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Progressive failure of symmetrically laminated plates
under uni-axial compression

S. B. Singht, Ashwini Kumart and N. G. R. lyengarit

Indian Institute of Technology Kanpur, Kanpur-208016, India

Abstract. The objective of this work is to predict the failure loads, associated maximum transverse
displacements, locations and the modes of failure, including the onset of delamination, of thin, flat,
square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses,
one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction
with the finite element method. First order shear deformation theory and geometric nonlinearity in
the von Karman sense have been employed. Five different types of lay-up sequence are considered
for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges
fixed and other with mixed boundary conditions for (+45/—45/0/90); quasi-isotropic laminate have
also been considered to study the effect of boundary restraints on the failure loads and the corresponding
modes of failure. A comparison of linear and nonlinear results is also made for (+ 45/0/90),, quasi-isotropic
laminate. It is observed that the maximum difference between the failure loads predicted by various
criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with
clamped edges are found to be more susceptible to failure due to the transverse shear and delamination,
while those with the simply supported edges undergo total collapse at a load slightly higher than the
fiber failure load.
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1. Introduction

Laminated composite materials are being widely used in the construction of mechanical, aero-
space, marine and automotive structures. These require high reliability as well as safety. It is
well known that the total failure of a laminated composite panel does not always occur at
the load corresponding to the first-ply failure. The panel failure in a broad sense could be
considered to have occurred when a structural element ceased to function satisfactorily; thus
the definition of failure varies from one case to another. The failure charactistics of heterogeneous
and anisotropic composite laminates is completely different from that of the isotropic ones.
The appearance of detectable cracks in metals is generally considered to be unsafe since a
slight amount of damage could rapidly progress into a catastrophic fracture. However, this is
not true in the case of composite materials ie., although internal damage might appear very
early. its propagation is arrested by the internal configuration of the structures. Therefore, compo-
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site laminates can still sustain a much higher load after the occurrence of localized damage
such as matrix cracking, fiber breaks or delamination (Agrawal and Broutman, 1980 and Jones
1975). Hence the knowledge of the first-ply failure load and the ultimate load of such structures
is essential so that these panels can be designed efficiently and economically by fully utilizing
its postbuckling strength with appropriate reliability and safety. Thus, to accurately predict the
failure loads of such structures, the progressive failure analysis has become an important subject
of research. Of the early investigations related to the failure of laminated plates are the work
by Turvey (1980a, b, c, 1981, 1982, 1987) in which analytical solutions for the first-ply failure
load are presented for symmetric and antisymmetric laminates with simply supported boundary
conditions under transverse loads. The finite element procedure for the prediction of linear first-
ply failure loads of composite laminates subjected to transverse and in-plane (tensile) loading
was presented by Reddy and Pandey (1987). Another study by Reddy and Reddy (1992) used
the first order shear deformation theory in the finite element modeling to present the linear
and nonlinear failure analysis. Engelstad, er al. (1992) investigated the postbuckling response
and failure characteristics of graphite-epoxy panels with and without circular hole in axial comp-
ression using a progressive damage failure mechanism in conjunction with a 3-D degenerated
shell element. Lee and Hyer (1993) studied postbuckling failure characteristics of square, symmetri-
cally laminated plate with a circular hole under uni-axial compression using the maximum
stress failure criterion. Very recently, Kam and Sher (1995) studied the nonlinear behaviour and
the first ply failure strength of centrally loaded laminated composite plates with semi-clamped
edges using a method developed from the von Karman-Mindlin plate theory in conjunction
with the Ritz method.

There are many investigations in literature which deal with the failure of laminated composite
plates under in-plane (tensile) and transverse loadings. However, not much effort has been made
towards the understanding of the nonlinear failure behaviour of such structures especially under
in-plane loads. The present study deals with the investigation of the first-ply failure and the
subsequent progressive failure (till the ultimate failure) of thin, square and symmetrically lamina-
ted composite plates with various lay-ups (Table 1) and boundary conditions (Fig. 1) under
the actions of uni-axial compressive load. Two progressive failure procedures are used, one with
the Hashin criterion and the other with the Tensor polynomial forms of the maximum stress,
maximum strain, Tsai-Hill, Hoffman and Tsai-Wu criteria, with the primary objective to evaluate
all these failure criteria . Different material property degradation models for the failed lamina
have been considered; the model for the tensor polynomial criteria is based on Engelstad, et
al. (1992), whereas that for the Hashin criterion is based on Tsai (1986). In addition, two levels
of the application of the material property degradation model for the failed lamina are considered
in this work. One level of the application is based on the stiffness reduction for the lamina
as a whole while the other is based on the stiffness reduction over the element only.

Table 1 Lamination scheme of symmetric laminates

Lamination (£45/0/90) (£ 45/0,)s (£ 45), (£ 45/06) (0/90)4
scheme

Type A B C D E
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boundary conditions for full plate.

A review of the Tensor polynomial failure criterion, with its various degenerate cases, and
other independent failure criteria (excluding the Hashin criterion) has been presented by Reddy
and Pandey (1987) and Reddy and Reddy (1992). However, for the sake of completeness, various
failure criteria used in the present study are given below and the details of these criteria are

presented in appendix.

1. Hashin criterion

2. Tensor polynomial failure criterion: Degenerate cases of this criterion are as follows:

(a) Maximum stress criterion
(b) Maximum strain criterion
(¢) Tsai-Hill criterion
(d) Hoffman criterion
(e) Tsai-Wu criterion

3. Methodology

The study is based on the finite element formulation using the first order shear deformation
theory with nine noded Lagrangian element having five degrees of freedom per node. Geometric
nonlinearity based on von Karman’s assumptions has been incorporated. The nonlinear algebraic
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equations are solved by Newton-Raphson technique.The calculation of stresses is done on the
nodal points as well as on the gauss points. Due to connectivity of a particular node to various
elements, nodal point stresses are calculated taking the average value of stresses at that node
from various elements associated with that node. All the six stress components are calculated
at each node point and at the gauss point. However, to predict the failure of a lamina only
five stress components (three in-plane stress and two transverse shear stress) are used in the
selected failure criterion. To predict the onset of delamination two transverse shear stress compo-
nents and one transverse normal stress component are used in the maximum stress failure crite-
rion. Delamination at any interface is said to have occurred when any of the transverse stress
components in any of the two layers adjacent to interface becomes equal to or greater than
its corresponding strength. The ply failure is said to have occurred when state of stress at any
point within the lamina satisfies the selected failure criterion. The first-ply failure refers to the
first instant at which one or more than one plies fail at the same load. After the first-ply failure,
the progressive failure analysis is carried out using progressive failure procedure appropriate
to the selected failure criterion. The two progressive failure procedures employed are described
below:

3.1. Tensor polynomial progressive failure procedure

At each load step, nodal point stresses are used in the selected failure criterion. If failure
occurs at a point in a layer a reduction in the lamina stiffness is applied which causes the
changes in the overall laminate stiffness. Following terms are used to determine the failure
modes.

H1:F|01+F|10'121 szFzﬁ'z""FzzO'z2
H4:F440'422 H5:F55052§ H=F&’

Notations in above expressions are defined in the appendix.

The largest H; term is selected to be the dominant failure mode and the corresponding modulus
is reduced to zero. H; corresponds to the modulus E,; H, to E,, Hy to Gx; Hs to Gy; and H,
to Gy, An outline of the steps required is as follows:

(1) After nonlinear iterative convergence is achieved, calculate the stresses at the middle of
the each layer and at its interfaces with the adjacent layers at each of the nodal and
the gauss point.

(2) Transform the stresses to principal stresses.

(3) Compute failure indices, H,, H,, -

(4) If failure occurs reduce the appropriate lamina moduli and recompute laminate stiffness
and restart nonlinear analysis at the same load step.

(5) If no failure occurs, proceed to the next load step.

(6) Final failure is said to have occurred when delamination occurs or when the plate is
no longer able to carry any further load because of very large deflection.

3.2. Hashin progressive failure procedure

As per the Hashin criterion, failure of the lamina occurs if any of the four failure criteria
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Fig. 2 Ply and interface numbering within the laminate.
Table 2 Material properties of T300/5208 (pre-peg) graphite-epoxy
Mechanical Values Strength Values
properties properties
E, 132.58 Gpa X 1.515 Gpa
E, 108 Gpa X, 1.697 Gpa
E; 108 Gpa Y =2, 43.8 Mpa
Gi,=Gn 57 Gpa Y.=Z. 43.8 Mpa
Vo= Vi3 0.24 R 67.6 Mpa
V3 049 S=T 86.9 Mpa

is satisfied at any point in a lamina of the laminate and the corresponding mode of failure
is also determined with the possibility of occurrence of two modes (fiber and matrix mode
simultaneosly). An outline of the steps required in this procedure is as follows:

* Steps (1) and (2) are the same as with Tensor polynomial criterion.
o If matrix failure occurs, reduce the lamina modulli as per recommendations in (Tsai 1986),
which are
1. Reduce E, to 45% of its original value.
2. Reduce shear modulus to 35% of its original value.
3. Reduce major Poisson’s ratio to 30% of its original value.
e If fiber failure occurs then reduce E, to zero.
» Recompute the laminate stiffness and restart nonlinear analysis at the same load step.
* Steps (5) and (6) are the same as with the Tensor polynomial criteria.

A total of five symmetric lamination schemes are employed to understand the progressive
failure. The individual laminates are designated from A to E for identification. The details of
the lamination schemes are shown in Table 1. The ply and the interface numbering scheme
within the laminate is shown in Fig. 2. Properties of the material of the laminate (Reddy and
Reddy 1992) are presented in Table 2.

In the above table E,, E,, E; are the principal Young's moduli while G,,, G\, Gy are the
shear moduli corresponding to the planes 1-2; 1-3; and 2-3 respectively and vi,. vii, v are the
corresponding Poisson’s ratios. In this study a full square plate of width b is used with 5X5
(25 element mesh). Details of the finite element mesh and the location of gauss points within
the element are shown in Fig. 3. Three types of flexural boundary conditions, namely BCI,
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a) Finite element mesh for full plate (5X5 of nine noded quadratic elements).

Fig. 3 Finite element mesh for full plate (5X5 of nine noded quadratic elements).

BC2, BC3, have been considered; BCl- refers to a plate with all edges simply supported, BC2-
refers to a plate with two logitudinal edges (Y=0 and Y=b) simply supported and the other
two edges clamped and BC3- refers to a plate with all edges clamped. In all three cases, the
in-plane boundary conditions are identical and the compression load is applied on the edge
X=b. The details are shown in Fig. 1.

The accuracy of the programme has been checked by comparing the first-ply failure loads
with those obtained by Engelstad, er al. (1992). A very small difference in the two results is
attributed to the initial imperfection considered by Engelstad, er al. (1992). While presenting
results in tabular forms, failure loads and corresponding displacements are presented in the
following nondimensionalized forms:

Uni-axial compression—=N,b*/E,h’

Maximum wransverse displacement=w,,,/h

where 4 is the total thickness of the laminate and N, is the applied uni-axial compression
per unit length. The quantities in parentheses indicate the percentage difference in failure loads
as compared with those by the Tsai-Wu criterion.

4. Results and discussion
4.1. Progressive failure of laminates with BC1 boundary condition
Progressive failure results of various laminates with BC1 boundary condition are presented

in Table 3. First ply failure loads predicted by various failure criteria are found to differ from
one another by a maximum of 7.5% for laminate A, 8% for laminate B, 84% for laminate C,
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Table 3a Progressive failure results for (+45/0/90);, laminate with BC1 boundary

condition
Failure First-ply Ultimate o Mode of first-ply
criteria failure failure (W—;”l‘“) FLY Fp? failure
load load
Maximum 58.09 7745 37 1 109 Transverse
stress (1.5)* (—43)
Maximum 54.22 67.98 34 1 109 Transverse
strain (—53) (—16.0)
Tsai-Hill 58.09 79.60 37 1 109 Transverse
(1.5) (—1.6)
Tsai-Wu 57.24 80.89 3.65 1 109 Transverse
(0.0 0.0)
Hoffman 58.09 79.60 3.70 1 109 Transverse
(1.5) (—1.6)
Hashin 5379 79.17 341 1 109 Compressive
(—6.0) (—22) matrix

®Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure.

First failed layer number

*First failed point number

*Percentage difference based on Tsai-Wu criterion

Table 3b Progressive failure results for (£ 45/02), laminate with BC1 boundary con-

dition
Failure First-ply Ultimate o Mode of first-ply
criteria failure failure (fo ) FLY Fp? failure
load load
Maximum 5594 7229 401 3 77 Transverse
stress (4.0)* (1.8)
Maximum 51.63 62.83 361 16 121 Transverse
strain (—4.0) (—1L5)
Tsai-Hill 5594 68.84 401 3 77 Transverse
4.0) (—3.0)
Tsai-Wu 53.79 710 383 16 121 Transverse
0.0) (0.0)
Hoffman 5594 69.28 401 3 77 Transverse
4.0) (—24)
Hashin 53.36 71.86 38 16 97 Tensile
(—0.80) (12) matrix

®Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure.

First failed layer number

*First failed point number

*Percentage difference based on Tsai-Wu criterion
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Table 3¢ Progressive failure results for (+45), laminate with BCl boundary condi-

tion
Failure First-ply Ultimate o Mode of first-ply
criteria failure failure (%"f“) FL' Fp? failure
load load
Maximum 49.06 65.83 433 16 121 Transverse
stress (5.6)* 7.0
Maximum 45.18 55.08 392 16 121 Transverse
strain (—238) (—10.5)
Tsai-Hill 48.6 61.53 432 16 121 Transverse
4.6) 0.0
Tsai-Wu 4647 61.53 404 16 121 Transverse
0.0) (0.0
Hoffman 48.63 61.53 43 16 121 Transverse
4.6) 0.0)
Hashin 46.04 47.76 40 16 121 Tensile
(—0.90) (—224) matrix
©Non-dimensionalized maximum transverse displacement in the plate at the first-

g)ly failure
First failed layer number
tFirst failed point number
*Percentage difference based on Tsai-Wu criterion

Table 3d Progressive failure results for (& 45/06),, laminate with BC1 boundary con-

dition
Failure First-ply Ultimate ® Mode of first-ply
criteria failure failure ( w—}';"“) FLY Fp? failure
load load
Maximum 50.78 58.09 3.89 3 77 Transverse
stress (1L.7)* (0.0) ,
Maximum 48.19 5249 370 1 11 Transverse
strain (—3.5) (—9.6)
Tsai-Hill 50.78 58.52 3.89 3 77 Transverse
(1.7) (0.74)
Tsai-Wu 4992 58.09 3.87 1 11 Transverse
0.0) (0.0
Hoffman 50.78 58.09 3.89 3 77 Transverse
(1.7) 0.0)
Hashin 48.19 64.11 3.69 1 11 Tensile
(—35) (—104) matrix

©Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure

First failed layer number

*First failed point number

*Percentage difference based on Tsai-Wu criterion
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Table 3e Progressive failure results for (0/90)s laminate with BC1 boundary condi-

tion
Failure First-ply Ultimate o Mode of first-ply
criteria failure failure <—Z@> FLY Fp} failure
load load
Mximum 60.24 71.86 431 16 97 Transverse
stress (—7.3)* (—4.6)
Maximum 58.52 71.86 421 16 97 Transverse
strain (—99) (—4.6)
Tsai-Hill 60.67 72.72 438 16 97 Transverse
(—6.6) (—34)
Tsai-Wu 64.98 75.30 4.58 16 97 Transverse
0.0) 0.0)
Hoffman 60.24 71.86 431 16 97 Transverse
(—173) (—4.6)
Hashin 53.36 67.55 3.89 16 97 . Tensile
(—179) (—10.29) matrix

©Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure

First failed layer number

*First failed point number

*Prcentage difference based on Tsai-Wu criterion

52% for laminate D and 17.9% for laminate E respectively, while ultimate loads are found to
differ from one another by a maximum of about 16% for laminate A, 13.3% for laminate B,
294% for laminate C, 20% for laminate D and 10.3% for laminate E respectively. Nodal locations
corresponding to the first-ply failure, predicted by various criteria are found to be different for
different laminates. Tensor polynomial criteria in general predict the same mode of failure (trans-
verse) while Hashin criterion predicts matrix failure. Hence the inference is that progressive
failure initiates primarily due to in-plane normal stresses transverse to the fiber direction, followed
by its combination with transverse shear stresses leading to the fiber failure at a load closer
to the ultimate load. It is also worth mentioning that delamination does not occur before the
ultimate load is reached in all cases. Hence, for the BCl boundary condition, ultimate load
is the one at which plate has virtually no reserve strength (which is indicated by very large
deflection at a constant load). The absolute maximum value of the deflections, (w,.../h), predicted
by various failure criteria, just before the ultimate load, occurs for the laminate B and is equal
to 8.2. However, the average value of the maximum transverse displacements predicted by the
various failure criteria for this laminate is 6.1. The average value of the first-ply failure loads
predicted by various failure criteria are found to be about 3 times the buckling load for laminate
A, 29 times for laminate B, 2.2 times for laminate C, 2.8 times for laminate D and 4.6 times
for laminate E, while the corresponding values for ultimate loads ultimate loads are found to
be 4.1 times the buckling load for laminate A, 3.7 times the buckling load for laminate A,
3.7 times for laminate B, 2.7 times for laminate C, 3.3 times for laminate D and 5.6 times
for laminate E.

Progressive failure results for laminate E using gauss point stresses and with elemental lamina
stiffness reduction for the failed laminae are presented in Table 4. It is seen that the first-ply
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Table 4 Progressive failure results for (0/90)s laminate with BC1 boundary condition and
elemental lamina stiffness reduction

Mode of first-ply

Failure First-ply Ultimate P
criteria failure failure (W—;"l‘“) FL' FEY FG?3 failure
load load
Maximum 61.53 79.17 439 16 25 1 Transverse
stress (—7.2)* (—43)
Maximum 60.24 7875 431 16 25 1 Transverse
strain (—9.0) (—4.7)
Tsai-Hill 62.40 78.74 443 16 25 1 Transverse
(—598) (—4.7) (—47)
Tsai-Wu 66.27 82.62 4.65 16 25 1 Transverse
(0.0) 0.0) 0.0)
Hoffman 61.96 79.6 441 16 25 1 Transverse
(—6.5) (—3.7) (—37)
Hashin 54.65 82.19 397 16 25 1 Compressive
(—17.5) (—052) (—0.52) matrix
©Non-dimensionalized maximum transverse displacement in the plate at the first-ply fai-
lure

First failed layer number

First failed element number

$First failed gauss point

*Percentage difference based on Tsai-Wu criterion

failure loads predicted by various failure criteria in this case differ from one another by a maxi-
mum of 18%, while ultimate loads differ from by a maximum of 5%. Hence, it is worth noting
that the maximum difference in ultimate failure loads predicted by various failure criteria, using
clemental stiffness reduction procedure for the failed laminae, is reduced to half of that predicted
with “ stiffness reduction for the failed laminae as a whole. Further, the maximum difference
in failure loads predicted by Tensor polynomial criteria in general is almost the same with
both the stiffness reduction levels. Further, ultimate failure loads predicted by Hashin criterion
using elemental stiffness reduction procedure is very close to that predicted by Tsai-Wu criterion.
The average value of the first-ply failure loads predicted with gauss point stresses is found to
be 4.75 times the buckling load while that of the ultimate loads is found to be 6.2 times the
buckling load. Thus, there is a slight increase in the first ply failure loads and the larger for
the ultimate loads predicted with gauss point stresses and elemental lamina stiffness reduction
procedure. Also the maximum value of the w,./h, predicted by various failure criterion just
before the ultimate load is found to be 6.62 while its average value is 5.6.

4.2. Progressive failure results for (+45/0/90),; laminate with different boundary
conditions

Progressive failure results for a thin, square, flat, sixteen layers symmetric quasi-isotropic lami-
nate with three different boundary conditions (BC1, BC2, BC3) are presented in Table 5. It is
observed that the first-ply failure loads predicted by various failure criteria differ from one another
by a maximum of 6% for BC1 boundary condition, 5.5% for BC2 boundary condition and about
13% for BC3 boundary condition, while that for ultimate loads the corresponding values are
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Table 5a Progressive failure results for (£ 45/0/90), laminate with BC1 boundary

condition
Failure First-ply Ultimate ® Mode of first-ply
criteria failure failure ( %) FLY Fp? failure
load load
Maximum 58.09 7745 37 1 109 Transverse
stress (L.5)* (—43)
Maximum 5422 6798 34 1 109 Transverse
(—5.3) (—16.0)
Tsai-Hill 58.09 79.60 37 1 109 Transverse
(L.5) (—16)
Tsai-Wu 57.24 80.89 3.65 1 109 Transverse
(0.0) (0.0)
Hoffman 58.09 79.60 3.70 1 109 Transverse
(1.5) (—1.6)
Hashin 53.79 79.17 341 1 109 Compressive
(—6.0) (—22) : matrix

©Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure

YFirst failed layer number

First failed point number

*Percentage difference based on Tsai-Wu criterion

Table 5b Progressive failure results for (+45/0/90),, laminates with BC2 boundary

condition ,
Failure First-ply Ultimate o Mode of first-ply
criteria failure failure (LVZ"-% ) FLY Fp} failure
load load
Maximum 91.65 94.67 3.72 1 108 Transverse
stress (29)* (0.46)
Maximum 85.20 91.23 331 1 108 Transverse
strain (—4.3) (—32)
Tsai-Hill 90.80 95.53 3.50 1 108 Transverse
(1.9) (—14
Tsai-Wu 89.07 9424 34 1 108 Transverse
0.0) (0.0)
Hoffman 90.37 95.53 348 1 108 Transverse
(1.5) (—14)
Hashin 84.34 90.79 3.28 1 108 Compressive
(—53) (=37 matrix

©Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure

tFirst failed layer number

*First failed point number

*Percentage difference based on Tsai-Wu criterion
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Table 5c¢ Progressive failure results for (* 45/0/90),, laminates with BC3 boundary

condition
Failure First-ply Ultimate o Mode of first-ply
criteria failure failure <1fo ) FL' Fpt? failure
load load
Maximum 84.34 95.09 1.63 13 8 Transverse
stress (L.6)* (6.2)
Maximum 81.33 91.23 1.56 16 66 Transverse
strain (—3.1 (1.9)
Tsai-Hill 81.76 89.50 1.56 16 66 Transverse
(—2.6) (0.0)
Tsai-Wu 8391 89.51 1.66 16 77 Transverse
0.0) (0.0)
Hoffman 82.19 89.51 1.58 16 66 Transverse
(—=2.1) 0.0)
Hashin 73.15 109.73 1.82 16 117 Compressive
(—128) (22.6) matrix

©Non-dimensionalized maximum transverse displacement in the plate at the first-
ply failure.

First failed layer number

*First failed point number

*Percentage difference based on Tsai-Wu criterion

16%, 4% and 23% respectively. It is also observed that the modes of the first-ply failure predicted
by various failure criteria are identical irrespective of boundary conditions (except that the maxi-
mum stress criterion predicts transverse shear mode of first-ply failure for BC boundary condition).
However, the locations of the first-ply failure are not the same. It is also noted that the higher
the flexural restraint, higher is the buckling load, and the strength for a fixed value of maximum
transverse displacement.

It is also seen that the ultimate load is limited by the onset of delaminations for boundary
conditions BC2 and BC3. However, for the boundary condition BC1, delamination occurs when
the plate has virtually no reserve strength to carry any further load. Hence the efficient utilization
of material strength is observed with BC1 boundary condition. The progressive failure response
specific to this laminate and for all the boundary conditions is shown in Figs. 4 and 5 using
the Tsai-Wu and the Hashin criterion, respectively. It is seen that, for BC3 boundary condition,
a change in buckled configuration takes place before the first-ply failure. It is to be noted that
the kinks in the curves represent failure points during the progressive loading. Average value
of first-ply failure loads predicted by various failure criterion is found to be about 3.0 times
the buckling load for BC1 boundary condition, 2.9 times for BC2 boundary condition and 1.85
times the buckling load for BC3 boundary condition, while the ultimate loads are found to
be 4.1 times the buckling load for BC1 boundary conditions, 3.1 times for BC2 boundary condition
and 2.1 times for BC3 boundary conditions.Absolute maximum value of the maximum transverse
displacements (w,,../h) predicted by various failure criteria just before the ultimate load is found
to be for BCl and is equal to 60
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Fig. 4 Progressive failure response of (% 45/0/90) quasi-isotropic laminate with Tsai-Wu criterion.
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Fig. 5 Progressive failure response of (+45/0/90); quasi-isotropic laminate with Hashin criterion.

4.3. Comparison of the linear and nonlinear progressive failure results of (+45/0/90),,
laminate with BC1 boundary condition

The first-ply failure load, the ultimate failure load and the mode of first-ply failure of (£ 45/0/90),,
quasi-isotropic laminate are also obtained for various failure criteria by using the linear analysis
and the comparison of results with those obtained by nonlinear analysis is presented in Table
6. It may be noted that linear results are obtained by dropping the nonlinear terms in the
nonlinear strain displacement relationships. It is seen that linear failure loads are too high as
compared to nonlinear failure loads. Here, it is worth mentioning that results obtained by the
linear analysis can not be construed as realistic because the buckling of this laminate can not
be precluded before such high loads of failure. However, it is worth noting that modes of first-
plyfailure are the same in both cases. It is observed that, in linear analysis, the maximum strain,
the Tsai-Hill and the Tsai-Wu criteria predict the onset of delamination before the fiber failure.



446 S.B. Singh, Ashwini Kumar and N.GR. Iyengar

Table 6 Linear and nonlinear progressive failure resuits for (£ 45/0/90), laminates with BC1 boundary

condition
Failure Linear Nonlinear
criteria First-ply Utimate Mode of first-ply  First-ply Ultimate Mode of first-ply
failure load load failure failure load load failure
Maximum 350.70 884.71 Transverse 58.09 7745 Transverse
stress
Maximum 305.09 410.086 Transverse 54.22 6798 Transverse
strain
Tsai-Hill 351.99 42730 Transverse 58.09 79.60 Transverse
Tsai-Wu 334.35 42214 Transverse 57.24 80.89 Transverse
Hoftman 350.273 884.71 Transverse 58.09 79.60 Transverse
Hashin 402.34 930.76 Compressive 53.79 79.17 Compressive
matrix matrix

However, the onset of delamination is not predicted in the case of nonlinear analysis, irrespective
of the failure crieria used. It is also important to note that locations of the first-ply failure
predicted by the linear and the nonlinear analysis (though not shown in the table) are different.

5. Concluding remarks

Based on the results presented in the previous section, following useful observation can be

made.

» The maximum difference in the first-ply failure loads and the ultimate loads predicted by
various failure criteria are strongly dependent on the type of laminate lay-ups and the flexu-
ral boundary restraints.

» Among all the tensor polynomial criteria, the maximum strain criterion is found to give
large inconsistent results. Hashin criterion predicts even more inconsistent failure loads,
especially for cross-ply laminates.

« Difference between the ultimate failure loads of cross-ply laminates predicted by the Hashin
criterion and the various Tensor polynomial criteria is, in general, drastically reduced if
the Hashin criterion is used with the stiffness reduction for the failed laminae over the
failed elements only.

» Maximum difference between the failure loads of cross-ply laminates predicted by all tensor
polynomial criteria under uni-axial compression with stiffness reduction for the failed lami-
nae as a whole is found to be of the same order of magnitude as that obtained with the
stiffness reduction of the failed laminae over the failed elements only.

« Average value of the ultimate failure loads for symmetric cross-ply laminates obtained by
progressive failure analysis using gauss point stresses and the elemental lamina stiffness
reduction model for the failed lamina is found to be larger in comparison to that obtained
by progressive failure analysis using nodal point stresses and the lamina stiffness reduction
model for the failed lamina as a whole.

« Failure mode of the first-ply failure is associated with the localised matrix cracking and
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occurs primarily due to in-plane normal stresses transverse to the fiber directions irrespective
of the laminate lay-ups and the boundary conditions.

¢ First-ply failure locations is found to be sharply dependendent on the boundary conditions.
Most critical points of failure lie near the loaded edges of the plate.

» Laminates with two opposite edges or all the edges clamped are more susceptible to ultimate
failure due to transverse shear and the delamination.

e Maximum value of the maximum transverse displacements (W,.../#) just before the ultimate
load predicted by all the failure criteria is found to be 8.2 irrespective of boundary conditions
and types of laminate. However, the average value of the maximum transverse displacements
(Wma/h) is found to be less than 6.0. Hence the use of non-linear theory in the von Karman
sense is validated for all the laminates under consideration till the failure load is reached.

« It is observed that the fiber breakage precedes very closely the ultimate loads for simply
supported laminates and this mode of failure is not predicted in laminates with clamped
edges.

e The first-ply failure loads and the ultimate failure loads of (+45/—45/0/90),,, quasi-isotropic
laminates (with respect to the buckling load) are found to be largest for BC1 boundary
condition.

* The maximum difference in the first-ply failure loads of (+45/—45/0/90),, quasi-isotropic
laminate, predicted by various failure criteria, is found to be minimum in the case of BC2
boundary conditions and maximum in the case of BC3 boundary condition. The same
holds good for ultimate loads as well.

* Linear failure loads of simply supported (% 45/0/90),, quasi-isotropic laminate are too high
as compared to nonlinear failure loads. However, modes of the first-ply failure predicted
by the linear and the nonlinear analysis are same.
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Appendix

1. Hashin criterion

In this criterion (Hashin 1980) four distinct failure modes-tensile matrix, tensile fiber, compressive
matrix and compressive fiber- are modelled separately, resulting in a piece-wise smooth failure surface.
Another umque feature of this failure criterion is that it avoids prediction of multi-axial tensile (compres-
sive) modes in terms of compressive (tensile) failure stresses. The four criteria corresponding to the
different failure modes are:

(1) Tensile fiber mode o;>0.0
l 2 >
(j{—g)%?(o«w«):l 0
(2) Tensile matrix mode o+ a63;>0.0

‘Yl_’z(az‘*‘ 03)2'*%(0'42_0203)‘*‘%(062*‘0'52):l )

(3) Compressive fiber mode o;>0.0

o1=X. 3)
(4) Compressive matrix mode o>+ o3 <0.00
}1,[ [(%) - 1](02+ o)+ —753 R2 (oot oy +—5 RZ (oé— ozm)+ (0(, +o)=1 “4)

In above expressions o1, 05, 0; are the normal stress components; i, 0s, 0s are the shear stress components
in the principal material directions (the subscript 1 refering to the fiber direction); X, Y, are the tensile
strengths of the lamina in the fiber direction and transverse to it respectlvely, X., Y. are the corresponding
compressive strengths R and T are the shear strengths of lamina in planes 2-3 and 1-2 respectively.The
shear strength in plane 1-3 will be designated by S in the expressions to follow.

2. Tensor polynomial failure criteria
The most general polynomial failure criterion,as proposed by Tsai (1984) is expressed as

F] O'1+F30'2+F30'3+2F|20'1 O'2+2F130'] ()'3+2F230'20'3+
FH O'|2+F230'22+F33 632+F440'42+F55 0'52+F5¢,O'62+"'21 (5)

Particular cases of the above criterion differ from one another by their strength tensors F;. Hence,
various degenerate cases of the Tensor polynomial criterion can be obtained by subtituting the approp-
riate tensor strength factors F; in Eq. (5). Tensor strenp*™ factors appropriate to the various polynomial
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criteria are given below:

(a) Maximum stress criterion:

1 1 1t 1 - 1 1
F=x—x =y v b=z Z
L i
bexxs Bmyrs B zz
Fumi: Fe=Ld. Fe=—i
“=p3 5= 6= 3
F,F> F FF
Fi= #J Fi;= F1232 Fu= '23

The remaining strength tensor terms are zero.
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(6)

In the above expressions Z;,, and Z, are the tensile and the compressive strength, respectively, in
the principal direction 3 of the lamina and the other strength terms are the same as described in the

Hashin criterion.
(b) Maximum strain criterion:
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In the above expressions S., S), etc. are the components of the compliance matrix and Fy', F7, Fy
are the expressions given for Fi, F>, F3 in the maximumstress criterion.

(c) Tsai-Hill criterion:
F\=F,=F;=0; Fuzﬁ; Fzzzv;
1 1 ®)

1
FM:F; Fss= R
1
( Y7y

1 1 __ 1
)s FZ}' 2

_ 1
o=\ Zz7 % 2
The values of X, Y, Z are taken as either X, Y, Z, or as X,, Y., Z., depending upon the sign of

01, O, O3
(d) Hoffman criterion:
RIS RS S R S

Fy X,IX( Fn= Y/1Y< ; Fsszﬁ

Fu=—7: Fs=—r: Fo=—7

Fo= ‘%( Y 7z

F W"é‘( Wt Zz T
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The other strength tensor terms are zero.

(e) Tsai-Wu criterion:
1 1 _ 1
b=~ "%+ =y v
1 1 . __1
F,= XX ° Fyn= —Y,Y(. o Fy Z—,ZL-
1 1 1
F«:?l FSSZF; FM:T
et
2 2 XX Y.Y.
etz
i 2 XX.Z,Z.
Mz
= 2 Y. Y.Z,Z.

All other strength tensor components are zero.





