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Abstract. The elastic deflections and Euler buckling loads are investigated for a class of tapered and
initially curved cantilevered beams subjected to loading at the tip. The beam’s width increases linearly
and its depth decreases linearly with the distance from the fixed end to the tip. Unloaded, the beam
forms a circular arc perpendicular to the axis of bending. The beam’s deflection responses, obtained
by solving the differential equations in closed form, are presented in terms of four nondimensional
system parameters: taper ratio k, initial shape ratio Ay, end load ratio f, and load angle 6. Laboratory
measurements of the Euler buckling loads for scale models of tapered, initially straight, corrugated beams
compared favorably with those computed from the present analysis. The results are applicable to future
designs of the end structures of highway guardrails, which can be designed to give the appropriate
balance between the capacity to deflect a nearly head-on vehicle back to its right-of-way and the capacity
to buckle sufficiently that penetration of the vehicle may be averted.
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1. Introduction

Historically, axially loaded tapered beams were discussed by Dinnik (1929, 1932), Timoshenko
and Gere (1961), Ermopoulos (1986), Williams and Aston (1989), and Siginer (1992). These investi-
gators computed Euler buckling loads for tapered beams of various cross sectional shapes (/-
beams, box-beams, open web-beams, and beams of circular, square, and rectangular cross section),
considering several types of end fixity. They expressed the taper along the beam’s longitudinal
coordinate x by choosing /(x), the second moment of the cross sectional area with respect to
the neutral axis in bending, as either an exponential function in x or a power law of x. For
instance, Timoshenko and Gere (1961) used the latter form, or

X\
I(x)—]( a) 1)

in which 7, a, and m are constants. This form is used herein to represent a tapered beam whose
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coordinate system, dimension a, and loading are shown in Fig. 1. Here, m=2 is used to model
corrugations across the width, in which the width and depth tapers both vary linearly with
the longitudinal coordinate x, as indicated in Fig. 2.

None of the historical analyses on the buckling of tapered beams has included the effects
of initial beam curvature, which is the subject of the present study. An important application
of tapered and initially curved beams subject to end loading is the terminal end structure of
present-day highway guardrails. There are two main purposes of such structures: to buckle suffi-
ciently so that penetration of the end structure into an impacting vehicle is avoided; and to
have sufficient strength after buckling so that the impacting vehicle is deflected back into its
traveling lane. Guardrail designers have reduced the guardrail buckling strength in two ways:
by tapering (Sicking, et al. 1988); and by designing the second post from the end to release
upon end impact, thereby effectively doubling the guardrail length and reducing its buckling
strength by a factor of four (Bronstad, ez al. 1986). What is new herein are the systematic studies
of the interaction effects of taper, initial curvature, and angle of the end load on the deflection
and buckling of cantilevered beams. These results may be applied to the future design of guardrail
end structures that have the capacity to buckle while deflecting an incident vehicle in ways
to improve the safety of passengers.

2. Mathematical model

Shown in Fig. 1 is the initially curved cantilevered beam of length L, lying in the horizontal
or (x, yrplane. The origin of the beam’s (x, y) coordinate system is displaced by a from the
tip of the beam. The tip load F is inclined at angle 6 to the x-axis. The coordinate system
is attached to the beam tip so that as the load is applied, the beam tip is always located at
(a, 0). The initial shape of the curve (for F=0) is defined by the circular arc in which the
ordinate y=y,(x) and its curvature are, respectively

)= (L~ e —a—L) @

In these two Eqs. (2) and (3), d, is the initial, y-directed tip deflection relative to the fixed end,
as shown in Fig. L.

The geometric parameters for the linearly tapered, width-corrugated beam of this study are
shown in Fig. 2. The corrugations of uniform thickness ¢ are defined by the line segments of
dimensions /,, [,, and /.. The beam depth w(x) is chosen as a linear function of the beam coordinate
X, or

wx)=W,—wlx—a)/L+w, )

where w, and w, are the depths at the tip and at the fixed end, respectively. For these corrugations,
I{x) is derived as

I00)=41,0¢)+ 21, () + 21.(x) )

where
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Fig. 1 Beam model in the xp-plane, showing dimensions, initial (or unloaded) beam shape, and the
beam shape under tip load F.
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Fig. 2 Beam model showing: (a) linear taper in the xz-plane; and (b) typical cross section in the
vz-plane with line segments defining the corrugations.

L(x )_——LLH z(ﬂ)—‘)—mx))z ©)

Lix )~ bt +1,,t <w(x) 00) — -)2 %

( (x)——;—)z ®)

and where the centroid of the cross sectional area with respect to the axis of bending is

Lw(x)+1, (w(x) — %) + %It.t

2,+1,+1, ©

1. (X)_

wx)=

When Eqgs. (4) and (6)«9) are combined with Eq. (5), it is apparent that /(x) has the form
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Tx)=A\x*+A,x+4, (10)

in which A4,, 4,, and A; are constants involving products of the beam dimensions: [, I, I, w,,
w, and t. Here, /,, [, and /. are constant or linear functions of x. For thin-walled corrugations,
Strong (1994) showed that I(x) of Eq. (10) may be approximated by 4,=I/a*, A,=A;=0, or

100~ 1, (%) (11)
where
L
a="h_q: k=I1/I (12)

in which I, and I, are the values of /(x) evaluated at the tip and at the fixed end, respectively.
For instance, for a thin-walled corrugated section with x=1,/,=0.25, I(x) computed from Eq.
(11) has a maximum error of less than 0.02% when compared to the exact value computed
from Eq. (10), based on Egs. (4)-9).

Consider now the equation governing the shape y=y(x) of the beam with the tip load shown
in Fig. 1. Assume classical beam theory, which then leads to the expression for the bending
moment M(x) as a function of the difference between the actual beam curvature and the initial
curvature, or

M()=EI(x) ('Ex% %) (13)

where E is Young's modulus (Timoshenko and Gere 1961). In this class of problems, the bending
moment is due to the tip load, or

M(x)= —(F cosO)y —(F sinf)x —a) 149)

When I(x) of Eq. (11), the curvature of Eq. (3), and the moment of Eq. (14) are combined
with Eq. (13), the equation governing the deflection of the beam becomes

E11<a) Zax); +(F cosOy=—(F sinf)x— a)+E11<a) CZ:ZO 15)

To solve Eq. (15), consider the following transformation and its derivative.

X

X (16)
2dy _dy  dy
X A aw (7

With Egs. (16), (17), and (3), Eq. (15) may be recast in terms of the independent variable Vv,
or

d&’y dy | Fa*cos® __ Fa'sind _ 2a do o2
av " dy T EL, YT R, @D ’

(18)

For a closed form solution to this governing equation, the methods of Moore (1962) are followed.
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That is, the solution to the homogeneous equation is

yr=\/e"(C,sin By+C; cos V) (19)

where E’l and Z’z are arbitrary constants and

—_ / Fa’cos§ 1
p= El 4 (20)

1
The homogeneous solution has the form
2 =Cruy(¥)+Cour(¥) 21)
In these terms, the particular solution is written as

y=Ci(W)u,(¥)+C(¥) ux(¥) (22)

where the arbitrary constants C, and C, are now recast as ¢, and ¢; in the work that follows.

_ Y AW u(w) ,
Ci(v)= . W[ul(V/), uz(V’)] dv+c,, (23)
Cow)= f 0 W[Z%;f‘i%)] dy+c, (24)
e 03)

The integrands of Egs. (23) and (24) contain the Wronskian, defined as
— u[(l{/) Hz(l//) — ' _ ’
W[ul (W)’ uz(l//)] Ml'(‘/’) llzl(W) —Uu (v/) 23] (v/) u;)_(l//) U (V/) (26)

where (') is the operator d/dy. The following two independent solutions to the homogeneous
form of Eq. (18) are substituted into the Wronskian.

u (W)=+/e"sin B v 27)
uz(l//):\/évcos,é!// (28)

The Wronskian then becomes
W lu (W), wr(¥)]=—Be (29)
With this last result, Egs. (23) and (24) become

Ci(w)= f Wﬂ%ﬁm dv+e, (30)
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Cw)=— J h—(—“%ie‘i—‘@ dvte, G1)

The solution is now cast in nondimensional form. The dependent and independent variables
are

Yeyi, ¥=—Y =2V g<w<y (32)
1 In(x)
In{ 1+—
A
The taper ratio « of Eq. (12) is expressed as
L/ia=1/A=x""—1 ' (33)
The initial shape ratio is defined as
The end load ratio is defined as

_ F _4 FLI’

S=F TR

35)

In the latter equation, F, is the critical Euler buckling load for a uniform cantilevered beam
in which I(x)=1,, or

— ,Tz E12
Fc 4 L2 (36)
In these terms, the final solution to the governing differential equation becomes
Y1
Y(v)= [f E(’D k" h(¥) cos(BO W) d ¥+ cl]x' ¥isin(Bo ¥)
0
Y1
+ [— J E(bK‘mh(‘I’) cos(BOYP)d ¥+ cz]x* ¥4 cos(BOY) (37
0
where
2
h(¥)= —L FASINO(K Y2 —1)—24,42 k¥ (398)
= f fA cosH L (39)
o=In\1 +L S In(x) (40)
N A 2

The two arbitrary constants ¢, and ¢, of Eq. (37), the general solution to the second order
differential Eq. (18), are computed by applying two geometric boundary conditions to Eq. (37),
one at the tip and the other at the fixed end. (Note that the transverse shear and moment
end conditions were incorporated in the initial second order model, Eq. (15) and that these
loadings are satisfied at the ends as well). In the original coordinate system, the tip end condition
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is y(x)=0 at x=a, and the fixed end condition is dy/dx=0 at x=a+L. In terms of the coordinate
transformations defined by Egs. (16) and (32), these respective end conditions are: Y(¥)=0 at
¥=0 (or Y(0)=0); and dY(¥)/d¥=0 at ¥=1 (or Y (1)=0). When the tip -end condition is
applied to Eq. (37), then ¢,=0; and when the fixed end condition is applied to the first derivative
of Eq. (37), then the remaining constant is computed as

"1

= ?‘PK"/“h(‘I’)tana sin(ﬂ‘PY’)dY’"f %‘p"mh(Y’)COS(ﬁ‘P‘I’)dY’ (41)

where

aztan’(z—lﬂ>—ﬂ¢ @)

Consider the special case of the initially straight beam (A,=0) with a pure longitudinal load
(6=0), for which the solution given by Egs. (37)42) reduces to the following result.

Y(¥)=c k ¥2sin(Bo W) (43)
in which Y(0)=0. Also in this special case,

Y'(Y’):a[gx“"/“sin(ﬂa) ¥)+Bo Y’“W“cos(Bq)‘I’)] (44)

which must satisfy the fixed end condition Y'(1)=0. This last condition leads to
tan B¢+2B=0 45)

The minimum nonzero root B of Eq. (45), when used with Egs. (39) and (35), gives the critical
ratio f=f, and the Euler buckling load F=F,,.

The results of the above analysis are summarized. The seven beam characteristics needed
to compute the displacement curve and Euler buckling load for a linearly tapered beam with
initial curvature are: the second moments of area at the ends, 7; and I,; the beam length and
its initial offset, L and dy; Young’s modulus, E; and the tip load and its orientation, F and
6. These seven characteristics lead to four nondimensional system parameters: the taper ratio
x, Eq. (12); the initial shape ratio A, Eq. (34); the end load ratio f, Eq. (35); and the given
load angle 6. With these parameters, 4, h(¥), B, @ ¢, and a are computed from Egs. (33)
and (38)(42), respectively. The solution for the beam’s displacement is then computed from
Eq. (37) in which ¢,=0.

3. Numerical results

Consider first the special case described by Egs. (43)+(45), the initially straight beam with
a purely longitudinal load, and investigate the variation of the Euler buckling load with the
taper ratio x. Corresponding to the range of k, which is 0 to 1, the range of the critical end
load ratio f=f, is 1/7* to 1; and the range for the actual critical load F, is E L/4L% to
m E L/(4L). Typical results over the range of k, as deduced from the smallest root 8 of Eq.



264 James F. Wilson and Daniel J. Strong

Table | Variation of buckling load
ratio f., with the taper ratio

K, for Ay=06=0
_4 FL’°
K ﬁ cr— ”2 E12
0.0 undefined 1/m?
0.1 1.624 0.547
0.2 2227 0.645
0.3 2.894 0.715
04 3.720 0.771
0.5 4.830 0.820
0.6 6.455 0.863
0.7 9.112 0.900
0.8 14.39 0.937
0.9 30.13 0.969
1.0 undefined 1.000
10 ~———y
A= %
[ X1
0.0
€ o w
4 - x
5 g (=%
= H]
3 =
E 5
£ E
g ?
Z § 0.0
10 1.0 -
§=0 b=5%
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Non-dimensional Displacement Y(0)

Fig. 3 End load-tip displacement behavior for
0= —n/8, —n/16, and 0, for several values
of the taper ratio . The the initial displa-
cement ratios are A,=0.01, 0.0625, 0.125,
and 0.1875, which are the points of inter-
section with the abscissa, left to right, res-

pectively.
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Fig. 4 End load-tip displacement behavior for 6
=n/16, /8, and n/4 for several values of
the taper ratio k. The initial displacement
ratios are Ay=0.01,0.0625,0.125, and 0.1875,
which are the points of intersection with
the abscissa, left to right, respectively.
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(45), together with Egs. (39) and (35), are shown in Table 1. In practical cases, the taper is
seen to reduce the buckling load by at most a factor of 2 (k= (0.1) when compared to the
buckling load for the uniform section (x=1). The values of the Euler buckling load for this
special case are upper bound values compared to the values computed for nonzero values of
Ay and (or) 6.

Using numerical integration, the exact solutions for the tip displacement Y{(0)=y(a)/L were
computed for the following parameters: A,=0.01, 0.0625, 0.125, 0.1875; x=0.1, 0.3, 0.5, 0.7, 0.9;
and 6=—7/8 —n/16, 0, /16, n/8, and 7/4. These results are shown in Figs. 3 and 4. In each
of these figures, the four values of A, correspond to the four intersection points of the curves
with the abscissa, for f/=0. These results show a decrease in the load-carrying capacity of the
beam as the taper ratio « is decreased from 0.9 to 0.1, regardless of the values for A, and
6. Further, for a given x and 6, the load-carrying capacity always decreases with increasing
A,

In design applications involving guardrail end structures in which @ is expected to be greater
than zero, then Fig. 4 applies. These results show that the effective load-carrying capacity may
be reduced by a factor of two or more (in comparison to the uniform beam in which A,=68=0)
if the following beam geometry is chosen: k< 0.7 and A,20.0625.

4. Experimental results and discussion

Experiments were designed and performed to measure Euler’s buckling load for three different
geometries of tapered, corrugated, steel beams that were initially as straight as manufacturing
allowed (A,=0), where the load was purely longitudinal (6=0), or as near to this as possible
experimentally. The purposes of the experiments were to observe local buckling, if any, in the
vicinity of the corrugation bends and to determine how well the above analysis predicts Euler’s
buckling load for these shapes, keeping in mind that local buckling of the corrugations was
not modeled in the analysis.

The geometric properties of the three types of experimental beams, all of the general type
shown in Fig. 2, are summarized in Table 2. Each experimental beam had a linear taper in
web depth as defined by Eq. (4), and a linear taper in the corrugated lengths /, and /,, given
by

L=(a—la)x—a)/L+1, (46)
Ib:(lbz—lbl)(x_a)/L'Jf‘lbl (47)

Here, the numerical subscripts (1,2) on these web dimensions refer to those at the wide and
narrow end, respectively. In these specimens, /. was constant and /(x) had the form given by
Eq. (11). For these steel specimens, Young's modulus was E=207 GN/m? and the tensile strength
was 345 MN/m’.

Each tapered, single beam was cold-formed from sheet steel, which was sandwiched between
a series of flat plates and bent in a mechanical press to create the desired web shape. The
experimental setup and a typical double beam specimen are shown schematically in Fig. 5.
Each double beam specimen consisted of two tapered single beams of identical type, one of
the three types defined in Table 2. The two single beams were overlapped and bolted together
between steel bar stock at the narrow ends to form the clamped mid-section of the double-beam
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Table 2 Geometric properties of the experimental specimens

Specimen property Type 1 Type 2 Type 3
material thickness: ¢ (cm) 0.0914 0.0914 0.0914
length: L (cm) 90.36 90.36 90.36
web depth, narrow end: (cm) 2.54 2.54 2.54
web depth, wide end: (cm) 2.54 2.06 1.43
narrow end: I(cm®) 1.419 1.419 1.419
wide end: I(cm?) 1.419 1.007 0.4745
k=1,/I, 1.0 0.7097 0.3344
y (o) . ADED BEAM
J— NLOADED BEAM
L_ZQK::—:’_'_____'_ ‘L___té‘g@
- P‘— L L .1'

CENTER _/ \

MP
CLA ‘END CLAMP

NTESTING MACHINE CYLINORICAL PIN f
PLATTEN PLATTEN
E

Fig. 5 Experimental setup of a double-beam specimen between plattens of the testing machine, sho-
wing: (a) beam displacement curve in the xy-plane and the measured midspan deflection §;
and (b) the linear taper in the xz-plane.

specimen. A cylindrical steel roller was affixed to each of the wide ends. This double-beam
specimen was a pinned-pinned column of length 2/, subjected to the longitudinal compressive
load F, with a resulting central, lateral deflection & in the xy-plane. It is observed that the half
length of this double-beam specimen is identical to the model shown in Fig. 1: the single, tapered
cantilevered beam of length L, with the tip load F at the wide end, where 6=d,=0 and y(a)=4.
Note that Y(0)=Ly(a)=L5 by the transformation Eqgs. (16) and (32).

A 2670 kN capacity Tinius-Olsen universal testing machine was used to apply the compressive
end load, F, at the pinned ends. The full-scale load was set at 36 kN for which the measuring
accuracy was +20 N. A dial gage with an 8§ cm stroke and an accuracy of £0.002 cm was
used to measure the lateral displacement & at the center of the double beam. Each specimen
was loaded slowly (the average test time was 30 minutes per specimen) and approximately 25
measurements of the compressive load and central lateral displacement were recorded simulta-
neously for each test. In all, nine experiments were performed: three tests for each of three
identical specimens, Types 1, 2 and 3. _

To determine the experimental buckling loads, a Southwell plot was generated for each of
the nine specimens (Southwell 1912, Allen and Bulson 1980). The assumptions inherent in such
plots are that the specimen is simply supported, and that the specimen has a small but finite
initial curve due to imperfect manufacturing in which initial curve describing the imperfections
is approximated by a half sine curve. For a typical set of experimental data (F, ), the ratio

- F/8 vs. & was plotted, and linear regression (excluding the first four points) was used to compute
the slope formed by the remaining data. The inverse slope of this fitted curve was the experimental
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Table 3 Euler’s buckling loads, experimental and theoretical

Specimen Measured buckling Theoretical buckling -
Type load (N) load (N)
1A 8505

1B 7455

1C 8122

Type 1, Average 8027 8496

2A 6699

2B 6788

2C 6681

Type 2, Average 6723 7673

3A 5591

3B 6410

3C 6339

Type 3 Average 6113 6227

Euler buckling load. The results of these experiments are given in Table 3, in which it is observed
that the agreement between the measured Euler buckling loads and those computed from theory
were all quite good. Based on the average of three specimens for each of the three geometries,
the experimental loads were all somewhat lower than those predicted by theory: 5.52%, 12.4%,
and 1.86% lower for specimen Types 1, 2, and 3, respectively.

There were three main reasons for the differences between the experimental and theoretical
results. (1) Small initial specimen misalignment in the testing machine. Although every attempt
was made to load the specimens in-line with the center of area with respect to the bending
axis, the rapid displacement of the specimens at low loading indicated that there was sufficient
initial offset to reduce the Euler buckling below that predicted by theory. The exception was
specimen 1A, for which theory and experiment were essentially the same. (2) Manufacturing
imperfections. As the maximum load was approached, the specimens exhibited local buckling
of the unstiffened flanges (/,), near midspan, in wave lengths of 7.6 cm, 102 cm, and 12.7 cm,
which were precisely the lengths of the flat plates used in the mechanical press to form the
specimens. (3) Effects of the bends. Due to bends that formed the corrugations, there was a
reduction in effective area for the compressive stress in the unstiffened flanges (/) of the web
(Kalyanaraman, et al. 1977 and DeWolf, et al. 1975). This could account for the closer agreement
to the theory of the Type 3 specimens, which have the smallest unstiffened flanges of all three
specimen types.

5. Conclusions

The closed-form load-displacement solutions for a class of tapered and initially curved cantile-
vered beams with tip loads showed reductions by factors of two to five in the effective elastic
buckling loads, as compared to the buckling loads of their straight, uniform beam counterparts.
Such reductions occurred for compressive loads oriented at >0 (Fig. 1), for taper ratios x
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and initial shape ratios A, spanning the realistic ranges as shown in Fig. 4.

The results of the present analysis, although based on thin-walled beams whose corrugated
cross sections consisted of straight line segments, may be used also to determine the approximate
buckling loads for end-loaded cantilevered beams with similar corrugations whose sharp line
breaks are replaced by rounded corners, the geometry presently used for cantilevered-typeend
structures of many highway guardrail designs. The present results are applicable to such designs
that may overcome the shortcomings of the current ones, which are often so stiff in response
to the end loads of errant vehicles that these end structures penetrate the vehicles, causing injury
to the passengers. Future innovative end structure designs would make use of the results herein
to achieve the proper balance between taper and initial curvature so that, in response to vehicle
loading, terminal buckling and then vehicle deflection back to the travel lane would be accompli-
shed with the least possible injury to passengers.

The experimental results for nine tapered, corrugated steel specimens of three different taper
geometries and small initial curvature, all complemented this analysis. That is, for a given taper
geometry, the measured buckling loads were about 2% to 12% lower than the predicted values,
which indicates that the present analysis may be used with confidence for future designs, an
example of which is the guardrail problem.
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