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Complementarity and nonlinear structural analysis
of skeletal structures

F. Tin-Loi
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Abstract. This paper deals with the formulation and solution of a wide class of structures, in the
presence of both geometric and material nonlinearities, as a particular mathematical programming prob-
lem. We first present key ideas for the nonholonomic (path dependent) rate formulation for a suitably
discretized structural model before we develop its computationally advantageous stepwise holonomic
(path independent) counterpart. A feature of the final mathematical programming problem, known as
a nonlinear complementarity problem, is that the governing relations exhibit symmetry as a result of
the introduction of so-called nonlinear “residuals”. One advantage of this form is that it facilitates applica-
tion of a particular iterative algorithm, in essence a predictor-corrector method. for the solution process.
As an illustrative example, we specifically consider the simplest case of plane trusses and detail in
particular the general methodology for establishing the static-kinematic relations in a dual format. Exten-
sion to other skeletal structures is conceptually transparent. Some numerical examples are presented
to illustrate applicability of the procedure.

Key words: clastoplastic analysis; large displacement; mathematical programming; nonlinear comple-
mentarity problem; structural plasticity.

1. Introduction

Complementarity, namely the requirement that two sign-constrained vectors are orthogonal
or perpendicular, is a typical and recurrent mathematical feature of many problems in nonlinear
mechanics, primarily those involving traditional plasticity (see e.g, Maier and Munro 1982, Maier
and Lloyd Smith 1986, Lloyd Smith 1990) or some form of contact conditions (e.g., Klarbring
1993. Bolzon, er al. 1994, 1995). This was first recognized by Maier in the late 1960s (e.g., Maier
1970) and has since played a unifying role to such broad classes of structural mechanics problems
as the above-mentioned (see e.g.. Maier and Nappi 1984 for an insightful overview of the frame-
work provided by mathematical programming, in particular complementarity, to discrete plasticity).

It is notable that engineering (and other) applications of complementarity (Ferris and Pang
1995) have not escaped the attention of the mathematical programming community. After all,
after more than three decades of research, the subject of complementarity systems has become
a well-established and fruitful discipline of its own, rather than being motivated solely, as in
its origins, by the analysis of stationary points for optimization problems. To engineers, the
study of complementarity problems has a two fold appeal: a refined mathematical formalism
rich in useful theoretical results and a wealth of efficient and robust numerical algorithms.

This paper considers the general formulation and numerical solution of a wide class of structu-
res in the presence of both material and geometrical nonlinearities. In order to be more specific,
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we specialize to the case of skeletal structures with piecewise linear constitutive laws in our
elucidation of static-kinematic duality and in our illustrative examples. The formulation makes
direct use of the vector-matrix analytical dress provided by Maier’'s mathematical programming
framework for an exact formulation as a nonlinear complementarity problem (NCP) in rates.
In view of the difficulties involved in solving the rate nonholonomic problem directly, an approxi-
mate and well-known stepwise holonomic representation is used (De Donato and Maier 1973)
together with the artifice (De Freitas and Lloyd Smith 1984-85) of collecting terms that destroy
the symmetry of key operators in so-called nonlinear “residuals”. This finite incremental holono-
mic form of the formulation is particularly amenable for solution by an iterative predictor-corrector
type scheme which is briefly described. Using the simple case of planar trusses, we show, in
particular, how the static-kinematic relations are obtained in a systematic manner and also in
a form that exhibits duality or contragredience. Such a property is particularly advantageous
for extremum characterizations of solutions and quantifications regarding stability, existence and
uniqueness. However, these and other theoretical considerations are not dealt with in this compu-
tation-oriented work.

The organization of the paper is as follows. In Section 2, we briefly review the governing
relations for a wide class of finite element discretized structures. The computationally tractable,
albeit approximate, stepwise holonomic counterpart is introduced in the following Section 3.
We present in Section 4 the stepwise holonomic problem as an NCP which can clearly be
solved by an iterative scheme involving a predictor-corrector type procedure, the main algorithmic
steps of which are also described. In order to clarify the systematic way in which the key static-
kinematic relations can be set up in the desirable form, namely one exhibiting duality and
symmetry, we detail this in Section 5 using the simplest plane truss case. Combination of statics,
kinematics and the adsumed piecewise linear constitutive laws, leading to expressions for the
key structural operators, is also briefly given. We then present some examples to illustraie applica-
tion of the method in Section 6, before concluding with some general remarks.

A word regarding notation is in order. We do not use any special convention to distinguish
between scalars, vectors and matrices, and between functional dependence and multiplication;
these should be clear from the context. Vectors are assumed to be column vectors. Transpose
is indicated by the superscript 7, the inverse of a matrix by the superscript —1 and a superimposed
dot represents a derivative. The complementarity relation between nonnegative vectors w and
z is written as w’z=0 implying the componentwise condition w;z;=0 for all i.

2. Nonholonomic formulation

Consider a structural system discretized, as is typical, into an aggregate of finite elements
(bars, frame members, etc.). It is assumed that the material behaviour is directly reflected by
the element behaviour (e.g, Corradi 1978) and can be obtained from the classical flow theory
of plasticity.

Following well-known notation and description (Maier 1970) in terms of natural (unaffected
by rigid body motions) generalized quantities, we can compactly describe the general nonholono-
mic rate problem governing the response of the elastoplastic structure under large displacements
by the following set of relations which makes use of the three key ingredients of compatibility,
equilibrium and constitution. Vector and matrix quantities represent the unassembled contribu-
tions of corresponding elemental entities, namely of concatenated vectors and block diagonal
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matrices, respectively.
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Eq. (1) represents compatibility involving a highly nonlinear dependence of strains ¢ on the
nodal displacements (degrees of fredom) u; an explicit example for plane frames is given by
Tin-Loi and Misa (1996). Equilibrium between the nodal load vector F and the generalized
stresses Q is given by Eqgs. (2) and involves the compatibility matrix C. Relations (3)+7) embody
the nonholonomic constitutive laws expressed in rate form, in the spirit of the flow theory of
plasticity. In particular, total strains g are given as the sum of elastic e and plastic p components
in Eq. (3). Elasticity is described in a Lagrangian form by Eq. (4), where S is a symmetric
(not necessarily positive definite) matrix of unassembled element stiffnesses with the residual
R; collecting terms that would otherwise destroy the reciprocity of the elastic causality operators
(De Freitas and Lloyd Smith 1984-85). The plastic strain rates p are defined in Eq. (5) by an
associated flow rule and expressed as functions of the plastic multiplier rates A through the
matrix of unit outward normal vectors N to the yield surface. The generally nonlinear yield
functions ¢ are specified in Eq. (6); this includes Maier’s remarkable piecewise linear representa-
tions as special cases (Maier 1970). Finally, a complementarity relationship between the sign-
constrained vectors ¢ and A establishes the nonholonomic nature of plasticity. The mechanical
interpretation of this condition, for the y-th yield mode, is that (a) if ¢,<0 (no yielding) then
A=0 (no plastic flow) or (b) if ¢,=0 (active yield mode) then either A>0 (plastic flow) or
A,=0 (elastic unloading with ¢,<0 or neutral state with @ =0).

3. Stepwise holonomic formulation

Since the nonholonomic problem, as written in Egs. (1)«(7), is difficult to solve directly, the
entire structural response evolution is best approximated by a sequence of finite incremental
problems, each concerning a configuration change caused by a finite increment of load step,
from a previously known state. The nonholonomic constitutive laws are simply transformed
through an implicit backward difference integration scheme into a stepwise holonomic format
(De Donato and Maier 1973); the penalty, although acceptable in practice, is an approximate
representation. Of course, it is still possible to capture exactly, through some iterative scheme,
events such as plastic activation and elastic unloading, but this may often lead to an unnecessary
computational burden with little gain in accuracy, when numerous activations/unstressing occur.
as is often the case.
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We adopt the notation that any such finite increment is denoted by A and symbols with
and without hats represent known and unknown values, respectively; e.g., x=x+ Ax. The finite
incremental counterpart of the nonholonomic problem then becomes

Ag=qu+Au)—q), ®)
F=F+AF=CT(Q+AQ). ©)
Ag=Ae+ Ap, (10)
AQ=S,Ae+ AR, (11)
Ap=NAA (12)
0=+ A9=0(Q+AQ, A+AN). (13)
#<0, AA>0, ¢" AL =0. (14)

This approximate set of relations requires that any unloading be accounted for at the beginning
of each holonomic step and not within each step. It should also be noted that S, represents
the incremental form of the unassembled stiffness matrix, and matrices C and N are evaluated
at the end of each step.

4. Numerical algorithm for stepwise holonomic problem

The stepwise holonomic problem, as written in Egs. (8)-(14), is not easily amenable to numerical
computation. Also, there does not appear to be a simple way of writing this problem in the
form of a standard NCP for direct solution by one of the many algorithms that exist at present
(e.g, Ferris and Pang 1995). We therefore propose an extension of the classical initial stress
algorithm (e.g, Franchi and Genna 1984) for the numerical solution process.

Let us assume that we can rewrite relations (Eqs. (8)-(14)) as a so-called “mixed” NCP to
facilitate application of a simple iterative scheme. This problem has the basic form

I:<14u I;m{ AL{ _ : 4F+AR1
[Ki,i Ku][Ai]_[—¢]+[ o+ AR, ] (13)
0<0. A0, ¢TAA=0 (16)

where AR, and AR, are nonlinear residuals which have been forcibly introduced to preserve
symmetry of K. The retention of symmetry, as mentioned earlier, is particularly advantageous
if physical extremum characterizations of the problem are required, as they often are.

From the computational viewpoint, it is clearly advantageous to have the governing relations
in the form given by Egs. (15)-(16). The large displacement problem is then almost identical
to a small displacement elastoplastic analysis, with two major differences. Firstly, matrix K is
no longer constant; it is now, in general, a function of the changes in geometry and stress
state of the structure. Secondly, we note the presence of two extra terms representing the nonlinear,
as yet unknown, residuals AR, and AR.. Incidentally. the linear case can be easily recovered
by setting all residuals to zero and using the appropriate small displacement (constant) K matrix.
This observation suggests a simple iterative scheme which basically consists of a sequence of
alternating predictions and corrections of « until the necessary convergence criteria are met.
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In particular, the prediction step involves calculation of Au by solving the first part of Eq.
(15) for some assumed AR, and the correction step refines this estimation through a calculation
of AA from the solution of a simple linear complementarity problem (LCP) given by Eq. (16).
This predictor-corrector type scheme is similar to that detailed in Comi and Maier (1990).

Denoting the iteration number by the superscript i, the algorithmic steps of the predictor-correc-
tor solver can be summarized as follows:

Step 1 (Initialization)
si=1, AA"'=0, AR{"'=0, set convergence tolerance ¢ (e.g. 107%).
¢ Calculate K,,, K,; and K.

Step 2 (Prediction)

e Au'=K,,"(AF—K, AX "'+ AR{™.
e Calculate Ag', AQ, -, AR;. A
« If Euclidean-norm of out-of-balance load [[F+AF—(C™)'Q'"||<gl|AF]| then stop.

Step 3 (Correction)
e Solve the LCP

KIAu+KyuAX=—¢'+ ¢+ AR, (17)
' <0, AN>0, ¢TAA=0. (18)

e Calculate AR/
ei=i+1, go to Step 2.

The following additional remarks are worthy of note.

(a) To traverse critical points and trace unstable equilibrium paths, a standard arc-length proce-
dure can be embedded within the algorithm. This is described in detail by Tin-Loi and Misa
(1996) for the particular case of semirigid frames in which an explicit spherical arc-length const-
raint is used (Forde and Stiemer 1987).

(b) If K,,, is used to compute Au for every iteration, convergence, although guaranteed, can
be very slow. In our implementation for skeletal structures, we have used satisfactorily a predictor
step based on the tangent stiffness and when convergence is not achieved after a preset number
of iterations, the calculations are restarted with K,,. We have, however, found that it is best
to retain K,, for first iterations in order to control the magnitudes of displacement increments
and to ensure better convergence.

(c) The LCP in the corrector phase consists of small-size, uncoupled and positive semi-definite
matrices and therefore should be easy to solve. We recommend use of the standard Lemke’s
algorithm (e.g., Cottle, er al. 1992).

(d) If desired, critical events such as unloading and the activation of hinges can be captured
exactly by iterating on the load steps.

(e) Explicit evaluation of closed-form expressions for the residuals can be reasonably easily
obtained, as shown in the next section for the case of plane trusses. However, it is not absolutely
necessary to do so as these residuals can be indirectly calculated (Tin-Loi and Misa 1996).
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5. Systematic calculation of structural operators

Whilst it is conceptually easy to understand how the governing system (15)(16) is arrived
at, it is not so easy to develop systematically and in a unified manner a method for calculating
explicitly the structural operators required for the analysis. In this section, we review a scheme,
originally attributed to Denke (1960) and later popularized by Lloyd Smith and De Freitas
(e.g., Lloyd Smith 1990), to facilitate the obtention of static-kinematic operators. We detail the
methodology using as example a simple plane truss element and adopt, without undue loss
of generality, piecewise linear plastic laws in the form pioneered by Maier (see Maier and Munro
1982, Maier and Lloyd Smith 1986 for key references) to produce the governing system for the
nonlinear analysis.

It is attractive to develop large displacement formulations for nonlinear structural analysis
based on a small displacement framework. Such was Denke’s aim when he introduced the
concept of additional or fictitious forces. This artifice, it will be seen, can also lead to the preserva-
tion of static-kinematic duality which can be so advantageous for theoretical developments.

We first develop the Lagrangian description of statics and kinematics.

Consider a plane truss as an aggregate of n finite elements. As shown in Fig. 1(a), let Q"
and g™ denote, respectively, the natural generalized stress (axial force) and strain resultants pertai-
ning to a generic element m of length L™ in its undeformed configuration at some orientation
specified by local axes 1-2, with respect to a global reference axis system. Further, let /" and
u™ represent, respectively, the vectors of unconstrained nodal forces and displacements.

The exact description of member equilibrium in its deformed configuration can be expressed
in the form

Fr=[A4" A,,’”][_Q”m] (19)
where 7" is a vector of additional nodal forces, as shown in Fig. 1(b), acting also on the unde-

formed member. The constant matrices 4™ and 4, are defined in terms of the direction cosines
I (i=1, 2) of the local axes i with respect to the Lagrangian axis system as follows:

m— _llm
]

m— __llm —IZm
A, [ I 1 ] (21

In turn, the additional forces are defined by

a=7"Q" (22)
with
mT—| 1 — Lot 6%
z [1 e o (23)

where L. is the deformed member chord length and vector §"7=[87 %] represents auxiliary
displacements (Fig. 2) associated with the additional forces.
Static-kinematic duality (e.g., De Freitas and Lloyd Smith 1984-5) can be maintained by writing
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T

(b)

Fig. 1 Truss element: (a) natural stresses and strains; (b) fictitious forces.

Fig. 2 Original and displaced configurations.

the compatibility equations in an explicitly linear format as follows:

my nm AmT ”
[" s ]=[A”mr]u (24)
where ¢,” is an is an additional fictitious deformation defined, as is obvious from Fig. 2,
by
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Y (25)

We can now combine Egs. (19) and (24) to form the element static-kinematic relations

. A7 Anm u” Fm
AT . . Q’" = q"+tq." (26)
Ao - 6"

which clearly exhibit a duality relationship. As with Eq. (22), it will be convenient to express
g, in terms of 8 through matrix Z”. Simple algebraic manipulations lead to

q"=Z" 8"+ R; 27
where
Rq’,'$=Lm<l - Lo ) (8)

Hence Eq. (26) can be simplified by eliminating 7", §" and ¢, to give
. Cmr][“m] [Fm}li]
= + 29
e e L L @)

OnT:Am“A,,m Al (30)

where

The governing exact Lagrangian static-kinematic relations for the whole structure, covering
all n elements then become

Le eI x ] o

where u represents the vector of nodal displacements, F is the applied nodal load vector, and
the indexless symbols have self-evident definitions associated with conventional finite element
descriptions, e.g, Q"=[Q", -, "], n”"=[#'", ---, #'T], matrices A, A, are assembled through approp-
riate incidence matrices and Z=diag[Z', ---, Z"]. The term R,, is generally considered to be
a vector of residuals which destroy the duality relationship given by Eq. (31).

We now develop the finite incremental counterpart of the static-kinematic relations.

For statics, the incremental version of Eq. (19) is

AFm:[Am A"m] [_Agnm] (32)
while for kinematics Eq. (24) is replaced by
m+ nm AmT "
|40 || ] e (33)

Further, the incremental forms of Egs. (22) and (25) are, respectively,
Ar"=Z"AQ"+P" AS8,"+AR,", (34)
Aq"=Z"AS"+ AR, (39)
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where, with Z"T=[Z/" Z,"],

z Zlle 2Zlm (Z:71‘1)ern] 3%
i o0z Zrzi—1 ) (36)

ARﬁ:—ZLl; (A" Ag"— A8 A, (37)
—-QP’"AcSmeAM(Q’H-AQ’")[ “n! ] (38)

The key incremental description of statics can be obtained by substituting Eq. (34) into Eq.
(32) and using Eq. (33) to eliminate AS,”. Similarly, for kinematics, we substitute Eq. (35) into
the first part of Eq. (33) and then use the second part of Eq. (33) to eliminate Aé,”. The resulting
static-kinematic relations then read

om o oml m m m m
L& LA H A R )
where
Kom=—Aa"Pra;, (40)
CrT=A"—A,"Z". (41)
At the structure level, the static-kinematic relations become
[k & ][22 2

by a familiar reinterpretation of the indexless form of Eq. (39), as was explained for the Lagrangian
case.

Let us now adopt piecewise linear plastic laws (Maier 1970) so that Eq. (13) becomes
¢=¢+Ap=N"(Q+AQ)—H(A+AL)+R 43)

where N is now constant, / is a hardening matrix and R is a vector of yield limits defined
by the orthogonal distances from the origin to the various yield hyperplances in stress space.

We can easily manipulate Eqs. (10)-(14), (42). and (43) to give precisely the stepwise holonomic
system (15)-(16) with

K =C"S,C+Kg. (4

K.,=—C"S,N. (45)
K,,=H-+NTS,N. (46)
AR=—C"AR+C"S,AR,,+A4,AR,, (47)
AR,=N"AR,—N'S,AR,, (48)

6. Numerical examples

Numerous examples have been solved using the procedure described in the foregoing sections.
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- Only three are presented in this paper to illustrate application of method to skeletal structures.
Some idea of the generality and robustness of the scheme can be obtained from the types of
analyses involved.

Example 1 deals with a purely elastic shallow truss dome (Hangai and Kawamata 1973, De
Freitas, et al. 1985) that is usually considered to be a benchmark problem for evaluation of
geometrically nonlinear solution algorithms. Example 2 concerns the stiffening behaviour of
a clamped elastoplastic beam at finite deformations, while Example 3 is a three storey one
bay elastoplastic frame which exhibits an unstable post-collapse response.

6.1. Example 1

This example is concerned with the shallow truss dome shown in Fig. 3. Under the assumption
of a linear elastic materia! with 4=1 cm?’ we analysed it for two load cases: (a) a point load
P applied vertically downwards at node 1 together with point loads of 2P applied also vertically
downwards at each of nodes 2-7, and (b) the same pattern of loading as for the previous case
but with an imperfection introduced into the structure consisting of reducing by 0.2 cm the
vertical heights above the ground of nodes 2, and 5. '

For these load cases, Figs. 4(a)(c) show our results in the form of load versus vertical or
radial deflections at the indicated nodes, solid circles refer to the original structure and crosses
to the imperfection induced case. The results of De Freitas, e al (1985), who used a work perturba-
tion approach, are shown as solid lines for comparison. Very good agreement was obtained
for both the original structure and for the topographically altered structure.

6.2. Example 2

The second example concerns a fixed ended beam under distributed loading. This example
was experimentally investigated by Pang and Millar (1978) to study the effect of geometry change
and axial restraint on post-elastic behaviour. It is a particularly challenging problem to simulate
numerically as it obviously involves travelling hinges, which form and unload with increase
of load.

The beam has a rectangular section 24 mm wide by 8 mm deep, made of an aluminium
alloy with E=68X10° MPa and yield stress of 310 MPa. As Pang and Millar (1978) did, we
simulated the distributed load by ten equally spaced point loads. We analysed only half the
beam because of symmetry. Two piecewise linear yield conditions, as shown in Fig. 5(a), were
assumed; both are inscribed polygons to the classical yield locus of a rectangular section.

The graphs in Fig. 5(b) represent nondimensional load versus central deflection results; also
shown are Pang and Millar's theoretical and experimental solutions. It should be noted that
w=P/40 N/mm, the classical rigid-plastic collapse load w,=11.904 N/mm and 4 is the beam
depth. Inspite of the fact that slight end rotations might have occurred in the experiment, according
to Pang and Millar™{1978), the theoretical and experimental results are acceptably close. As
expected, the three planes per quadrant idealization yields a better correlation with experimental
results.

6.3. Example 3

In this example, a three storey one bay frame was analysed to compare our numerical results
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Fig. 3 Example 1: shallow truss dome.
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Fig. 4 Load-deflection results for Example 1: (a) vertical deflection at node 1; (b) vertical deflection
at nodes 2-7; (c) radial deflection at nodes 2-7.
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Fig. 5 Example 2: (a) yield polygons; (b) load-deflection results.

with those of a full-scale test. This frame was tested by Yarimci (1966) under nonproportional
loading conditions.

The frame geometry and loading condition are shown in Fig. 6(a). Material and geometrical
properties (kN, cm units) are: beams (I0WF25) E=2.0233 X 10%, 4=49.10, [=5994 X 10°, M,=1.243
X 10% columns (SM18.9) E=2.0844 X 10*, 4=35.81, /= 1.003X 10°, M,=4.519X 10°, N,= 889.60, where
M, and N, represent the full plastic moment and axial capacities, respectively. The vertical loads
F,=102304 kN and F>=88.96 kN were first applied and maintained during subsequent application
of the horizontal load H. In our analyses, we adopted rigid beam-to-column connections to
model the fully welded connections. We further assumed that columns yielded under combined
moment and axial force (using a piecewise linear yield locus with two hyperplanes per quadrant
with a breakpoint at M/M,=1, N/N,=0.15) while beams yielded in pure bending.

The results of our analyses, both under the assumptions of a second-order theory and an
exact large displacement formulation, are shown in Figs. 6(b) and 6(c). In Fig. 6(b), we show
the hinge dispositions at the indicated limit loads. The test results gave a limit load of 7.17
kN. We compare, in Fig. 6(c), the load-displacement results of Yarimci (1966) with our computed
responses; our exact large displacement analysis reproduces reasonably well the experimentally
recorded response, even in the post-critical region.
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Fig. 6 Example 3: (a) structure and loading; (b) hinge dispositions at critical loads: (c) load-deflection
results.

o

7. Concluding remarks

A general methodology for the formulation and solution of a large class of elastoplastic prob-
lems within the large displacement regime has been presented. Starting from the space discretized
nonholonomic problem in rates, we show how the analysis can be transformed into its stepwise
holonomic counterpart by an approximate backward difference scheme.

For computational (and theoretical) purposes, we indicate that it is desirable to cast the gover-
ning equations into a symmetric form which is very similar to that of a small displacement
analysis except for the presence of some nonlinear residual terms. It is then not only easy to
generate, if desired, any order analysis from such a format but, more importantly, we can apply
known path-tracing solution algorithms for its numerical solution. In particular, we propose
a robust variant of the classical predictor-corrector algorithm to solve the resulting mathematical
programming problem known as a mixed NCP. Comments regarding measures to speed up
convergence, to capture critical events and to trace any unstable equilibrium paths are made.

Using the case of a planar truss, we also reviewed in some detail a framework, popularized
by Lloyd Smith and co-workers, for systematically obtaining the key structural operators required
for the nonlinear analysis. In essence, the device of fictitious forces and deformations are used
to set up static-kinematic duality. The resulting equilibrium and compatibility equations can
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then be easily combined with the assumed piecewise linear plasticity laws to give the final gover-
ning system.

Extensive computational testing, three examples of which we report herein, attests to the robust-
ness, accuracy and relative efficiency of the proposed numerical scheme.

Current work is aimed at attempting to solve the relation set (8)(14) directly by using the
high-level mathematical programming modelling language GAMS (Brooke, er al. 1988), which
has the ability to perform automatic differentiation and to transparently call powerful state-of-
the-art NCP solvers such as PATH (Dirkse and Ferris 1995).

Acknowledgements

This work was partly funded by the Australian Research Council. I would also like to thank Professor
Jong-Shi Pang, Department of Mathematical Sciences, The Johns Hopkins University for many enlighte-
ning discussions regarding the nonlinear complementarity problem, and Mrs. Shao-Hua Xia for help
with the computations.

References

Bolzon, G., Maier, G. and Novati, G. (1994), “Some aspects of quasi-brittle fracture analysis as a linear
complementarity problem”, in Fracture and Damage in Quasi-brittle Structures, eds. Z.P. Bazant, Z.
Bittnar, M. Jirasek and J. Mazars, E & FN Spon, London, 159-174.

Bolzon, G., Maier, G. and Tin-Loi, F. (1995), “Holonomic simulations of quasibrittle fracture processes”,
in Fracture Mechanics of Concrete Structures, ed. F.H. Wittmann, AEDIFICATIO Publishers, 885-898.

Comi, C. and Maier, G. (1990), “Extremum theorem and convergence criterion for an iterative scheme
to the finite-step problem in elastoplasticity with mixed nonlinear hardening”, European Journal
of Mechanics A/Solids, 9, 563-585.

Brooke, A., Kendrick, D. and Meeraus, A. (1988). GAMS: A User’s Guide, The Scientific Press, San Francisco,
CA.

Corradi, L. (1978), “On compatible finite element models for elasticplastic analysis”, Meccanica, 13, 133-
150.

Cottle, RW., Pang, J.S. and Stone, R.E. (1992), The Linear Complementarity Problem, Academic Press.

De Donato, O. and Maier, G. (1973), “Finite element elastoplastic analysis by quadratic programming;
the multistage method”, Proceedings 2nd International Conference on Structural Mechanics in Reactor
Technology (SMiIRT), Berlin, Vol. V, Part M, Paper M2/8, 1-12.

De Freitas, JAT., De Almeida, JP.BM. and Virtuoso, F.B.E. (1985), “Nonlinear analysis of elastic space
trusses”, Meccanica, 20, 144-150.

De Freitas, JAT. and Lloyd Smith, D. (1984-85), “Elastoplastic analysis of planar structures for large
displacements”, Journal of Structural Mechanics, 12, 419-445,

Denke, P.H. (1960), “Nonlinear and thermal effects on elastic vibrations”, Technical Report SM-30426,
Douglas Aircraft Company.

Dirkse, S.P. and Ferris, M.C. (1995). “The PATH solver: a non-monotone stabilization scheme for mixed
complementarity problems”, Optimization Methods & Sofiware, 5, 123-156.

Ferris, M. and Pang, J.S. (1995), “Engineering and economic applications of complementarity problems”,
Technical Report 95-07, Computer Sciences Department, University of Wisconsin, Madison (to appear
in SIAM Review).

Forde, BW.R. and Stiemer, S.F. (1987), “Improved arc length orthogonality methods for nonlinear finite
element analysis”, Computers & Structures, 27, 625-630.

Franchi, A. and Genna, F. (1984), “Minimum principles and initial stress method in elastic-plastic analy-
sis”, Engineering Structures, 6, 65-69.



Complementarity and nonlinear structural analysis 505

Hangai, Y. and Kawamata, S. (1973). “Analysis of geometrically nonlinear and stability problems by
static perturbation method”, Report of the Institute of Industrial Science, 22(5), The University of Tokyo.

Klarbring, A. (1993). “Mathematical programming in contact problems”, in Computational Methods in
Contact Mechanics, eds. M.H. Aliabadi and C.A. Brebbia, Computational Mechanics Publications,
Southampton, 233-263.

Lloyd Smith, D. ed. (1990), Mathematical Programming Methods in Structural Plasticity, CISM Courses
and Lectures, Udine, 1986, Springer-Verlag, New York.

Maier, G. (1970), “A matrix theory of piecewise linear elastoplasticity with interacting yield planes”,
Meccanica, 5, 54-66.

Maier. G. and Lloyd Smith, D. (1986), “Update to mathematical programming applications to engineering
plastic analysis”, Applied Mechanics Update ASME, 377-383.

Maier, G. and Munro, J. (1982), “Mathematical programming applications to engineering plastic analysis”,
Applied Mechanics Reviews, 35. 1631-1643.

Maier, G. and Nappi, A. (1984). “On the unified framework provided by mathematical programming
to plasticity”, in Mechanics of Material Behaviour, D.C. Drucker Anniversary Volume, eds. GJ. Dvorak
and R.T. Shield, Elsevier, 253-273.

Pang. PLR. and Millar, M.A. (1978), “Experimental behaviour of fixed ended beam under simulated
uniformly distributed load”, International Journal of Mechanical Sciences, 20, 675-683.

Tin-Loi, and Misa, J. (1996). “Large displacement elastoplastic analysis of semirigid steel frames”, Interna-
tional Journal for Numerical Methods in Engineering, 39, 741-762.

Yarimci (1966). Incremental Inelastic Analysis of Framed Structures and Some Experimental Verifications, PhD
Thesis, Lehigh University, Bethlehem, PA.





