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Rate-sensitive analysis of framed structures part |i:
implementation and application to steel
and R/C frames
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Abstract. The companion paper presents a new three-parameter model for the uniaxial rate-sensitive
material response, which is based on a bilinear static stress-strain relationship with kinematic strain-
hardening. This paper extends the proposed model to trilinear static stress-strain relationships for steel
and concrete, and discusses the implementation of the new models within an incremental-iterative solution
procedure. For steel, the three-parameter rate-function is employed with a trilinear static stress-strain
relationship, which allows the utilisation of different levels of rate-sensitivity for the plastic plateau and
strain-hardening ranges. For concrete, on the other hand, two trilinear stress-strain relationships are
used for tension and compression, where rate-sensitivity is accounted for in the strain-softening range.
Both models have been implemented within the nonlinear analysis program ADAPTIC, which is used
herein to provide verification for the models, and to demonstrate their applicability to the rate-sensitive
analysis of steel and reinforced concrete structures.
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1. Introduction

The realistic prediction of the structural response under dynamic loading has become an
important requirement for assessing existing structures, designing important new structures, and
undertaking parametric investigations which lead to recommendations for design practice. Since
the response of most materials is rate-sensitive, the behaviour of structural components under
various dynamic loading conditions can only be predicted realistically if the effect of strain-rate
on the material response is accounted for.

For steel and reinforced concrete structures subjected to severe dynamic loading conditions,
such as impact, explosions and earthquakes, the strain-rate at critical regions within the structure
can be as high as (10 sec™"). To predict the dynamic resistance of such structures, the constitutive
properties of steel and concrete are required over a wide range of strain-rate. Soroushian and
Choti (1987) presented the mechanical properties of steel at different strain-rates, ranging from
(1077 sec™") to (10 sec™'). The authors pointed out that the yield strength is more rate-sensitive
than the ultimate strength, and that the length of the plastic plateau is significantly affected
by the strain-rate. Based on their experimental results, it is evident that different levels of rate-
sensitivity should be considered for the plastic plateau and strain hardening ranges in order
to predict the material response realistically, especially when large strains are involved. For con-
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crete, Soroushian, et al. (1986) derived empirical expressions for the strain-rate effect on the com-
pressive strength, the strain at maximum compressive strength, and the secant modulus of elasticity
in compression. John and Shah (1987) concluded that the rate-sensitivity of concrete in tension
is higher than in compression, and that the secant modulus of elasticity evaluated at the peak
strength increases with the strain-rate. Fu. er al. (1991) reviewed the effects of loading rate on
reinforced concrete members, and they suggested that the strain-rate effect may shift the failure
mode from a ductile manner to a less desirable brittle mode.

In this paper. the three-parameter rate-sensitive material model, proposed in the companion
paper (Izzuddin & Fang 1997), is extended to trilinear stress-strain relationships for concrete
and steel. For concrete, two trilinear static stress-strain curves are employed for tension and
compression respectively, which account for strain-softening in the tensile and compressive ranges.
For steel, a trilinear static stress-strain relationship with kinematic strain-hardening is employed,
which allows different levels of rate-sensitivity to be accounted for in the plastic plateau and
the strain-hardening ranges. The implementation of the proposed models within an incremen-
tal-iterative solution procedure is discussed, with consideration given to the cases of elastic re-
sponse, plastic loading and plastic unloading.

The paper provides verification of the trilinear steel model against available experimental
results, where good agreement is observed. Several application examples of steel and reinforced
concrete structures subjected to blast loading are also presented. The results confirm the impor-
tance of material rate-sensitivity on the overall dynamic response of steel and reinforced concrete
structures, and emphasise the need for material models which can predict the strain-rate effect
realistically.

2. Rate-sensitive concrete model

In this work, the static stress-strain relationship for concrete is assumed to be trilinear, both
in tension and compression, as shown in Fig. 1. This allows material rate-sensitivity to be ac-
counted for in the strain-softening range, which corresponds to the descending parts of the trilinear
curves. The total strain-rate is decomposed into an elastic part & and a plastic part &, where
the various strains are shown in Fig. 2. The plastic strain-rate is dependent on the overstress
(X) in accordance with visco-plastic theory:

=gt (1)
Eg=f{X> (2)

where (E) is the secant modulus of elasticity, denoted by (E,) in tension or (E,) in compression.
The rate-function f{X) is based on a three-parameter relationship between the steady-state
overstress and strain-rate, as proposed in the companion paper (Izzuddin & Fang 1997):

X:SNM@+{Z%}W> (3)

In this model. a uniform steady-state overstress (X) is assumed over the whole of the strain-
softening range. but with two different levels for tension and compression. Consequently, two
sets of material constants (S). (&) and (N) are employed for tension and compression, respectively,
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Fig. 2 Elastic and plastic strains for trilinear concrete model.

which may be determined from experimental data on the variation of overstress with st-
rain-rate.
The above expression in Eq. (3) leads to the following rate-function (Izzuddin & Fang 1997):

fO=EQ—wex =1 (4)

where (u) is the strain-softening parameter, denoted by () in tension or (u.) in compression
(Fig. 1), taken as zero in the constant residual stress ranges.

As derived in the companion paper (Izzuddin & Fang 1997), the governing first-order differential
equation is given by:

X+ Xy=E(1—p)é (5)

This differential equation is integrated in the strain-softening tensile and compressive ranges
using the single-step method proposed in the companion paper.

The static cyclic characteristics of the trilinear concrete model are shown in Fig. 3 for tension
and compression. If the concrete is first subjected to tensile strains causing stresses beyond the
maximum tensile strength (OAB or OAB'), then further compressive straining results in unloading
and crack closure (BCO or B'C"O) before any compressive stresses can be sustained (OD).
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On the other hand, if concrete is subjected to compressive strains causing stresses beyond the
maximum compressive strength (ODE or OD’E’), then tensile stresses cannot be sustained upon
further tensile straining (EFC or E'F'C). These characteristics are supported by general experimen-
tal observations.

Experimental evidence shows that the maximum tensile and compressive strengths of concrete
increase with the strain-rate. Soroushian, ez al. (1986) give the following empirical expression
for the effect of strain-rate on the compressive strength of concrete:

X, =£.(048+0.160 X logo (&) +0.0127 X (log,(€))") (6a)

where (X,) is the increase in the maximum compressive strength.
For concrete in tension, the least-square curve fitting method is used to obtain a similar expres-
sion based on the experimental results reported by John and Shah (1987):

X,=£,(1.23+0404 X log,o(£)+0.0351 X (logys (£))) (6b)

where (f) is the static maximum tensile strength, and (X,) is the increase in the maximum
tensile strength due to rate-sensitivity.

Assuming that the steady-state overstress is achieved before any plastic strains are induced,
the relationship between the increase in maximum strength, (X.) or (X)), and the steady-state
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Fig. 3 Cyclic characteristics of trilinear concrete model.

24
]
)=
7]
X,
fol WEg
~o - X

Strain
Fig. 4 Relationship between steady-state overstress and increase in maximum strength.



Implementation and application to steel and R/C frames 243

— 10A-5 /sec (analysis) _— 1075 /sec (experiment) —— 10A-5 /sec (analysis) —_— 107-5 /sec (experiment)
arensasnn 10A-3 /sec (analysis) ~ --------- 10A-3 /sec (experiment) arsann 1073 /sec (apalysis)  ----se--- 10*-3 /sec (experiment)
- 10A-1 /sec (analysis) —— 1071 /sec (experiment) - 1071 /sec (analysis) —_—— 107-1 /sec (experiment)
4~ P ——- _ ________________ ’ ‘__-‘—; —————— —
e T
' "I\
34 ’ l"".
— U4 ~'\, —_
I Y ol S VT £
s hi hi 2
~ 5 "'.'- @«
g L 3
5 o, s
w --' w2
e,
14 S 104
0 T T T T 1 0 T T 1 1
0 0.0001 0.0002 0.0003 0.0004 0.0005 0 0.001 0.002 0.003 0.004
Strain Strain
(a) (®)

Fig. 5 (a) Maximum dynamic strength for concrete in tension. (b) Maximum dynamic strength for con-
crete in compression.

overstress (X) for a trilinear static stress-strain curve is given by:
X=(—u)X (7a)
X=(1~mX (7b)

where both (u.) and (u,) are negative. The above relationship is illustrated graphically in Fig.
4 for the tensile overstress.

The above expressions in Egs. (6) and (7), for the steady state overstress in compression and
tension, can be accurately fitted by the three-parameter relationship proposed in Eq. (3), the cor-
responding material constants being (S=0.066(1— u.)f., N=2, &x =6.66X107* sec™') and (§=
0.14(1 —u)f, N=2, £x=15X10"* sec”') for compression and tension, respectively.

The monotonic response of the proposed trilinear concrete model is illustrated in Fig. 5 for
three constant strain-rates: (10 ° sec™"). (10" % sec ') and (10~" sec™"). These results are obtained
using the above material constants for rate-sensitivity and the following static material constants
(E,.= 15000 MPa, £,.=30 MPa. u,=0.333, £,=0 MPa) for compression and (£,=20000 MPa, f;/=2
MPa. 4,=025, f,=0 MPa) for tension. The dynamic stress-strain curves in Figs. 5a. and 5b
demonstrate good agreement against the maximum dynamic strengths obtained from the experi-
ments of Soroushian, et al. (1986) and John and Shah (1987).

3. Rate-sensitive steel model

Experimental evidence (Soroushian & Choi 1987) indicates that steel exhibits different levels
of rate-sensitivity in the plastic plateau and the strain hardening ranges, and that the plastic
plateau lengthens with higher strain-rates. To account for these phenomena, the rate-sensitive
model proposed in the companion paper (Izzuddin & Fang 1997) is extended to a trilinear
static stress-strain relationship (Fig. 6). where different rate-functions are employed in the plastic
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Fig. 6 Trilinear model for steel.
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Fig. 7 Rate-sensitive response of mild steel at constant strain-rate.

2
w
§ Pr del
5; 2% —— oposed moy
] -o—e—e  Changetal. (1989)
10

T T
0 0.01 0.02 0.03 0.04 005
Strain

Fig. 8 Rate-sensitive response of mild steel at variable strain-rate.



Implementation and application to steel and R/C frames 245

plateau and the strain hardening ranges. In the former range the rate-function reflects the increase
in the dynamic yield strength, whereas in the latter range the rate-function reflects the increase
in the dynamic ultimate strength.

To demonstrate the accuracy of the proposed trilinear model, comparisons are undertaken
in Figs. 7 and 8 against the experimental results by Chang, et al. (1989) for monotonic loading
at constant strain-rates (107° sec”' and 1077 sec™!) and at variable strain-rates between the same
two limits. In these comparisons. the static material constants (£= 29000 ksi, o,=27 ksi, ,=0.0129,
u=0.01) are used; the material constant for rate-sensitivity are (S=2.87 ksi, &% =3.54 X107 sec ',
N=06) for the plastic plateau range and (S=1.303 ksi, éx =4.467X107¢ sec” ', N=1) for the strain-
hardening range. The trilinear model is shown to predict with good accuracy the rate-sensitive
response under both constant and variable strain-rates and for both the plastic plateau and
strain-hardening ranges.

4. Implementation

The proposed trilinear models are implemented within the nonlinear analysis program ADAP-
TIC (Izzuddin 1991), thus enabling the large displacement analysis of steel and reinforced concrete
frames subjected to severe dynamic loading. As discussed in the companion paper (Izzuddin
& Fang 1997), the cubic beam-column formulation utilising the proposed models requires the
calculation of the current stress (o) corresponding to the current strain (&), as well as the determi-
nation of a tangent modulus (£)).

The main distinction between the trilinear concrete and steel models is in the static stress-
strain relationship for the plastic range g(£). For the trilinear concrete model (Fig. 1), the tensile
relationship g(e) is given by:

(1=u)fi—wE e if g<41;}%:&

g(e)=
S TIPS V) 10 i

1451

&)

with a similar relationship for the compressive g(¢).
On the other hand. the tensile relationship g(g) for the trilinear steel model (Fig. 6) is given
by:

_ 30 . if < En
g(g)_{ayﬁuE(e—a,,) Lif e2 g, )

with an almost identical relationship in compression.

Another important distinction between the trilinear concrete and steel models is in the
rate-functions. The concrete model is based on two different rate-functions for tension and com-
pression, but no distinction is made between the descending and horizontal branches of a parti-
cular strain-softening range. The steel model, on the other hand, employs the same rate-functions
in tension and compression, but uses two different functions for the plastic plateau and strain-
hardening ranges.

The implementation of the two models is described hereafter with reference to a general piece-
wise linear curve for static tensile plasticity. with the treatment of compressive plasticity being
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almost identical. Three cases are discussed in the following sections, which deal with stress
and tangent modulus calculation in the elastic and plastic ranges.

4.1. Elastic response

When the previous state is elastic (g(&)>ov), the current stress (o)) is obtained from the current
strain (&) assuming, in the first instance, a fully elastic response:

O'|:O'()+E(8|_8{)) (10)

If the current state is elastic (g(&)=>0), then the stress obtained from Eq. (10) is accepted, and
the tangent modulus (E)) is taken to be identical to (E). However, if the current state is plastic
(g(e1) <o), the strain (g) at which the elastic loading curve intersects the static plastic curve
is first determined from the solution of the equation:

ot E(e.~&)=g(&) (11)

The remainder of the strain increment (g —¢) leads to plastic loading, where the calculation
of the current stress and tangent modulus can be performed in accordance with the following
section assuming (&=¢). (cy=g(&)) and (X,=0), and scaling (A7) to maintain the original strain-
rate.

4.2. Plastic loading

When the previous state is plastic (g(&)<oy), the determination of the current state depends
on the direction of straining. For tensile plasticity, plastic loading is associated with a positive
strain-rate (¢20), taken to be constant during the incremental step:

a—&

&= A (12)

Given the previous overstress (X;), the current overstress (X)) can be calculated using the single-
step numerical integration procedure proposed in the companion paper (Izzuddin & Fang 1997).
It is noted that this numerical integration procedure should be applied with a single rate-function
over the incremental step. For the trilinear steel model with (g <g,) and (&> &), the rate-function
changes as the strain exceeds (g,). in such a case, the strain increment is applied in two steps

(&—&) and (g,—>&), each being associated with a different rate-function. Once the current oversi-
ress (X)) is obtained, the current stress (o)) is determined from:

o1=g(&)+4X, (13)
The tangent modulus (£, for this case is obtained from the following expression:

_doy _dg(e) 1 dX,
= de  ds | Ar di (14)

where the calculation of the derivative of (X)) with respect to (&) is described in the companion
paper (Izzuddin & Fang 1997).
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4.3. Plastic unloading

For the case of a previous tensile plastic state (g(&)<ap), plastic unloading is associated with
a negative strain-rate (£<0), as depicted in Fig. 9. The governing nonlinear visco-plastic differential
equation, which is given by (Izzuddin & Fang 1997):

X+E(l—wex(eN—DV=E(1—u) & (15)

is approximated linearly using a secant approach, as shown in Fig. 10. The resulting linear
differential equation is expressed by:

X+aX=E(—u)e (16a)

where,
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Fig. 9 Unloading from a tensile plastic state.

x4

4y><

Xo
»
|
|
|
|
|
. [
E(1-pe I
|
|
|

Fig. 10 Secant approximation for plastic unloading.
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a_\':AEQ_;_Hﬁ (eX(y'SN_ ])N (16b)
0
The current overstress (X;) can be obtained from the solution of the above differential equation:
E(l—u)i L
X[I(/Y(}v (1a E)8>€”\Al+b(la H)E (17)

which can be used to determine the current stress (o;) according to Eq. (13). The tangent modulus
(E) can also be obtained from Eq. (14).

It is noted that the expression for (X;) in Eq. (17) is only valid for (X;20). If the current
overstress is negative, then elastic unloading occurs, as depicted in Fig. 10 for a current strain
(&) less than the critical strain (g). The critical strain (g,) corresponds to a zero overstress, and
can be determined from the critical time-step (At) using Eq. (17):

_ 1 E(l—p&
At. @ hl(E(l Y a,\X0> (18a)
e=g+teAt, (18b)

In the case of elastic unloading, the calculation of the current stress and tangent modulus
can be performed in accordance with Section 6.1, assuming (&=¢) and (cy=g(&)).

5. Application

Several examples are presented herealter to demonstrate the applicability of the proposed steel
and concrete rate-sensitive models. In this regard. ADAPTIC v2.5.1 (Izzuddin 1991) is used to
undertake nonlinear dynamic analysis of the steel and reinforced concrete structures under consi-
deration.

5.1. Steel beam

The steel I-beam shown in Fig. 11 is identical to the last example in the companion paper
(Izzuddin & Fang 1997). but is ~ubjected to a larger amplitude blast loading with a shorter
duration. The problem symmetry is utilised, where half of the beam is modelled using 10 elasto-
plastic cubic elements with appropriate boundary conditions. In obtaining the dynamic response
of the beam. both the bilinear and trilinear rate-sensitive models are used for comparison purposes.
The experimental results of Soroushian and Choi (1987) are fitted by the trilinear model, where
two sets of rate-function parameters are employed, (S=6.6 MPa, £x =4X107" sec”’, N=5) and
(S=8.352 MPa. &x =11X10"* sec™', N=1), for the plastic plateau and strain-hardening ranges,
respectively. For the bilinear model. the rate-function parameters corresponding to te plastic
plateau range are employed.

Comparison of the results in Fig. 12 demonstrates the importance of realistic material modelling,
where it is shown that the bilinear rate-sensitive model predicts a maximum midspan displacement
which is (24%) smaller than that predicted by the trilinear model. This is expected. since the
bilinear model assumes that strain-hardening commences immediately after yielding, and hence
does not account for the plastic plateau. Nevertheless, it is possible that a reduction in the
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Fig. 12 Effect of material model on response prediction of J-beam.

strain-hardening parameter () for the bilinear model could lead to improved accuracy, as illustra-
ted in Fig. 12 for the reduced value (u=0.5%). However, the appropriate choice of (u) for the
bilinear model depends on the particular problem and the severity of the applied loading.

5.2. Steel frame

The multi-storey steel frame shown in Fig. 13 is subjected to a concentrated blast load at
the mid-height of an internal second storey column. The blast load varies according to the
same triangular pulse employed in the previous example, but with a peak value of (4000 kN).
This value represents twice the static column capacity obtained with the assumption of full
rotational restraint at the two ends.

The response of the frame is obtained using adaptive analysis (Izzuddin & Elnashai 1993),
where the analysis is started with one elastic element per member, and elasto-plastic cubic elements
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are introduced only when material plasticity is detected. The same material models used in
the previous examples are employed here for the elasto-plastic elements, with three cases being
considered: trilinear model with rate-sensitivity (7-R), bilinear model with rate-sensitivity (B-R)
and trilinear model without rate-sensitivity (7-1). The results shown in Fig. 14 for the mid-height
column displacement demonstrate again the importance of realistic material modelling, where
the bilinear rate-sensitive model (B-R) predicts a maximum displacement which is (32%) smaller
than that of the trilinear rate-sensitive model (7-R). The effect of ignoring rate-sensitivity (7-I)
is associated with a (68%) increase in the maximum displacement.

The choice of the material model also influences the spread of plasticity within the frame,
which can be quantified here by means of highlighting the mesh of elasto-plastic cubic elements.
It is observed from Figs. 15a and 15b, that the spread of plasticity is similar for the bilinear
and trilinear rate-sensitive models except in the immediate vicinity of the load, with the bilinear
model leading to a wider spread of plasticity in the beams and an opposite effect in the columns.
The inclusion of material rate-sensitivity also leads to more plasticity in the far columns and
less plasticity in the far beams, as demonstrated in the comparison of Figs. 15a and I5c.

5.3. Reinforced concrete beam

The response of the simply supported beam shown in Fig. 16 to uniform blast pressure was
studied experimentally by Allgood and Swihart (1970). In these experiments, a constant long
duration pressure was applied, having an amplitude equal to the static ultimate load ( p,=0.156
MPa (22,6 psi)), and achieving the full value over a very small rise-time.

The problem symmetry is utilised, where half of the beam is modelled using 12 elasto-plastic
cubic elements with appropriate boundary conditions. Since Allgood and Swihart (1970) did
not undertake direct experiments on the steel and concrete materials, the material rate-sensitivity
is approximated using the results of other experimental work. The expressions of John and
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Fig. 13 Geometric configuration and loading of steel frame.
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Shah (1987) and Soroushian, er al. (1986) are used to determine the rate-sensitivity parameters
for concrete, where the parameters (S=0.35 MPa, £x =1.5X107% sec™!, N=2) are used for tension
and (S=2.51 MPa, &% =6.66X10"* sec™!, N=2) are used for compression. For the steel reinforce-
ment, the bilinear model is employed, with three levels of rate-sensitivity being considered; the
first (R1), (S=6 MPa, &% =5X107° sec”!, N=1), is based on fitting the CEB (1988) expression;
the second (R2), (S=3 MPa, e¢x =5X107° sec™!, N=1) represents a (50%) reduction in rate-sensiti-
vity over (R1); and the third (R3), (S=3 MPa, £« =5X107* sec”!, N=1), represents a further
reduction in rate-sensitivity over (R2).

The response of the beam to the full pressure (p,) is depicted in Fig. 17, where the second

level of steel rate-sensitivity (R2) is in excellent agreement with the maximum displacement of
(86 mm) recorded by Allgood and Swihart (1970). However, in the absence of experimental
data on the material response, it remains unclear whether such agreement is due to (R2) represen-
ting accurately the rate-sensitive characteristics of the steel reinforcement. Nevertheless, this exam-
ple illustrates again the importance of accounting for material rate-sensitivity, since the rate-insen-
sitive response would predict collapse of the beam under the full pressure loading ( p,).

5.4. R/C frame

The four-storey reinforced concrete frame, shown in Fig. 18, is subjected to an external blast
load, which varies according to the same triangular pulse used in the first two examples but
with a peak value of (4500 kN). All columns are assumed to have a square cross-section with
one layer of steel reinforcement bars at a cover distance of (2.5 ¢cm) on each side of the cross-
section. Geometric and reinforcement details of the columns are given in Table 1. With reference
to Fig. 18, all beams have a rectangular cross-section and a varying reinforcement layout, with
the details as given in Table 2. The two reinforcement layers are placed at a cover distance
of (5 cm). Gravity loads are assumed to be applied at the structure nodes, with the details
of the corresponding masses given in Table 3.

The bilinear model is used for the steel reinforcement, with the static material constants (E=2.1
X10° MPa, 0,=300 MPa, 4=0.005) and the rate-sensitivity constants (S=6.6 MPa, ex =4X10"°
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Fig. 17 Response of reinforced concrete beam.
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Fig. 18 Geometric configuration and loading of reinforced concrete frame.

Table 1 Cross-sectional details of columns

Column Size (cmXcm) Reinforcement/side
C 45X 45 8918
Cia 45X 45 6918
Cis 45X 45 6916
Cia 45X45 4016
Ca 50X 50 8¢20
Cs> 50X 50 6920
Cos 50X 50 6018
Coqa 50X 50 4918
Csi 40X 40 6920
Cia 40X 40 4¢20
Css 40X40 4018
Csa 40X 40 4916

sec”!, N=35). For concrete, the trilinear model is used with the same material properties as were
used in the previous example, except for the two compressive properties (f,=30 MPa, S=2.64
MPa). The response at the point of loading in Fig. 19 demonstrates that ignoring the material
rate-sensitivity leads to a (100%) increase in the maximum predicted displacement. The material
response for concrete and reinforcement steel at the top of column (C;,), shown in Figs. 20a
and 20b, exhibits a considerable reduction in the material strains with a significant increase
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Table 2 Cross-sectional and reinforcement details of beams

Beam Size (cmXcm) A, A L/L,
B, 30X60 6018 2018 3/4
B> 30X 60 6918 2018 3/4
B 30X 60 6018 2918 3/4
B4 30X 60 6018 2018 3/4
B, 25X 60 6916 2016 3/4
B> 25X 60 6016 2016 3/4
B 25X60 6916 2016 3/4
B»a 25X 60 6916 2016 3/4

Table 3 Nodal masses

Mass no. Mass (X 10" kg)
m, 5.10
m 7.65
m; 10.19
n 15.29
30
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Fig. 19 Response of reinforced concrete frame at point of loading.
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Fig. 20 (a) Response of extreme compressive concrete fibre at top of column (Ci»). (b) Response of
tensile steel reinforcement at top of column (Ci»).
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in the material stresses when rate-sensitivity is accounted for.

6. Conclusions

The companion paper presents a new rate-sensitive material model employing a three-parameter
rate-function and based on a bilinear static stress-strain relationship. This paper extends the
basic bilinear model to cover trilinear static stress-strain relationships for steel and concrete;
discusses the implementation of the proposed trilinear models; and presents examples of their
applicability to the nonlinear analysis of steel and reinforced concrete structures subjected to
severe dynamic loading.

The paper first discusses the trilinear concrete model, where rate-sensitivity is accounted for
in the strain-softening range, and different rate-function parameters are employed in tension
and compression. In this regard, the use of the three-parameter rate-function proposed in the
companion paper allows the fitting of various experimental results with good accuracy.

The trilinear steel model is also described, where different levels of rate-sensitivity are employed
in the plastic plateau and strain-hardening ranges. It is shown that the proposed trilinear model
enables more accurate representation of experiments at constant and variable strain-rates than
the basic bilinear model.

The implementation of the proposed models is outlined with reference to a general piecewise
linear plastic curve, where the cases of elastic response, plastic loading and plastic unloading
are considered. Several application examples are then presented, which demonstrate the importa-
nce of rate-sensitivity in the prediction of the dynamic response of steel and reinforced concrete
structures. It is observed that the trilinear steel model leads to a considerably larger response
than the bilinear steel model with similar rate-sensitivity and strain-hardening parameters. In
view of this, it is recommended that the trilinear steel model should be used in order to account
for different rate-sensitivity in the plastic plateau and strain-hardening ranges. In addition, it

is suggested that further experimental investigation into the rate-sensitivity of steel and concrete
is needed to facilitate the calibration of rate-sensitive material models and the choice of approp-
riate model parameters.
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