and E, are the secant moduli of concrete in the d- and r-directions, respectively,
determined from the constitutive laws in the rotating-angle softened-truss model. In other words,
the moduli E,=o,/¢, and E,=o,/¢, are determined from Egs. (1) to (3), except that the subscripts
2 and 1 in the equations should be replaced by d and r, respectively. The secant shear modulus
of concrete G,,=1t,"/¥4 however, is indeterminate, because t,=1y,=0. In practice, therefore, G,
is arbitrarily taken as a small value to avoid numerical instability and to fit the overall test
results. The value commonly used are G,=EE/E,+E,). or (E;+E,~—2i/EE)/41—£), or simply
a small fraction of the uncracked shear modulus. Such a practice is theoretically unsound.

3.2. Fixed-crack model

In this model the cracks are assumed to orient in the principal directions of the applied
stresses (2-1 coordinate), and the stress-strain relationships of concrete are:
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The diagonal elements E,, £, and G, are the secant moduli of concrete in the 2-1 coordinate,
determined from the constitutive laws of concrete established experimentally in the fixed-angle
softened-truss model. The compressive moduli £,= 05/ can be determined from the stress-strain
curve of concrete in compression given by Egs. (1) and (2); the tension modulus £,=0,"/g from
the stress-strain curve of concrete in tension given by Eq. (3); and the shear modulus Gy =172
from the stress-strain curve of concrete in shear given by Eqs. (4) to (6). At present, the modulus
G, is established from panels with fixed-angle a, of 45°, and needs to be checked by panels
with fixed-angle from 0 to 90°.

4. A general model

The two softened truss models described above are based on the fundamental assumption
that Poisson ratios are zero. This assumption, unfortunately, imposes a limit of application of
these models. Pang and Hsu (1995) first discovered that the rotating-angle softened-truss model
can predict the load-deformation relationships of membrane elements subjected to shear only
if the steel yield stresses, pf, and pf,, in the /- and t-directions satisfy the condition 04<p,f,/p/f,,<2.
5. In other words, when the steel yield stress in one direction is 2.5 times greater than that
in the other direction, the model is invalid. In the case of the fixed-angle softened-truss model,
Hsu and Zhang (1997) found a wider range of applicability of 0.2<p/f,/p/,<5. In both cases,
the limits of application are rooted in the assumption that Poisson ratios are zero, and these
limits can be removed only if the Poisson ratios are taken into account in the analysis.

4.1. Proposed concrete stiffness matrix
This paper proposes a general model which includes two Poisson ratios in the analysis. The

concrete stiffness matrix, defined in the principal 2-1 coordinate and including the Poisson ratios,
can be written as follows:

Ei VP__EQ 0
[Du]f: wik, E, _0 (10)
0 0 Gy

where v}, is the tension-compression Poisson ratio and wy, is the compression-tension Poisson
ratio. Eq. (10) is the most general form of material stiffness matrix in a two-dimensional, orthogo-
nal model, when the coordinate of principal tensile strains is assumed to coincide with the
coordinate of principal tensile stresses.

4.2. Poisson ratios

In order to measure the two Poisson ratios, reinforced concrete membrane elements (or panel)
with a,=9%0° were tested biaxially under sequential loading by Zhang and Hsu (Zhang 1995,
Hsu, Zhang and Gomez 1995). These tests showed that the tension-compression Poisson ratio
vi» 18 —10p/(2+1000g), where p, and g are the steel ratio and tensile strain, respectively, in
the principal I-direction; while the compression-tension Poisson ratio v, 1s 0.62. Both the negative
value of v, and the value of v, greater than 0.5 are rather surprising, because they can not
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occur in a continuous material. These values can be explained, however, by the slippage and
wedging actions between the concrete and the deformed steel bars in a cracked, discontinuous
reinforced concrete material.

The values of tension-compression Poisson ratio v, obtained by Vecchio and DeRoo (1995)
was in the order of —0.03 to —0.16. These values are greatly exaggerated, because they were
obtained from tests controlled by tensile load in one direction and zero load in the perpendicular
direction. In these uniaxial, load-control tests, each perpendicular strain measurement contains
two parts. While one part is caused by real deformation of the material, the other part is not
a true component but one caused by the air gaps that constitute the cracks. The value of Poisson
ratio v, obtained by Zhang and Hsu was carried out in biaxial, strain-control tests using a
servo-control system. This v, value reflects only the strain that corresponds to a real stress,
and not the air gaps that can be closed by almost no stress.

Even with the biaxial, strain-control tests, it is doubtful that the two Poisson ratios obtained
by Zhang and Hsu can be applied in Eq. (10). First, the panels used by Zhang and Hsu are
reinforced with longitudinal steel in the direction of the principal tensile stress (@ of 90°). It
is not clear whether the two Poisson ratios so obtained are applicable to panels with reinforcing
steel in an arbitrary direction (@, from 0° to 90°). Second, the ratios v, and v,; were determined
from sequential loading, a load path that differs from the proportional loading that is used
to determine the moduli E,, E, and G, in Eq. (10). Garza’'s recent tests (1996) showed, however,
that load path has a strong effect on the stress-strain surface of concrete. As such, these two
Poisson ratios are unlikely to be consistent with the three moduli obtained from proportional
loading.

A consistent set of five mechanical properties (E,, E;, Gy v and vy) in Eq. (10) should
be established by extensive new experiments where panels with various steel angles are subjected
to the same proportional loading.

4.3. Proposed tests

The panel tests will be carried out by strain-control mode using the servo-control system (Hsu,
Zhang and Gomez, 1995). In addition to the Poisson ratios, the strain-control mode also allows
us to measure the descending branches of the stress-strain curves of concrete in compression,
tension and shear.

Panels with steel bars in four different orientations (&;=90°, 68.2°, 45°, and 21.8°) will each
be subjected to a principal tensile stress o, and a principal compressive stress 0, of equal magni-
tude (o0o= — o). Fig. 3. They will be both increased in a proportional manner along a 45° dotted
line as shown in Fig. 4(a), so that a pure shear stress is created at an angle of 45° to the
principal 2-1 coordinate.

The proportional loading is approximated by small step-wise increases as shown in Fig. 4(a)
so that Poisson ratios can be measured at each load stage. At low loads, the stress-control mode
will be used to apply o, and 6>. When o is increased, say, from point 2 to point 3, o is
maintained constant. The ratio of the increment of strain &, (Fig. 4c)) to the increment of strain
& (Fig. 4b)) from point 2 to point 3 represents the tension-compression Poisson ratio v;,. When
o, is increased, say, from point 3 to point 4, ¢, is maintained constant. The ratio of the increment
of strain g (Fig. 4b)) to the increment of strain & (Fig. 4(c)) from point 3 to point 4 represents
the compression-tension Poisson ratio vs,.
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Fig. 4 Proportional loading to determine concrete stiffness matrix in general
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At high loads after the yielding of steel, a small increase of load will produce a large increment
of strain. This large increment of strain becomes uncontrollable when the maximum load is
approached, thus resulting in a sudden failure without obtaining the descending branch of the
load-deformation curve. Therefore, strain-control mode must be used at the high load stages
to control both & and &. When g is increased, say, from point 14 to point 15 (Fig. 4b)), &
is maintained constant (Fig. 4(c)). The decrement of strain & required by the Poisson ratio
viz will then be calculated from the drop of the stress o, from point 14 to point 15 using the
unloading stiffness in the 2-direction. Similarly, when &, is increased, say, from point 15 to point
16 (Fig. 4(c)), & is maintained constant (Fig. 4b)). The decrement of strain & required by the
Poisson ratio v, will then be calculated from the drop of the stress o, from point 15 to point
16 using the unloading stiffness in the I-direction.

By subtracting the effect of reinforcement from the stress-strain relationships (o, vs. & and
o1 vs. &) shown in Fig. 4b) and (c), the compressive and tensile stress-strain curves of concrete
[0 vs. & and o vs. g can be calculated, from which the two moduli £, and E, are determined.
By measuring the additional strains & and g in the /- coordinate, the shear stress-strain curves
of concrete [, vs. y5,] can be calculated, from which the shear modulus G, is determined.
These three moduli E,, E,, and G, will be consistent with the two measured Poisson ratios
vi and v, because they are all obtained under the same proportional loading.

5. Application in finite element analysis

Assuming that the /-t coordinate of reinforcement is the global coordinates, the concrete stiffness
matrix [D, ] in the 2-1 coordinate, Eq. (10), can be transformed to the concrete stiffness matrix
[DJ in the /- coordinate (global coordinate):

D) =L11" (D, JT] (11)
The transformation matrix [77] is given by:
cos’a, sina, — Sina,cosa;
[T]= sin’q, cos’a, sina,cosa, (12)
2sina-cosa, —2sinacosa; (cos’a, —sin’)

Using the smeared steel stresses, pf; and pf, the reinforcement stiffness matrix [DJ in the

It coordinates is evaluated as
PE[ 0_ 0
[D]= 0 pE, O (13)

0 0 0

Where_ E, and E, are the secant moduli of steel bars in the /- and r-directions, respectively. E:f// &
and E,=f/g are determined from the stress-strain curve of steel embedded in concrete given

by Eq. (7).
The total material stiffness matrix is the summation of the concrete stiffness matrix and the
reinforcement stiffness matrix in the global coordinate system as

(pl=[D]}+[D} (14)

Then the smeared stress-strain relationship of an element in the /¢ coordinates can be expressed
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Oy &
{of} =[D] {8} (15)
z’-]l }/II

Eq. (15) can be implemented into the smeared-crack model of finite element analysis.

as
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