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Abstract. In this paper a general analytical approach is proposed to analyse the nonlinear response
of elastic cable under complex loads. The effect of temperature change on the cable is also considered.
From the vertical equilibrium equations of cable, the general analytical formula of vertical displacement
is derived. Based on the vertical displacement formula and on the compatibility condition of the cable,
the dimensionless equation with respect to cable tension is established. By means of such analytical
procedures, the exact solutions of various cable problems can be obtained quickly. The example given
in this paper shows that the new procedure is efficient for practical analysis and can be easily implemented
by a general computer program without the superposition problem which there has always been in
traditional analytical methods.
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1. Introduction

Cable structures provide economical solutions to large span structural problems, because of
the high efficiency of steel in simple tension. They are used extensively as roofs of gymnasium,
communication towers, suspension bridges, offshore structures, etc. For this reason, the analysis
of cables has attracted considerable interest in the past and continues to do so. In contrast
with other civil engineering structures, cable structures respond in a nonlinear fashion to both
prestressing and in-service forces, due to their flexibility in bending. Single cable analysis is
the base of cable structures design. Such analysis must take into consideration geometric nonlinea-
rity.

The first half of this century has seen the development of analytical solutions for the flexible
extensible cable under distributed and concentrated loads. Included in this range are the solutions
by Pippard and Chitty (1942), Markland (1951), Pugsley (1957), Francis (1965), Otto (1967), Morales
(1968), O’'Brien (1968), Buchholdt (1970), Wilson and Wheen (1977), Krishna (1978) and others.
The most general and practical form has been proposed by Irvine (1975, 1981). Although numerous
efforts in analytical treatment of cable problems have been made, there has always been the
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problem of superposition of solutions because of the nonlinear cable behaviour. In fact, analytical
methods can only be exployed for quite simple cable problems.

The advent of computer made the iterative methods of solution for the nonlinear problem
of the cable feasible. Most numerical schemes Leonard (1972, 1973, 1988), Argyris & Scharpf
(1972), et al. are based on the discretization of the equilibrium expressions followed by an iterative
solution of the resulting nonlinear algebraic equations. The discretization procedure has been
largely based upon the versatile finite element methods. They can be used to get the solution
of the cable under any load pattern, however, we are always harassed by the problems of converge-
nce and divergence.

In this paper, a new general analytical procedure is presented for the static nonlinear analysis
of cable under complex loads. The deficiency of traditional analytical procedures in superposition
and the embarrassment of current numerical methods in convergence and divergence problems
will be overcome here. The reliability and efficiency of the new procedure will be demonstrated
by the example given in this paper.

2. Problem and cable configurations

Consider a elastic cable suspended between two rigid supports at the samelevel (see Fig.1).
The cable is assumed to be of uniform cross section and is made from a material of uniform
density. The flexible rigidity of the cable is ignored. Let E, A, m and a be the elastic modulus,
the cross-sectional area, the mass per unit length and the coefficient of expansion of the cable
respectively. Concentrated load system P; (i=1, 2, «--, n—1) and stair distributed load system
q: (=1, 2, ---, n) are applied on the cable (see Fig. 1). In addition, the temperature change
of the environment is Az In the following context, the analytical formulations which can be
used to analyse such cable problem will be proposed.

First, the cable is divided into 7 sections so that the load applied on each section is constant.
Let Ox; be an orthogonal coordinate system which is referred to in the description of cable
configurations. Two of them are distinguished. (a) The natural configuration C° is static equilib-
rium under its own weight. The material point M has the location M(%) in C?, % being a curvilinear
abscissa. The cable is assumed inextensible C°. In addition, the ratio of sag °d to span [ is
assumed to be about 1:8 or less. Let “H be the horizontal component of cable tension in C,

/2 1 2 .

Fig. 1 Cable configurations.
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then we have

o= L _mgP x\?
Y=o Tl [1 <1>] M
where
opy— L _mgl
H—g od (2)

Because x=°x, the superscript 0 is omitted for ’%. (b) The deformed configuration C in which
the extensibility of the cable should be accounted for in determining the profile. This configuration
is static equilibrium under all loads.

It is assumed that the displacement is large, but the strain is small in the problem.

3. Equilibrium condition and the formula of vertical displacement

Vertical equilibrium of the cable requires that

__4_ K _dL — o 0erOu. (j—
s [ T e ]+mg+q,~0, 51 <<%, (i=1, 2, =+, n), 3)
where

[KT—“;%]_——P,, (=12, . n—1) @)

where XT is the cable tension in terms of Kirchhoff stress, which is related to the actual cable
tension in C* by the equation, we have

K= T—‘f;—:—. )

and T is the cable tension in C: Let
%" =lim (°s;+68).
50
”S,»_Zlim (0 ,_5)
50

(6)

From Eg. (3) we can obtain

[ (s [ mefoms

where %, <%<%; From Egs. (7) and (4), we have

ddx Cy+v)= V,.AU+—;~mgl<l———2;i>, ®)

where

0 _pdx
H+h=T = ©)
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is the horizontal component of cable tension 7, and
i—1

Vie1.i=R4— Z(I)j+qj(xj—xj41)]‘qi(x_xhl)a (10)

R,= ;[Pi(1—5;>+qi(x,-—x,-,l)(1—’%—_%)]. (11

From Eq. (8), we have

v _ 1 | mgl h [ 2
&~ Hth |V T2 ol (1 1)] (12)

Eq. (12) may be integrated to yield

1 c—x- ) X—X; S
v(x):vi*I_EQi =l = {RA—Z[IJJ'+CIf(Xf—xj—1)]}

H+h “H+h =
1 mgl h x X
_ = o 2 |y = ! ] L Ly
2 H+h °H [x I (x'*‘ ) G sxsx). (13)
Therefore we have
1 —xim)? XX o
_ 4 XX i Xi—1 _ : o
VYT gy T {RA ‘,;[P'J“b(xf xf“)]}
1 mgl  h o xP [  _ xky 1y ..
2 “H+h °H [x" I ( ) =L (14)

where v,_;=v(x;—)). According to Egs. (13) and (14), we have the following general analytical
formula of vertical displacement v (x).

i1 )
cremve=(1-5) 3 [ Sa o] -2 A (=)

Jj=1

() 1 .

j=itl
+q,{[x;—_2ll 2 —x2 1)]x_%(x2+xi2—1)}- (-1 Lx2x). (15)
In Eq. (15), v(x) has been expressed as the function of P, g, x, x; and A, however, & is unknown.
To get the formula about £ for our problem, we have to discuss the constitutive equation, geometric
equation and compatibility condition of the cable.

4. Constitutive equation, geometric equation and compatibility condition

Because it is assumed that the strain is small, we have following constitutive equation

kT d’s _ d%
A +aAt s S as (16)

For g we have following geometric equation



An analytical approach for nonlinear response

v du dy v L[
=ds ds s ds (d"s)'

333

(17)

The superscript 0 is omitted for °x, because of the fact that xx°x. As it is assumed that the

strain in (* can be ignored, from Egs. (16) and (17), we have

du _ _h d"s_i_Ad”sz__dli‘jy_ dv

dc EA\ dx dx dx dx 2 dx )
Eq. (18) is then integrated and we have

L1 ds 17 [ ds )
“u-re gy 7). (G Jaraa] . (% )]
B 2PN U
J'Xh] dxdv ZJ"‘i*l dx »

From Egs. (19), (1), (12) and (10), we have .
Al [ 1 [ d’s \3 1 (% d’s \3 1 q i
i lf( & e raa f( 5w fd"

_ dy
Hih [H 2011” vebe— [ i

=Uj 1+ —

~

where

From (20), we can obtain

BUES] IR A W W b mg
2 Zl[ dx VL- 2CH+h) ,;‘” Ll”dx 2CH+h) [ 2011]Z vebx

i=1d *i—1

hl
+ 4 +yaAtl=0,

where

From Egs. (8) and (10), and

dv T+ - Py, .
=’ T TR i=12 -, n—=1

Substitution of Eq. (24) into (22) gives

(18)

(19)

(20)

1)

(22)

(23)

24
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A

) hi R :

i=1 Xi—1

vdx]+mg[1+ ST ]Z vdx, (25

i=1d ¥i—1

where h is described by Eq. (9), it is the increment of horizontal component of cable tension.
Eq. (25) is called the compatibility condition of cable (Lu 1994). In the next section, we will
get the dimensionless equation of /4 from Eq. (25).

5. Calculation of horizontal component of cable tension

From Egq. (15), we can obtain

(”H+h)v,~=< )Z[Px, 2(1,(?9 —Xj- 1)] e i]( _—xl—2>

' 1
+x; 'EI{P(]——I—>+qJ|:(x, X 1)~ o0 1)]} (26)
From Egs. (15) and (26), We have
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Substitution of Egs. (27), (28) and (29) into Eq. (25) gives

iz3+<2+§—;+ {) EZ+<1+%+2§>B:A2[ﬁ(ﬁ)+ﬁ @+ P ¢91-¢ (30)
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where

fB= iﬁ(lﬁ)i(l—%ﬂ Z[ 5 Eaif(l—)éj)], 31
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x= —’;— ‘ 37)
P=r. (38)
4= e (39)

The cubic Eq. (30) is the dimensionless equation of the horizontal component increment of
cable tension.

6. Example and conclusions

A new general analytical procedure for nonlinear analysis of cable has been derived with
the intention of being a practical design analytical method. When we use this procedure to
analyse the nonlinear response of a cable under complex loads, such as the problem shown
in Fig. 1, we should take the following steps: .

1. divide the cable into several sections so that the load applied on each section is constant;

2. calculate the coefficients of Eq. (30) from (31)-39);

3. solve the cubic Eq. (30) using the requisite form of Cardan’s equations;

4. calculate the horizontal component of cable tension by following equation
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H="H+h=°H(1+h);

5. calculate the vertical displacement v(x) by Eq. (15);
6. calculate the cable tension T by equation

S _ds
T=(H+h) -2
:(”H+h)\/1+<%>2,

where —Z-)% can be determined by Eq. (8).

Here, it should be emphasized that there is not relationship between the solution accuracy
and the number of sections in first step.

To illustrate the use of such analytical approach, we give the following example. Consider
the cable shown in Fig. 2. It is divided into seven sections so that the load applied on each
section is constant. To get more accurate results, the mass per unit length of this heavy cable
can be divided into two parts m and m,, where m=0.1 kg and m,g=3.5 kN. The natural configura-
tion (* is the static equilibrium under mg, and the deformed configuration C is the static equilib-
rium under all loads. The physical and geometric parameters are listed in table 1. The loads
applied on every section and every node are listed in table 2. The temperature change is Ar=30°C.
Such complex cable problem is solved by using the steps from 1 to 6. The horizontal component
of the cable is 3.48X10* kKN. The vertical displacement v(x) is shown in Fig. 3. The Cable tension
is illustrated in Fig. 4. The deformed configuration C shown in Fig 2 is obtained from the
calculation.

x (m)
0 20 40 60 80
2P 1.5P |P 0.5P 0.5P
3p

2p 2.5p 1.5p

o

(P=3.6x10°N; p=10°N/m)

Y (m)

10
=T

Fig. 2 Cable configurations and loads.

Table 1 The parameters of the cable
E (Pa) A(m?) ao°C) I(m) *d(m)
3.5X10" 0.2 24X107° 80 10
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Table 2 The nodal coordinates and the loads
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i xi(m) ¢i(kN/m) P;(kN)
1 10.0 35 7200.0
2 150 303.5 5400.0
3 300 203.5 3600.0
4 55.0 253.5 0.0
5 60.0 153.5 1800.0
6 70.0 303.5 1800.0
7 80.0 153.5 —
2
N ~
A B Q’ :-—
- ~
X ~
B bS _—
s T wl —_—
"'l“ \ ' I S L L L
0 20 40 60 80 MO 20 40 ' 60 80
x (m) x (m)

Fig. 3 Vertical displacement of cable. Fig. 4 Cable tension.

In summary, an analytical approach is proposed in this paper. By using such procedure,
the exact solution of the nonlinear response of the cable under complex loads can be obtained
easily. The effect of temperature change on the cable is considered. This procedure can be easily
implemented by a general computer program for various cable problems and there is not the
superposition problem which there has always been in traditional analytical analysis.
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