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Elastic distortional buckling of tapered
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Abstract. The overall buckling mode in a composite steel-concrete beam over an internal support
is necessarily lateral-distortional, in which the bottom compressive flange displaces laterally and twists,
since the top flange is restrained by the nearly rigid concrete slab. An efficient finite element method
is used to study elastic lateral-distortional buckling in composite beams whose steel portion is tapered.
The simplified model for a continuous beam that is presented herein is a fixed ended cantilever whose
steel portion is tapered, and is subjected to moment gradient. This is intended to give an insight into
distortion in a continuous beam that occurs in the negative bending region, and the differences between
the cantilever representation and the continuous beam are highlighted. An eigenproblem is established,
and the buckling modes and loads are determined in the elastic range of structural response. It is found
from the finite element study that the buckling moment may be enhanced significantly by using a
vertical stiffener in the region where the lateral movement of the bottom flange is greatest. This enhance-
ment is quantified in the paper.
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1. Introduction

Members consisting of steel and concrete elements acting compositely are now commonplace
in modern engineering structures (Oehlers and Bradford 1995). The advantages that accrue to
composite structures result because the compressive strength of the concrete and the tensile
strength of the steel are utilised to form an economically feasible system. Further economies
may be gained in composite construction if a tapered steel member is used to suit the bending
moment and shear force diagrams. One such application is the increasing use of tapered steel
members in continuous composite bridge girders, as shown in Fig 1.

In designing the steel beam of a composite girder, its resistance to buckling must be evaluated.
Generally, there are two types of instability that should be considered. The first is the lateral-
torsional instability that may occur in unpropped construction in the sagging moment region
due to the wet concrete loading during the construction phase. The second type of instability
is lateral-distortional buckling (Bradford 1992) which may occur in the negative or hogging regions
of the girder during live loading once composite action is achieved. It is the lateral-distortional

buckling in the hogging region of a composite girder adjacent to an internal support that is
treated in this paper.
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Fig. 2 Distortional buckling mode.

Lateral-torsional buckling (Trahair 1993) is a very familiar form of instability, and theoretica
and numerical solutions for a wide variety of loading and support conditions are availabl
in the literature (Trahair and Bradford 1991). This buckling may be prevented by routine applica
- tion of the lateral buckling rules in modern limit states or LRFD design codes of practice
The use of these guidelines is well-known, and is not considered further here.

The second type of instability, that of lateral-distortional buckling, is far less familiar. During
lateral-distortional buckling, the cross-sections of the member distort in their planes, while fo)
lateral-torsional buckling these cross-sections buckle rigidly out-of-plane and twist in accordance
with well-known Vlazov theory. In composite girders subjected to hogging bending, the bottom
flange of the steel is subjected to high compressive forces as the neutral axis is above the steel
mid-height, while the top flange is restrained by the concrete slab. Because of this, the only
possible mode of buckling is distortional, with the bottom flange displacing laterally and twisting
while the web distorts. A typical buckled cross-section is depicted in Fig. 2.

Because lateral-distortional buckling is essentially an interaction mode between local and lateral-
torsional buckling, there are many factors influencing the phenomenon, and the derivation of
a general solution is not straightforward. Although a closed form solution for the case of a
simply supported prismatic I-beam was derived by Hancock, Bradford and Trahair (1980), a
general and accurate solution for lateral-distortional buckling that considers the influence of
such effects as tapering, moment gradient and restraint requires a numerical approach.

A recent state of the art paper (Bradford 1992) demonstrated that a considerable number
of studies have been undertaken on the lateral-distortional buckling of prismatic I-section members
using a finite element approach. Bradford and Gao (1992) and Williams, Jemah and Lam (1993)
used a distortional buckling model to study the buckling of continuous composite girders which
consist of a slab attached to a prismatic steel member. However, there appear to be only three
studies in the open literature (Boswell 1993, Boswell and Li 1992, Lawson and Rackham 1989)
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of the lateral-distortional buckling of composite beams when the steel member is tapered, as
in Fig. 1. In fact, lateral-distortional buckling of tapered steel beams alone has received very
little attention, with the contributions by Akay, Johnson and Will (1977) and the present authors
(Ronagh and Bradford 1993, 1996) appearing to be the only available studies.

The present paper concerns the distortional buckling of tapered composite beams subjected
to hogging bending, and is based on a finite element approach developed by the authors in
a separate study (Ronagh and Bradford 1996). The method is quite general in that it can consider
both tapering of the flanges and the web, and incorporates the effects of elastic restraints and
loading remote from the shear centre. The finite element method is used herein to investigate
the elastic buckling of tapered composite cantilevers under moment gradient. Although obviously
not an accurate model for the buckling of continuous beams, the model is a first step to the
full stability analysis of an entire continuous composite girder incorporating tapered steel mem-
bers, and provides an insight into this type of instability problem.

2. Finite element buckling analysis

The finite element method developed by the authors for the distortional buckling of tapered
indeterminate I-beams is fully outlined in Ronagh and Bradford (1996), and so details of the
derivation of the stiffness matrices are not presented here for brevity. In order to perform an
out-of-plane lateral-distortional buckling analysis, the in-plane stresses are required firstly, and
so uncoupled in-plane and out-of-plane elements need to be developed. As the steel member
is an I-section composed of flanges and a web, both flange and web elements have to be developed
for either analysis. The member is analysed first in-plane, and the stresses determined from
this analysis are input into the out-of-plane distortional model. The geometric nonlinearity is
accounted for in the out-of-plane analysis by considering the loss of potential energy in the
in-plane stresses as they move conservatively through the path of the out-of-plane buckling mode.
This approach gives rise to the common linear eigenvalue representation (Trahair 1993) as

((K*T=A[G*T) « {Q*}={0} (1)

where [K“] is the elastic out-of-plane stiffness matrix, [G*] is the out-of-plane geometric or
stability matrix, {Q°"} is the vector of out-of-plane displacements representing the buckling mode
or eigenvector and A is the buckling eigenvalue or load factor.

The linear eigenproblem represented in Eq. (1) is solved in two steps. Firstly, the eigenvalue
is calculated by the Sturm Sequence Property (Wilkinson 1965), and then a random disturbance
is applied to the loaded system for the calculation of the eigenvectors by using the method
of Hopper and Williams (1977).

The elements deployed in the in-plane and out-of-plane analyses are shown in Fig. 3. Complete
details of these, together with the relevant stiffness matrices, can be found in the study by Ronagh
and Bradford (1996). The latter publication also shows that the method provides accurate results
with only a few elements, as the convergence is rapid.

3. Modelling of the steel member

The cross-section of a composite member subjected to hogging bending is shown in Fig.
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4. Assuming that the reinforcement is located at the mid-depth of the concrete slab, it can
be established easily that in the elastic range the neutral axis will lie below the soffit of the
concrete slab when

A,
A,

<

d,
d,

@

where 4, and A, are the arcas on the reinforcement and steel section respectively, and d. and
d; are the depths of the concrete and steel sections respectively. This condition is usually satisfied
in practice, as A, is usually around 4 or 5 percent of 4,, while d, is significantly greater than
d.. Because of this, for reasonable practical dimensions the concrete cracks throughout in the
negative moment region, even if the tensile strength of the concrete is taken into account, and
therefore the concrete has no effect on the cross-sectional properties.

The finite element model which is used in this study is able to model properly the steel
member as an assembly of tapered web elements and flange beams. It can also model the
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restraint provided by the concrete slab. This restraint is assumed to be fully rigid, so all degrees
of freedom in the buckling model corresponding to the out-of-plane instability and twist of
the top flange are fixed. In order to do this, the reinforcement is not introduced as a structural
component, but rather its effect is treated as an applied axial loading on the steel member.

As is shown in Fig. 4, and when the cross-section is subjected to a negative moment M, a
tensile force N, is induced in the reinforcement, and equilibrium requires a compressive force
N, in the steel section that is equal and opposite to N, The steel portion is also subjected to
a moment M, equal to the difference between the total applied moment M and the couple
produced by the forces N, and N.

By considering the statics of the section, M, and N, may be related to the applied moment
M by

_ _ ArLi_ﬂdr)(dC*—ds/z_dr)
M=M (‘ 1;+A;(dc+ds/2—i)2+Ar@‘—d,)2) )
and
N=M ( It A@ A2~ P+ A,G—dy ) )

where y is the depth of the neutral axis from the top of the slab, d, is the depth to the reinforcement
measured from the top of the slab, and /; is the second moment of area of the steel section
about its centroidal axis.

For the in-plane analysis, values of M, and N, need to be calculated at different points along
the length. The steel member is then analysed for out-of-plane lateral-distortional buckling under
the action of these stress resultants.

In order to demonstrate a general understanding of the importance of different loading parame-
ters, the ratios N;4#/M and M,/M were calculated for the typical cross-sectional dimensions given
in Fig. 4, but using Eqgs. (3) and (4) with a range of values of A. These ratios are plotted in
Figs. 5(a) and 5(b). It can be seen that as 4 varies from 700 mm to 1200 mm, the ratio M,/M
only varies from 091 to 093, which represents a relative variation of only 22%. This suggests
that the ratio M,/M could be considered constant throughout a practical range of depths /4 without
the introduction of significant error in the bending stresses. However, the values of N,i/M vary
from 0.144 to 0.121, representing a relative increase of 19%, so that the axial force cannot be
considered as constant unless the effect of axial force on the stresses for a particular section
is small.

In the analysis of lateral-distortional buckling, the magnitude of the compressive stress on
the bottom flange, which is caused by both bending moment and axial force, is most important.
The relative importance of the axial force can be ascertained from the ratio

Oaxial — ZMIs
O-bending Als h As (5)

where O, 15 the stress induced by N, and Gy is the stress induced by M, at any cross-section.
This ratio is calculated in Fig. 5(c), which illustrates that although the axial forces N, vary quite
significantly, their effect on the stress ratio in Eq. (5) and thus on the elastic critical load is
only marginal. The axial stress ., may thus be taken as approximately 5% of the bending
SLIeSS  Chending:
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Fig. 5 Importance of different parameters on the steel section loading.

4. Studies on composite beams
4.1. Composite cantilever in uniform bending

Consider the composite cantilevers shown in Fig. 6(a). One has a prismatic steel section, while
the other has a steel section with a web tapering coefficient a of 0.8, where « is the ratio of
the smaller web depth to the larger web depth. The dimensions of the larger section are as
shown in Fig. 4, and all of these are constant along the length of the member except the web
depth which tapers linearly.

In order to analyse the lateral-distortional buckling of the cantilever, the steel member was
discretised into finite elements with a mesh consisting of 12 quadrilateral elements and 24 beam
clements being used for both the prismatic and tapered members, as shown in Fig. 6(c). This
meshing was shown to produce results within 2% of those obtained with a very fine meshing
consisting of 36 quadrilateral and 72 beam elements to which the solution converged. By using
Egs. (3) and (4), the moment acting on the steel section for the prismatic case was 0930 M,
and the axial force was 0.121 M/h. For the tapered member, however, the moment varied from
0930 M to 0923 M. while the axial force varied from 0.121 M/h to 0.131 M/h. These variations
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Fig. 6 Composite cantilevers under uniform moment.

were incorporated by applying the stress resultants throughout the length of the member, as
shown in Fig. 6(b). This model produced an elastic critical moment of 784 kNm for the prismatic
cantilever and 812 kNm for the tapered cantilever.

The discussion of the previous section has indicated that to incorporate the effects of the
reinforcement, Eqs. (3) and (4) should be invoked and the stress resultants so obtained be applied
to the finite ¢lement model, as was done for the previous two studies. However, as the stresses
resulting from the axial forces are only marginal and the bending moment in the steel member
is reasonably constant for varying values of the depth A, the following examples incorporate
a constant bending moment alone in the steel member.

4.2. Tapered restrained steel beam in uniform bending

A steel cantilevered member, fixed at the top flange level and whose larger section has the
dimensions of Fig. 4, has been studied. The beam was subjected to uniform bending, and values
of the elastic lateral-distortional buckling moment M,; for this cantilever were calculated as a
function of the beam length L between 10m and 40m for web tapering ratios @ between 04
and 1.0.

The results are plotted in Fig. 7. It can be seen that in most cases the buckling moment
increases as the length increases, which of course is contrary to conventional lateral-torsional
buckling theory. This paradox is attributable to the buckling mode shapes of the bottom flange.
The mode shapes are shown in Fig. 8 for the two extreme tapering ratios of 1.0 and 0.4, where
it can be seen that for the longer beams, only the portion of the beam adjacent to the free
end contributes to the buckled shape. For example, for the somewhat hypothetical case of L=40m,
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Fig. 7 Tapered steel member under uniform moment.

only the end 15m or so for =04 and 20m or so for a=1.0 display a significant lateral movement
of the bottom flange. It is also worth noting that the buckling mode shapes are not the same
for the short and long beams, indicating a behaviour similar to local buckling where the local
buckling half-wavelengths are more influential in the buckling load than the length of the member
itself (Bradford 1990). Mode shapes corresponding to other values of a were also drawn, and
these were similar to and intermediate between those of Figs. 8(a) and 8(b). Theoretically, there
must be a slight kink in the curves at those particular values of the length where the mode
changes its normalised shape (Bradford and Trahair 1983). For example, by considering Fig.
8 for the case of @=04, it can be seen that there must be a kink somewhere between 20m
and 30m from the root because the modes at these lengths have different shapes. These kinks
are very small, and are not picked up in the ranges of discrete lengths chosen.

The kinks are also at locations where the mode shapes change, and their precise locations
can be determined by inspecting the buckling load and eigenvector that correspond to the first
or fundamental eigenvalue and second eigenvalue which can be obtained from the eigensolver.
Details of this phenomenon are outlined in Bradford and Trahair (1983).

4.3. Tapered restrained steel beam under moment gradient

A steel cantilever member restrained at the top flange was considered under moment gradient
in order to give an insight into the buckling behaviour of a tapered composite beam. The web
depth was tapered, and the member was subjected to a moment gradient ratio f, as shown
in Figs. 9 and 10, where S is the ratio of the smaller end moment to the larger end moment,
and taken as positive if the member is subjected to reverse curvature.

Critical values of the elastic buckling moment M,,; were obtained as a function of the length
L for =05 (Fig. 9) and =0 (Fig. 10). It can be seen that the elastic buckling moments are
much larger than for the uniform bending case shown in Fig 5. It is interesting to note that
as a consequence of the eigenmode variation discussed for unif#rm bending, the elastic buckling
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Fig. 9 Tapered steel member under moment gradient.

load actually increases in length with f=0.5 and a<1, but this is not evident for the somewhat
steeper moment gradient when S=0. Under the steep moment gradient, the region adjacent
to the support is most highly stressed, and the buckling deformations were found to be greatest
near the root where the resistance to the buckling deformation is greatest.

4.4. Effect of a vertical web stiffener

The effect of a vertical web stiffener on the elastic lateral-distortional buckling response of
a restrained prismatic steel member was considered. It was expected that this would increase
the buckling moment by restraining the bottom flange at the location of the stiffener. Vertical
stiffeners may thus be advantageous in delaying lateral-distortional buckling, as well as preventing
buckling of the web in shear (Trahair and Bradford 1991).

A prismatic restrained steel member with the dimensions shown in Fig. 4 was considered,
but one element was used to model a 20 mm thick stiffener of the same width as the flange
outstand placed on both sides of the web. The beam was subjected to uniform bending, and
the coordinate x of the stiffener was varied between 0 and L.

Fig. 11 shows the values of the ratio M,,/M,; as a function of x for four different values
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of L, where M,; is the elastic lateral-distortional buckling moment without the stiffener, and
M, is the lateral-distortional buckling moment in the presence of the stiffener. It can be seen
that the largest increase in buckling moment occurs for the shortest cantilever model. with M,,/M,,,
being around 2.8. There are some aberrations in the curves, showing that some stiffener locations
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x are less significant, with the largest increase in buckling moment occurring when the stiffener
is placed at the free end. As would be expected, a general rule is that a stiffener is most effective
when placed at the point corresponding to the largest lateral movement in the eigenmode. The
aberrations in Fig. 11 can thus be explained, since similar aberrations in the mode shapes occur
in Fig. 8.

To clarify this, if Fig. 8(a) is compared with Fig. 11, it can be seen that placing the stiffener
near the buckling nodes in Fig. 8(a) has the least effect on increasing the buckling resistance,
while placing the stiffeners where the buckles in Fig. 8(a) are largest produces an enhancement
in the buckling load. Similar conclusions were also found for tapered members, the solutions
of which are not presented herein.

In a real composite beam, whether tapered or prismatic, the sagging moment region beyond
the point of contraflexure would provide restraint to the hogging region since the bottom flange
is in tension. This behaviour is akin to providing a stiffener at the free end of the cantilever,
and demonstrates the benign effect of the sagging region in delaying the buckling of a composite
continuous beam.

5. Design recommendation

In design, the elastic critical load must be converted to a design strength that incorporates
the interaction between buckling and yielding. For hot-rolled sections, Bradford (1989) studied
the inelastic lateral-distortional buckling of beams restrained by a concrete flange, and proposed
a design rule that was consistent with complex finite element studies undertaken by Weston
and Nethercot (1987). ‘

In order to calculate the strength of the steel portion, the equation proposed by Bradford

(1989) is
B M\, Mp}
M;,,—(}.SM,J{\/< Mﬂ) +3 W (6)

where M; is the full plastic moment of the steel portion, M,, is the elastic lateral-distortional
buckling moment of the steel portion, and the strength of the steel portion, M, can be converted
to the strength of the composite beam by use of Eq. (3). Of course, the provision of Eq. (6)
is approximate, since it is based on inelastic buckling, while the section analysis in Egs. (3)
and (4) is based on elastic theory. However, it was shown by Bradford (1989) to produce reasonable
results for prismatic members.

6. Concluding remarks

The elastic lateral-distortional buckling of composite cantilevers with tapered steel members
has been analysed. The cantilevers were chosen as being a first step in the realistic representation
of the tapered portion of a composite bridge girder continuous over an internal support. As
discussed in the paper, the free end of a cantilever does not usually model the point of contra-
flexure in a continuous beam, as the buckling is restrained by the tensile portion of the bottom
flange in the sagging region. The cantilever model is therefore a simplification, but it does provide
insight into the mechanics of the elastic instability of a tapered continuous beam. Such bridge
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girders have found their way into modern construction practice, owing to modern and inexpensive
fabrication techniques. The analysis was formulated to consider the steel member alone, with
the concrete assumed to provide full lateral and torsional restraint to the top flange, while the
effect of the tensile reinforcement was to apply a compressive force to the steel member. The
steel was modelled as an assembly of tapered web elements and flange beams, and a standard
eigenproblem was solved to determine the buckling loads and modes.

Elastic critical moments were calculated for a range of web taper ratios and different lengths.
An interesting phenomenon observed was that the buckling moments do not always reduce
with increasing length, and this was attributed to the mode shapes that develop during buckling,

The effect of deploying a vertical web stiffener was investigated, and it was found to increase
the distortional buckling moment significantly. As expected, it was found that the greatest increase
in buckling moment occurred when the stiffener was placed where the lateral displacements
were greatest, namely at the free end of the cantilever in this case. In a continuous beam, the
effect of the stiffener would be similar to the restraining effect of the sagging region beyond
the point of contraflexure.

Lateral-distortional buckling of continuous composite beams is a grey area of research, and
the guidelines in standard national codes of practice are either absent or questionable. The
finite element method developed for this study is capable of an efficient analysis, not only of
composite beams with prismatic steel members, but of composite beams with tapered steel mem-
bers that are often adopted for modern bridge construction. Detailed parametric studies produced
from the model, which are the subject of continuing research by the authors, should provide
design guidance on this important facet of lateral-distortional instability.
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N

Notation

A, area of reinforcement;
A area of steel section;
d. depth of slab;

d. depth of steel section;

s

[G™]  out-of-plane geometric matrix;

h distance between flange centroids;

8 second moment of area of steel section;

[K*]  elastic out-of-plane stiffness matrix;

L length of member;

M applied bending moment on composite section;
M, elastic lateral-distortional buckling moment;

M, elastic lateral-distortional buckling moment in the presence of a stiffener;
M, moment in steel section;

N, axial compression in steel section;

{0} vector of out-of-plane buckling deformations;

X lengthwise coordinate of stiffener;

y depth of neutral axis;

a ratio of smaller to larger web depths;

B ratio of smaller to larger bending moments;
Ouxial stress in bottom flange due to axial force;
Ohending stress in bottom flange due to bending moment.





