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Abstract. In this paper, the classical Irons’ patch tests which have been generally accepted for the
convergence proof of a finite element are performed for Mindlin plate bending elements with a special -
emphasis on the nonconforming elements. The elements considered are 4-node and 8-node quadrilateral
isoparametric elements which have been dominantly used for the analyses of plate bending problems.
It was recognized from the patch tests that some nonconforming Mindlin plate elements pass all the
cases of patch tests-even though nonconforming elements do not preserve conformity. Then, the clues
for the Mindlin plate element to pass the Irons’ patch tests are investigated. Also, the convergent characte-
ristics of some nonconforming Mindlin plate elements that do not pass the Irons’ patch tests are examined
by weak patch tests. The convergence tests are performed on the benchmark numerical problems for
both nonconforming elements which pass the patch tests and which do not. Some conclusions on the
relationship between the patch test and convergence of nonconforming Mindlin plate elements are drawn.

Key words: nonconforming Mindlin plate element; Irons’ patch tests; weak patch test; convergence
requirement.

1. Introduction

In the past few decades, a lot of research efforts in the development of Mindlin plate elements
have been directed at avoiding shear-locking problems and also at improving the performance
in a coarser mesh, thus rendering them effective and reliable for thin plate/shell applications.
As a way to accomplish the objective, the research in the nonconforming finite elements has
drawn interests of a number of finite element analysts because these elements generally show
an improved performance than conforming counterparts (Choi and Schnobrich 1975, Taylor,
et al. 1976, Choi and Kim 1989, Choi and Park 1989, Kim and Choi 1992).

To ensure the convergence of a finite element, it is necessary for the interpolation functions
to fulfill the completeness criteria. The patch test which has been generally accepted for the
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convergence proof of a finite element was first introduced by Irons, et al. as a part of the develop-
ment of a set of plate bending elements to check that the incompatible Kirchhoff plate bending
element can reproduce a state of constant strain (Bazeley, er al. 1966, Irons and Razzaque 1972).
A lot of studies on the theory and practice of the test were followed after Irons’ initial work.
Razzaque (1986) suggested that an element must pass the patch test to converge. Taylor, er al(1986)
reported that the patch test is the necessary and sufficient condition for the convergence of
solution and also suggested the concept of weak patch test where the constant strain condition
need not be satisfied exactly at the initial stage but should be satisfied at the limit as the patch
size tends to zero. Belytschko and Lasly (1988) suggested a ‘fractal’ patch test which uses a
sequence of distorted meshes where the initial distorted patch structure is successively refined
by fractal refinement. Even though some researchers are suspicious if passing the patch test
can guarantee the convergence, (Verma and Melosh 1987, Stummel 1980) it still remains as
a valuable tool for the finite element convergence test and as a debugging aid.

In this study, the patch tests for Mindlin plate bending elements with a special emphasis
on the nonconforming 4-node and 8-node elements are presented. The nonconforming elements
generally violate the interelement continuity of displacements because of the addition of higher
modes to the basis element. Therefore, it is desirable to investigate the convergence of the noncon-
forming type elements by the patch tests.

The clues fo pass the standard patch tests for the nonconforming Mindlin plate elements
are investigated to the depth in this study. For the nonconforming elements which fail to pass
the Irons’ patch test, the weak patch tests are also performed to examine the convergent characteri-
stics of the elements. Then, the convergence tests are performed on the benchmark numerical
problems for both nonconforming elements which pass the patch tests and which do not. Some
conclusions on the convergence requirement of nonconforming Mindlin plate elements are drawn
from these numerical results.

2. Formulation of nonconforming Mindlin plate element

In the Mindlin plate shown in Fig. 1, the displacement fields, i.e., the transverse displacement
w and two rotations a and f, are assumed by the same shape functions as follows.

w n Wi
{a}: N:ja; ey
g) ! B:

where, n is the number of nodes in an element. The shape functions N, for quadrilateral elements
are easily found in the published literatures (Bathe 1982). The curvature and shear strain compo-
nents are then given by the following equations.

X« — do/éx
X=3 X (= — oy =B,u (2a)
Xy —(da/ v+ AP/ &)

AR Ea e @



The patch tests and convergence 473

/ &
//
7y

Fig. 1 Degrees of freedom for Mindlin plate.

where, B, is the bending strain matrix, B, is the shear strain matrix, and # is the nodal displace-
ment vector {w 0 Qi ,B,-}T, Then, the element stiffness matrix K, is obtained in the following
form.

K‘,:j BbTD,,B,,dV-i—f B'DB,dV 3)
Vv 4

where, D, and D, are material matrices for the bending and shear rigidity.

It is well known that the isoparametric Mindlin plate bending element, when the stiffness
matrix of the element in Eq. (3) is formed by the normal Gaussian integration, shows a poor
accuracy of solution especially in low order element. This is associated with the evaluation of
incorrect shear strain which makes an element too stiff in a bending mode.

The major schemes suggested to remedy these problems are: 1) the addition of nonconforming
displacement modes (Choi and Schnobrich 1975, Taylor, et al. 1976, Choi and Kim 1989, Choi
and Park 1989, Kim and Choi 1992); 2) the reduced (selectively) integration (Zienkiewicz, et
al. 1971, Pugh, et al. 1978); and 3) the construction of the substitute shear strain fields (Hinton
and Huang 1986, Donea and Lamain 1987). For the development of appropriate Mindlin plate
elements, the first remedy, i.e, addition of nonconforming modes, enriches the interpolation func-
tions with higher modes whereas the latter two techniques lead to lowering the order of shape
function for the representation of shear strains.

In formulation of the nonconforming elements, it is desirable that the nonconforming displace-
ment modes are of the same form as the errors or what are missing in the original displacement
approximation. Thus, the actual displacement field can be better approximated by the addition
of nonconforming displacement modes and can be expressed as

u,:ZNz'ui+ZNI'L_ll' (4)

where, N, =original conforming shape function, N, =nonconforming modes, u; =original nodal
displacement components, and u; =additional unknowns corresponding to the nonconforming
modes.

Then, the enlarged force-displacement equation is formulated by direct application of the princi-
ple of minimum potential energy and obtained as

FEFARHE: s

where, subscript ¢ denotes conforming and » nonconforming part, respectively, and each submatrix
is defined as follows.
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Fig. 2 Nonconforming displacement modes for 4-node element.
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K., = f BT DBdV (6)
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In Eq. (5), F means the physical nodal force vector and the null vector 0 in the lower part
of the load vector indicates that no nodal loads can be applied in association with the nonconfor-
ming modes. In Eq. (6), B and B denote strain matrices by conforming and nonconforming
parts, respectively.

The enlarged element stiffness matrix in Eq. (5) can be condensed back to the same size
of stiffness matrix of the original conforming elements, The modified set of equations now beco-
mes

(ch *KcnKnnlech)u:F (7)

The nonconforming displacement modes for a 4-node element are shown in Fig. 2 and the
polynomial functions are as follows.

Ni=(1-&)
No=(1—n?)
Ny=n(1—&) ®)
N4:§(1—772)

Ns=(1-&)1-n%)
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Fig. 3 Nonconforming displacement modes for 8-node element.

Similarly, the nonconforming displacement modes for 8-node element are shown in Fig. 3 and
the polynomial functions are as follows.

Nl ={(1—&)

N,=n(1—n%)

Ny=En(1—&) 9)
N,=&n(1—n?)

Ns=(1—-&)1-1?)

The first two modes in Egs. (8) and (9) are to enhance the flexural behavior and the third
and the fourth modes contribute to soften the twisting behavior. The fifth mode adds the bubble
shape displacement in the element. Selective combinations of the nonconforming displacement
modes defined in the Egs. (8) and (9) are possible to form various types of nonconforming
elements.

Based on the previous development of efficient nonconforming Mindlin plate bending elements,
the notable 4-node elements are listed in Table 1 and 8-node elements in Table 2 together
with conforming counterparts (Choi and Schnobrich 1975, Choi and Kim 1989, Choi and Park
1989, Kim and Choi 1992). In the Tables 1 and 2, the first character ‘C" indicates the original
conforming (isoparametric) element and ‘NC’ denotes nonconforming element. The integration
orders in Tables 1 and 2 for the evaluation of bending and shear stiffness are the minimum
orders required to avoid the zero-energy modes.

3. The patch tests
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Fig. 4 Patch tests; (a) Configuration of model, (b) Pure bending, (c) Pure shearing,
(d) Pure Twisting.

Table 1 Designation and patch test results for 4-node elements

. . Nonconforming modes Integration order Patch test

Designation - : .
w a B K, K, Bending  Shearing Twisting

C4 — — 2 2 Fail? Pass Fail '
NC4-Al N - 2 2 Fail Pass Fail
NC4-A2 - Ns 2 2 Fail Fail Fail
NC4-A3 Ns Ns 2 2 Fail Fail Fail
NC4-B0 NN, - 2 2 Fail? Fail? Fail?
NC4-Bl Ni, N2, Ns - 2 3 Fail? Fail? Fail*
NC4-B2 _ N, Ny N5 2 2 Fail* Fail ! Fail?
NC4-B3 Ni, N2, Ns Ns 2 3 Fail* Fail ' Fail*
NC4-C0 Ni~N, - 2 2 Pass Fail* Pass
NC4-Cl Ni~N5s — 2 3 Pass Fail* Pass
NC4-C2 Ni~N, Ns 2 2 Pass Fail* Pass
NC4-C3 N,~N; N;s 2 3 Pass Fail® Pass

t pass the weak patch test (WPT) in thick plate only
¥ pass WPT in thick and thin plate
% do not pass WPT in thick and thin plate

The methodology for the patch tests is found in a number of published materials (Bathe
1982, Hinton and Huang 1986). In the plate bending problem, the patch test should be carried
out for three cases of pure stress/strain states, namely, the pure bending, pure shearing, and
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Table 2 Designation and patch test results for 8-node elements

. . Nonconforming modes Integration order Patch test
Designation - - —
w a B K, K, Bending  Shearing Twisting

C8 — - 3 2 Fail* Pass Fail*
NC§-Al Ns — 2 3 Pass Pass Pass
NC8-A2 - N5 3 2 Fail ¥ Fail ! Fail#
NC8-A3 Ns N 3 3 Pass Fail f Pass
NC8-AS" N;, N4 Ns - 2 3 Pass Pass Pass
NC8-BS" N5 _ - 2 3 Pass Pass Pass
NC8-CS" N, N2, Ns — 2 3 Pass Pass Pass
NC8-DS" N{~Nj; - 2 3 Pass Pass Pass
NC8-QH? - Ny, N, N 3 2 Fail¥ Fail t Fail

1): Choi and Kim 1989.

2): Kim and Choi 1992.

t pass the weak patch test (WPT) in thick plate only
¥ pass WPT in thick and thin plate

b Wi w2
(a) (b) ©)
40 #11 f2 2~ (Tye . (I\a’ N=1-¢2
é * * ) et $2 /N
¥
}—ox ‘ — X "—.6 |
L L 1 2

Ni= 3(1-8)  Na= $(1+¢)

Fig. 5 Beam analogue; (a) Cantilever beam subject to end moment, (b) Linear beam element,
(c) Nonconforming mode.

pure twisting cases. Patch test models with the meshes of arbitrary quadrilaterals and the loading
features for the three conditions are shown in Fig 4.

The patch test results for the 4-node conforming and nonconforming Mindlin plate elements
are listed in Table 1, and 8-node elements in Table 2. As recognized in the tables, the original
isoparametric conforming elements, C4 and C8, do not pass the Irons’ patch tests except for
the pure shearing case, whereas some of the nonconforming 8-node elements, such as NC8-AS
through NC8-DS, pass all the three pure stress cases.

3.1. Pure bending

The clues to pass the pure bending test depicted in Fig. 4(b) will be explained by beam
analogue. Consider a cantilever beam which consists of two linear elements and is subjected
to a bending moment at its end as shown in Fig. 5(a). In the situation, the cantilever beam
is in the state of pure bending and the exact solutions for transverse displacement and rotation
are as follows.

2

M,
Wexact:_z%lgx s aexact:ﬁx (10)
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The transverse shear strain 7, in Eq. (2b) of the #2 element (x=L/2~L) as shown in Fig.
5(b), for example, is obtained as follows.

_3(M,L\ (3 M,L .M,L
”*‘“4( El ) (4 El ¢ 4EI> (1)
where,
o _4 o= M,L> . _M,L? go=ML ML (1)
& L 7' 8EI 2 2EI "O2Er 2T EI

From Eq. (11), if the normal Gauss integration (i.., a two-point integration) is applied to evaluate
the shear stiftness, the transverse shear strains could never be zero at &= 1A/ 3 whereas the
actual transverse shear strain should be zero in the pure bending state. Therefore, the pure
bending situation of the original linear beam element can not be properly represented.

If a nonconforming displacement mode, N=1—¢& in Fig. 5(c), is added to the transverse
displacement field of the bilinear element, the new displacement is defined as

W’:(N|W|+N2Wz)+]_v1;/ (12)

and the transverse shear strain is now obtained as

3 M,L 3ImML | ML
"= (4 T O "e) ) (4 EI +§4EI> (13)
The expression in the first parenthesis of the right hand side in Eq. (13) is ow'/éx and the
second is @ which is unchanged. In case of w=—M,L*/32EI, the transverse shear strain in
Eq. (13) becomes zero irrespective of the location of integration point &

The observation on the beam analogue reveals two facts for a Mindlin plate element to represent
pure bending state; (1) the transverse displacement field should be complete to the quadratic
order. (2) the polynomial terms remaining after differentiation of transverse displacement, i.e.,
/& and /¢y, should envelope the polynomial terms appeared in the expression for the
rotations @ and B These facts mean that the incorrect shear in Mindlin plate elements must
be removed properly not to prohibit pure bending behavior of the elements by matching the
polynomial terms of ow/ax (and ow/dy) and those of a (and ), eventually rendering the shear
strains to be zero.

In the original isoparametric 4node element (C4 in Table 1), the transverse displacement
field is incomplete to the quadratic order due to the missing terms (¢ n*). Also, for the represen-
tation of shear strain 7., the polynomial terms stemming from /g contain <1, & 17> whereas
the rotation a contains <1, & 1, &) and similar situation occurs for ¥,(=ow/dy— P). Then, the
polynomial terms (&7, &n?) which are necessary to produce the term (&) after differentiation
are absent in the expression for the transverse displacement field of C4 element. It is, therefore,
necessary to complement the four terms <& n° &7, én°) into the transverse displacement for
the 4-node element to pass the patch test for the pure bending state.

In the case of original 8-node element (C8 in Table 2), for the representation of ,, the polyno-
mial stemming from ow/ax contains the terms <1, & 1, &, &, n°) whereas the polynomial
terms <1, & 0, &, &, n?, &n, &?) are included in the expression of rotation ¢ and a similar
problem also occurs for y,. The former, which is an expression of the transverse displacement
field of C8 element, is complete to the quadratic order, and thus {£?n°) is the only term absent
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Fig. 6 Polynomial terms stemming from ow/ck or ow/cy and rorational degrees of freedom (4-node).
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Fig. 7 Polynomial terms stemming from ow/dx or ow/dy and rorational degrees of freedom (8-node).

in ow/ax and ow/dy for the representation of pure bending.

Such defective problems in C4 and C8 elements can be solved by enhancing the polynomial
order of the transverse displacement field. The systematic views are shown in Figs. 6 and 7
for 4-node and 8-node elements, respectively. To compensate the missing terms in the transverse
displacement fields, addition of higher order modes is one of the possible means.

For the 4-node nonconforming elements, the nonconforming modes N, and N, in Eq. (8)
contain the terms {¢% 7*) and the modes N; and N, contain the terms (&1, &n*), respectively.
The fifth mode N5 provides the term {£*n?). The NC4-Ai(i=1, 3) series elements which have
N5 mode in the transverse displacement, do not possess_any of the required terms {&, 17 &1,
&n*). The NC4-Bi(i=0~3) series elements which have N, and N, modes (and Ns for NC4-Bl
and NC4-B3) in the transverse displacement, possess the terms (&% 1n?) but lack the terms
(&n, &n*>. Therefore, NC4-Ai and NC4-Bi scries elements do not pass the patch test for pure
bending case. On the other hand, the NC4-Ci(i=0~3) series elements which have N,, N,, N;,
and N4 modes (and N5 for NC4-C1 and NC4-C3) in the transverse displacement, possess all
of the required terms {&% n?% &7, én?) to pass the patch test for pure bending case as stated
earlier.

For the 8-node nonconforming elements, NC8-Ai series elements and NC8-AS through NC8-
DS which have N5 modes in transverse displacement field pass the pure bending test since
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this mode complements the term {(£*n?). However, the NC8-A2 and NC8-QH elements do not
pass the pure bending case because these elements do not have the N5 modes in the transverse
displacement field and thus lack the term {&*n?).

3.2. Pure shearing

As noticed in Tables 1 and 2, the original isoparametric elements C4 and C8 pass the patch
test for the pure shearing case. For the pure shearing condition shown in Fig. 4(c), all the
rotational degrees of freedom are supressed and only the transverse degrees of freedom remain
active. Recognizing that the transverse deflection is linearly distributed along the horizontal axis,
if the shape function for transverse displacement field contains the bilinear terms <1, & n, &,
it is sufficient for a Mindlin plate element to represent the constant shear strain state. This
is clearly seen for the conforming C4 and C8 elements.

From Tables 1 and 2, it is also recognized that nonconforming elements for which the noncon-
forming modes are added to the rotational degrees of freedom do not pass the test for the
pure shearing case. As shown in Egs. (2a) and (2b), the rotational degrees of freedom a and
B take part in both the bending strains and shear strains. Therefore, addition of nonconforming
displacement modes to rotational degrees of freedom cause the coupling of bending and shear
strains in the formulations of the submatrix K, defined in Eq. (6) and manipulated in Eq.
(A.3) in Appendix. The coupling of shear behavior with the bending behavior may cause the
contamination and disturbance of the pure shearing situation.

On the other hand, when nonconforming modes are added to the transverse displacement
field only (e.g. NC4-Al, NC4-B0, etc. in Table 1), the matrix K, possesses the shear rigidity
only as shown in Eq. (A4) in Appendix.

In the case of 4-node element, addition of nonconforming modes in Eq. (8) to the transverse
displacement field may contaminate the bilinear terms <1, & 1, &) of conforming shape functions.
The nonconforming modes N, N, N3, N4, and N5 in Fig. 2 contain the polynomial terms (&2,
n%, &, &’ £n°) as the highest order term of the polynomial and the derivatives of these
modes (ie, w/ax or dw/dy) yield (&, (M, <& &, <&, n?), and {&n, &) from N, N,
N3 N4 and N, respectively. These terms are coupled with the original conforming parts in
the matrix K, as shown in Eq. (A4). Therefore, the nonconforming 4-node elements with any
of the Ny, N,, N3, Ny modes which produce the bilinear terms after differentiation of transverse
displacement, failed in the patch test for the pure shearing case while the NC4-Al element
with N5 mode which does not produce any bilinear term passes the patch test.

For the 8-node element, the nonconforming modes N, N, N3, N4, and N5 in Eq. (9) contain
the polynomial terms (&, n°, &n, &7 £n%) as the highest order term of the polynomial,
respectively, and the derivatives of these modes yield (&), (n?), (&, &m), {(&n* n*), and (&,
&n*) from Ny, N, N3, N, and N, respectively. Thus, these nonconforming modes which do
not produce linear terms after differentiation of the transverse displacement do not contaminate
the original conforming linear filelds and thus the pure shearing situation is preserved in the

case of 8-node element.

When the nonconforming modes are added to transverse displacement field, the 8-node non-
conforming elements (NC8-Al, NC8-AS through NC8-DS) pass the test for pure shearing case,
but most of 4-node nonconforming elements except NC4-Al failed to pass. It will be seen in
the convergence test if the elements which did not pass the patch test for the pure shearing
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case can converge to the exact solution.
3.3. Pure twisting

The patch test results for the pure twisting case are the same as those for the pure bending
case as shown in Tables 1 and 2. In the pure twisting condition, two adjacent edges are simply
supported and the distributed tangential edge moments with a constant intensity are applied
along the opposite edges as shown in Fig. 4(d). For the situation, only the curvature defined
as df/ex+da/dy in Eq. (2a) is non-zero and all other components including the transverse shear
strains are zeros. This situation is similar to the pure bending case where the transverse shear
strain is zero and the curvatures in each direction (da/dx or gB/dv) are constants. Therefore,
a Mindlin plate element which can represent the pure bending behavior by raising the polynomial
order of the transverse displacement field to remove the incorrect shear as described earlier
passes the pure twisting test.

4. Weak patch tests

Among a number of finite elements which do not pass exactly the classical Irons’ patch test,
many of these elements are still reportedly convergent (Kim and Choi 1992, Hughes and Cohen
1978). As will be shown herein, this is true for nonconforming elements as well as isoparametric
conforming Mindlin plate bending elements.

The weak patch test is accepted as a tool to relax the strict Irons’ patch test for convergence
proof (Taylor, et al. 1986, Belytshko and Lasly 1988). In the test, the errors in the displacement
and those in the stress should diminish as the mesh is progressively refined. The former can
be evaluated by comparion with the exact displacement and the latter by means of the energy
norm which measures the stress error.

Elements C4, NC4-Bi(i = 1 ~3), NC4-B2, and NC4-Ci(i=0~3) of the 4-node model and elements
C8, NC8-QH, and NC8-A2 of the 8-node model are selectively checked if the nonconforming
Mindlin plate elements which do not pass the Irons’ patch test can pass the weak patch test.
For the weak patch tests, the successively refined meshes with distorted shapes, ie., 4x4, 8x8,
12x12, and 16x16 meshes for 4-node element models and 2x2, 4x4, 6x6, and 8x8 meshes for
8node models as shown in Fig 8, are constructed for thick and thin plates and are tested
under the pure bending and pure shearing conditions as shown in Fig. 4 to see if a constant

(a) ¢ by 7~ (©) B

- - A
Fig. 8 Mesh sequences for weak patch test (8-node element); (a) 2x2 mesh, (b) 4x4 mesh, (c) 8x8 mesh.
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Fig. 9 Error in energy norm versus number of degrees of freedom from weak patch test; (a) NC4-BO,
(b) NC4-B2, (¢) NC4-C2, (d) C8, (¢) NC8-QH.

strain state (or nearly constant state) can be obtained as the mesh is refined.

One natural, convenient, and frequently used mathematical tool to measure the finite element
approximation error is the energy norm which measures the strain energy of errors and is defined
as

|lefl EZ:fn (O exacr — Orem)’ D ™ (O pvacr — Orem XN (14)

For convergence proof, the error norm should decrease with the mesh refinement. The errors
in energy norm with the progressively refined meshes for weak patch tests are plotted on the
log-log scale in Fig. 9 for some selected elements NC4-B0, NC4-B2, NC4-C2, C8 and NC8-QH.
It is recognized that the errors in energy norm decrease in general monotonically with mesh
refinement for all the selected elements. This means that the magnitudes of stress error decrease
and each element can gradually represent the constant strain state as the mesh is refined. Thus,
these elements are expected to be convergent and to pass the weak patch test even though
they do not pass the classical Irons’ patch tests.

In the weak patch test, the convergence of displacements are also checked and listed in Tables
3 through 6. From Tables 3(a) and 4(a), all of the nonconforming 4-node elements are shown
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to converge to the exact solution for both thick and thin plates in pure bending condition

while the conforming C4 element gives very poor result in thin plate. For the pure shearing
case in thick plate, the NC4-B0 shows a fast convergence and NC4-B2 are a little slow convergent

Table 3 Displacements for thick plate from weak patch test (4-node)

(a) Pure bending case

Element Point 4x4 8x8 12x12 16x16 Comment
ca A 0596247E—03 0.121139E—02 0.153874E—02 0.170761E—02 = .
B 0.571122E—03 0.117822E—02 0.151402E—02 0.169031E—02 nvergen
NC4-BD A 0.193199E—02 0.199317E—02 0.199788E—02 0.199899E — 02 v .
B 0.192555E—02 0.199702E—02 0200013E—02 0200036E—02  convereen
NCAR? A 0.193380E—02 0.199314E—02 0.199787E—02 0.199898E — 02 y .
B 0.192826E—02 0.19970SE—02 0200013E—02 0200036E—02  COmVereen

NC4-C2 A Exact Exact Exact Exact pas§ed
B Irons™ test

Exact 0.200000E-02
(b) Pure shearing case

Element Point 4x4 8x8 12x12 16x16 Comment
C4 A Exact Exact Exact Exact pas§ed
B Irons’ test
NC4-BO A 0.105207E—03  0.104304E—03 0.104136E—03 0.104076E—03 =

B 0.105324E—03 0.104337E—03 0.104150E—03 0.104085E—03 g
NCA-BD A 0258952E—03 0.144280E—03 0.122034E—03 0.114171E—03  0.1098E—03*
B 0242194E—03 0.139303E—03 0.119785E—03 0.112901E—03 0.1091E—03*
NCA-C2 A 0349927E—03 023501SE—03 0212626E—03 0.204693E—03 0.2046E—03*
‘ B 0367736E—03 0.264852E—03 0.245347E—03 0238492E—03 0.2347E—03*

Exact 0.104000E — 03

*: Extrapolated displacements by Aitken’s method (Atkinson 1978) based on 8x8, 12x12 and 16x16 mesh.

Table 4 Displacements for thin plate from weak patch test (4-node)

(a) Pure bending case

Element Point 4x4 8x8 12x12 16x16 Comment
ca A 0.111131E—01 0438248E—01 0928821E—01 0.153651E4 00 slow
B 0967834E—02 0376003E—01 0.810950E—01 0.136543E+00  convergent
NC4-BO A 0.114118E+01 0.180034E+01 0.194216E+01 0.197954E+01 .
B 0.852875E+00 0.167161E+01 0.190498E+01 0.196668E+01  COnvereen
NCA-B2 A O0I441IE+01 0I81492E+01 0.194387E+01 0197987E+01
: B 0990715E+00 0.167808E+01 0.190607E+01 0.196694E + 01 g
NC4-C2 A Exact Exact Exact Exact pas§ed
B [rons’ test
Exact 0.200000E 401
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(b) Pure shearing case

Element Point 4x4 8x8 12x12 16x16 Comment
C4 A Exact Exact Exact Exact pas§ed
B Irons’ test
NC4-B0 A 0.105207E—02 0.104304E—02 0.104136E—02 0.104076E—02 conversent
B 0.105324E—02 0.104337E—02 0.104150E—02 0.104085E—02 g
NCA-B2 A 0.128995E+00 0.369106E—01 0.180219E—01 0.107892E—01 0.6301E—02*
B 0.128463E+00 0346115E—01 0.161371E—01 0.956885E—02 0.5944F —02*
NC4-C2 A 0.130368E+00 0.379730E—01 0.19011SE—01 0.117704dE—01 0.7296E —02*
B 0.130089E+00 0360659E—01 0.175296E—01 0.109356E—01 0.7294E—02*
Exact 0.104000E —02

*: Extrapolated displacements by Aitken’s method (Atkinson 1978) based on 8x8, 12x12 and 16x16 mesh.

Table S Displacements for thick plate from weak patch test (8-node)
(a) Pure bending case

Element Point 2x2 4x4 6x6 8x8 Comment
c8 A 0.199769E-02  0.199994E-02  0.199999E-02  0.200000E-02 convereed
B 0.199787E-02  0.199994E-02  0.199999E-02  0.200000E-02 &
NC8-QH A 0.199994E-02  0.199993E-02  0.199999E-02  0.200000E-02 converaed
B 0.199713E-02  0.199994E-02  0.199999E-02  0.200000E-02 &
NCS8-A2 A 0.199832E-02  0.199994E-02  0.199999E-02  0.200000E-02 convereed
B 0.199745E-02  0.199994E-02  0.199999E-02  0.200000E-02 g
Exact 0.200000E —02
(b) Pure shearing case
Element Point 2x2 4x4 6x6 8x8 Comment
Cg A Exact Exact Exact Exact pas§ed
B Irons’ test
NC8-QH A 0.631742E-03  0.238282E-03  0.163706E-03  0.137651E-03 0.1236E-03*
B 0.534365E-03  0.217938E-03  0.155325E-03  0.133071E-03 0.1208E-03*
NCS8-A2 A 0.551224E-03  0.232362E-03  0.162674E-03  0.137331E-03 0.1228E-03*
B 0.540539E-03  0.218884E-03  0.155675E-03  0.133225E-03 0.1209E-03*
Exact 0.104000E—03

*. Extrapolated displacements by Aitken’s method (Atkinson 1978) based on 4x4, 6x6 and 8x8 mesh.

but the NC4-C2 converged to an overestimated displacement as noticed in Table 3(b). In the
thin plate under pure shearing condition, the NC4-B0 is convergent but both NC4-B2 and NC4-
C2 elements overestimate the displacements as shown in Table 4(b).

In the case of 8-node elements, the conforming and nonconforming elements, C8, NC8-A2,
and NC8-QH show a fast convergence for both the thick and thin plates in the pure bending
condition as shown in Table 5(a) and Table 6(a), in spite that these elements did not pass
the Irons’ patch test for the pure bending case. For the pure shearing case, NC8-A2 and NC8-
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Table 6 Displacements for thin plate from weak patch test (8-node)
(a) Pure bending case
Element Point 2x2 4x4 6x6 8x8 Comment
A 0.199012E+01 0.199921E+01 0.199990E+01 0.199998E + 01
C8 B 0.199704E+01 0.199952E+01 0.199991E+01 0.199998E+0]  comvergent
NC8-QH A 0200038E+01 0.200001E+01 0.200000E+01 0.200000E-+01] v ¢
- B 0.199637E+01 0.199982E+01 0.199997E+01 0.199999E+0]  “OnVereen
NC8-A2 A 0.199644E+01 0.199961E+01 0.199993E+01 0.199999E+ 01
B 0.199540E+01 0.199971E+01 0.199992E+01 0.199998E+0]  convergent
Exact 0.200000E—01
(b) Pure shearing case
Element Point 2x2 4x4 6x6 8x8 Comment
C8 A Exact Exact Exact Exact pas§ed
B Irons’ test
NC$-QH A 0.524373E+00 0.133408E+00 0.595230E—01 0.339505E—01 0.2041E—01*
' B 0431528E+00 0.112776E+00 0.511604E—01 0.293287E—01 0.1735E—01*
NCS-A2 A 0417685E+00 0.107929E+00 0.514414E—01 0.311971E—01 0.1989E—01*
B 0405881E+00 0.107325E+00 0.500442E—01 0.290636E—-01 0.1694E—01*
Exact 0.104000E—02

*. Extrapolated displacements by Aitken’s method (Atkinson 1978) based on 4x4, 6x6 and 8x8 mesh.

QH elements which did not pass the Irons’ patch test for the pure shearing case show convergent
behaviors in case of thick plate as shown in Table 5(b), but these elements tend to overestimate
the displacement in case of thin plate as shown in Table 6(b) like the NC4-B2 and NC4-C2
of 4-node element. However, these elements should not be simply discarded since these elements
are shown to be practically useful as will be seen in the following benchmark numerical problems.

For the pure twisting case, the same results are obtained for the elements tested.

Summaries of the patch tests along with the weak patch tests for 4-node and 8-node nonconfor-
ming elements are given in Table 1 and Table 2, respectively.

5. Convergence tests

What is meant by convergence in the finite element approximation is that the approximation
should approach to the exact solution when the size of elements /# tends to zero. To check
the convergence of nonconforming Mindlin plate elements listed in Tables 1 and 2, benchmark
analyses with square and circular plates have been performed. The plate elements selected for
the convergence tests can be grouped into three categories; (1) those which pass the Irons’ tests(NC
8-DS). (2) those which do not pass the Irons’ tests but pass the weak patch tests(NC4-B0, C8),
and (3) those which do not pass fully both the Irons’ tests and weak patch tests(NC4-B2, NC4-
C2, NC8-QH).
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‘Fig. 10 Square plate test model and material properties.

Table 7 Normalized displacements for thick square plate (L/t=
10): 4-node model

Element 2x2 4x4 8x8 16x16 24x24

NC4-B0O 088710 098586 099815 1.00052  1.00093
NC4-B2  1.02360 1.02346 100772 1.00292  1.00200
NC4-C2 109714 114171 114956 1.15165 1.15206

Table 8 Normalized displacements for thin square plate (L/t=
100): 4-node model

Element 2x2 4x4 8x8 16x16 24x24

NC4-BO 009560 0.63464 096492 099820  1.00033
NC4-B2  0.12092 067208 097668 100121  1.00167
NC4-C2 085538 097956 099970 1.00239  1.00278

Table 9 Normalized displacements for thick square plate (L/t=
10): 8-node model

Element 1x1 2x2 4x4 8x8 12x12

C8 1.15123 099740 100163 100126  1.00125
NC8-DS 099717 098141 099561 099986 1.00119
NC8-QH 128173 100122 100207 100137 1.00128

5.1. Square plate

One quarter of a thick or thin square plate under a uniform load is modeled with a clamped
boundary. For the model shown in Fig. 10, the successively refined meshes were constructed
and the convergence of each solution is checked. The normalized displacements to the exact
solutions of thick and thin plate (Hinton and Huang 1986, Timoshenko and Woinowsky-Krieger
1959) are listed in Table 7 and 8 for 4-node model, and Table 9 and 10 for 8-node model.

As noticed in Table 7 through Table 10, most elements converge to the exact solution except
the NC4-C2 element which converges to a overestimated displacement in case of thick plate



The patch tests and convergence 487

Table 10 Normalized displacements for thin square plate (L/t=
100): 8-node model

Element 1x1 2x2 4x4 8x8 12x12

C8 121819 062102 099355 1.00102  1.00108
NC8-DS 026145 095268 1.00001 1.00106 0.99796
NC8-QH 145643 100117 100057 100106 1.00109

E = 3.0E+06 psi

v = 03

R = 50.0 in.
t = 2.0 in.
q = 1.0 psi
¢

Fig. 11 Circular plate test model and material properties.

Table 11 Normalized displacements to thin plate solution for
uniformly loaded clamped circular plate 2R/t=50)
(a) 4-node element model

Element NEL=3 NEL=12 NEL=48 NEL=192

NC4-B0 047754 0.89274 0.99350 1.00522
NC4-B2 0.65106 0.93594 1.00425 1.00793
NC4-C2 0.90441 0.98829 1.00848 1.01330

(b) 8-node element model

Element NEL=1 NEL=3 NEL=12 NEL=48

C8 0.32552 0.98905 1.00595 1.00731
NC8-DS 0.77279 1.00932 1.00807 1.00732
NC8-QH 0.83977 1.02307 1.00740 1.00732

(Table 7) as did in the weak patch test for the pure shearing situation in thick plate (Table
3(b)). In the thick plate, since the transverse displacement due to the shear deformation is no
longer negligible, this type of element should not be seriously considered for further study. The
NC4-B2 and NC4-C2 elements also overestimated the displacements for the pure shearing situa-
tion in the thin plate as did in the weak patch test (Table 4(b)). These elements, however, show
good convergent behaviors in the analysis of thin square plates as shown in Table 8. This
is because the effect of shear deformation diminishes as the plate thickness becomes thinner.
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The NC8-QH element overestimates the displacements for the pure shearing situation in thin
plate while slightly overestimates it in thick plate in the weak patch test (Tables 5(b) and 6(b)).
This element, however, shows good convergent performance in the thin plate as the plate thickness
decreases and the shear effect diminishes (Table 10). The NC8-QH element does not lock in
extremely thin plate even for the distorted mesh (Kim and Choi 1992).

5.2. Circular plate

To check the performance of the elements under consideration with distorted meshes, the
circular plate is analysed. One quarter of moderately thin circular plate under a uniform load
was modeled with a clamped boundary condition. The geometry and material properties used
and mesh shapes are shown in Fig. 11. The normalized central displacements to the thin plate
solution (Timoshenko and Woinowsky-Krieger 1959) are listed in Table 11. It is noticed that
all the nonconforming 4-node and 8-node elements converge to the exact solution rapidly. Similar
to the analysis of the thick square plate, NC4-C2 tends to slightly overestimate the displacement
compared with other elements.

6. Conclusions

In the paper, the classical Irons’ patch tests and converegence characteristics of the nonconfor-
ming Mindlin plate elements are investigated. The clues to pass the Irons’ patch tests are presented
and it is shown that some of the nonconforming elements can pass all the patch tests even
though they violate the interelement conformity by addition of incompatible higher modes to
the original conforming modes. Also, it is noticed that many nonconforming elements partially
pass the tests if they do not fully pass the test, e.g, NC4-Ci(i=0~3) series elements pass the
test for the pure bending case but do not pass for the pure shearing case.

It was recognized from the benchmark numerical tests that the conforming element C8 and
nonconforming element NC4-BO which do not pass Irons’ patch test but pass all the cases
of weak patch tests, and the nonconforming elements NC4-B2 and NC8-QH which do not pass
the Irons’ patch tests and also pure shearing case of weak patch test in thin plate, are still
convergent. The conforming element C4 which failed to pass the weak patch test for the pure
bending in thin plate did not converge to the exact solution, and the nonconforming element
NC4-C2 which failed to pass the weak patch test for the pure shearing in thick plate converged
to a rather overestimated solution. Thus, for the converegence proof of a Mindlin plate element
which does not pass the Irons’ patch test, it is necessary to pass at least weak patch tests suggested
in the paper for the thick and thin plate (or extremely thin plate if no shear locking is desired)
under pure bending and pure shearing conditions. An exception for the requirement to pass
the weak patch test is the pure shearing case in thin plate where the effects of shear deformation
becomes negligible as the thickness of plate is reduced.

It will be concluded that the Irons’ patch test should be considered as the sufficient condition
but not the necessary condition for the nonconforming Mindlin plate element to prove its conver-
gence, since it is observed that not only those elements which pass the Irons’ patch test converge
to the exact solution, but also some other elements which do not pass the Irons’ patch test
exactly may still be convergent.
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In case of 4-node element, the NC4-Bi(i=0~3) series nonconforming elements which did
not pass the Irons’ patch tests but passed the weak patch tests are more favorable for practical
use than the NC4-Ci(i=0~3) series nonconforming elements which partially passed the Irons’
patch test but overestimated the displacements in the analysis of thick plate. In the case of
8-node element, the nonconforming elements NC8-DS and NC8-QH are favorable for the practical
use because the former passes the Irons’ patch test and shows a faster convergent behavior
and the latter which did not pass the Irons’ patch tests but passed the weak patch tests shows
the fastest convergence and has been known not to exhibit shear locking for the extremely
thin plate.
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Appendix
Let the material rigidity matrices, D, and D, in Eq. (3) denote as follows.
D 1 D 12 0
D,—| Dy D> 0 (A1)
0 0 D;
_1Gi 0

First, when the nonconconforming mode N is added into rotational degrees of freedom, the K, (3n X2
matrix) in Eq. (6) is obtained by integrating the following matrix.
[ N.GiN; N, G>N,
N!.JDXNQJ Nl,xD 12&5‘»'
_ +N i.yD 37N S5¥ +N l,yD 3N 5x
B"DB=| +N,G\N; (A3)
NiDxNsy  NyD:Ns,

+NflxD }NS._\' +Ni.vD3]y5.x
+N,G N5

where, comma denotes partial differential and / varies from | to n.
Secondly, when the nonconconforming mode Ns is added into transverse displacement, the K, (3n X1

matrix) is obtained by integrating the following matrix.
_ NL.\GlNS.\+N1._vGZN5._v
BT DB = NiG N,
NleNS:l’

(A4)





