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A two-step method for the optimum design of trusses
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Abstract. A two-step method is presented for the optimum design of trusses with available sections
under stress and Euler buckling constraints. The shape design of the truss is used as a means to convert
the discrete solution into a continuous one. In the first step of the method, a continuous solution is
obtained by sizing and shape design using an approximate polynomial expression for the buckling
coefficients. In the second step, the member sizes obtained are changed to the nearest available sections
and the truss is reconfigured by using the exact values for the buckling coefficients. The optimizer
used is based on the sequential quadratic programming and the gradients are evaluated in closed form.
The method is illustrated by two numerical examples.

Key words: truss; sizing; shape design; optimization; available sections; sensitivity analysis.

1. Introduction

The truss design has a discrete nature since the selection of the members has to be done
from a set of commercially available fabricated sections. A few attempts have been made to
solve this problem by discrete programming directly. In an early effort, Toakley (1968) designed
determinate trusses with available sections by using a zero-one programming with Gomory’s
algorithm. Reinschmidt (1971) solved small scale problems by discrete programming with a modi-
fied version of Geoffrion’s implicit enumeration. Cella and Logcher (1971) suggested a branch
and bound algorithm for the nonlinear programming problem. Templeman and Yates (1983)
proposed a linear programming method which has been modified by Duan Ming-Zhu (1986).
Schmit and Fleury (1980) used a dual method. John, Ramakrishnan and Sharma (1988) merged
the improved move limit method of sequential linear programming with Land and Doig’s branch
and bound algorithm . They also suggested approximate procedures in which either the continuous
solution is converted into a discrete one by a heuristic method or the continuous solution is
taken as the starting point for the discrete programming.

The discrete methods can be used with success for the design of trusses with available sections.
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However, they converge very slowly and hence are limited to small or medium size problems.
John, Ramakrishnan and Sharma (1988) reported that the time taken by Land and Doig’s branch
and bound algorithm was large for a 25 bar truss for each iteration and was 20 to 32 times
that of a continuous solution. In the present study, it is intended to overcome these difficulties
by replacing the discrete solution with a continuous solution regarding both the sizing of the
members and changing the geometry of the truss. The shape design is not the primary goal
of the proposed method, but it is used as a means to change the discrete nature of the problem
to a continuous one. It should be noted that the present approach is not applicable in the
cases where the truss geometry is to remain fixed. The sectional properties of the available
sections are considered throughout the process. The optimum design is obtained in two steps.
In the first step, the truss geometry and member sizes are determined by employing an approxi-
mate expression for the buckling coefficients. The optimized member sizes obtained are changed
to the nearest available section and are kept fixed in the second step in which the truss geometry
is changed by using the exact values of the buckling coefficients.

The optimizer used in the present work is based on the sequential quadratic programming
as implemented by Schittkowski (1985). The gradients of the objective function and the constraints
are evaluated in closed form. In the numerical examples, the standard 13-bar and 18-bar design
problems are solved with the present approach.

2. The design problem

The problem considered is to design a minimum weight truss with available sections. In the
first step of the method, continuous size and shape variables are considered. The objective is
to minimize the weight of the truss

f=2.pA,L, (1)

n=1
where A, is the cross-sectional area and p, and L, are the mass density and length of the

nth member, respectively. In addition to the side constraints on the design variables, the objective
function is also subjected to stress and local buckling constraints as

O;
&i 1 o, 20 (28.)
O;

where the barred quantities denote the allowables. &; is the Euler buckling stress for the ith
member which can be defined as

~ KEiA;
5= KL G

where E; is the modulus of elasticity and «; is the buckling coefficient of the ith member. «
is a geometrical property of the section and can be written as



A two-step method for the optimum design 61

l;
K=" @

where I, is the least area moment of inertia of the section. In commercial sections, the buckling
coefficient does not remain constant as the size changes. In the majority of the previous studies,
the buckling coefficient has taken to be constant (Felix 1981, Hansen and Vanderplaats 1990,
Imai 1978). This is only possible if the size is changed by uniform expansions or contractions
on all cross-sectional dimensions of the member which is not the case for commercial sections.
Hence, the designs based on constant buckling coefficients are unrealistic if available sections
are to be used in constructing the truss. In the first step of this study, the buckling coefficient
k; is approximated as a polynomial function of 4; and the unknown coefficients in the polynomial
are determined by a curve fitting process using the manufacturer’s data for the available sections.

In the second step, the optimum member sizes obtained by the above process are changed
to the nearest available sections and the exact values of the buckling coefficients are employed.
In this step, the selected sections are kept fixed and the truss geometry is further perturbed
to obtain the optimum configuration for the selected sections.

3. Gradients of the objective function and constraints

The structural variables in the problem are the cross-sectional areas of the members, 4, and
a chosen set of the joint coordinates, X;. These variables can be expressed in terms of the area
design variables a; and configuration design variables x; through variable linking as

A;:P,;aj-FR,« (121, cey N, j: 1, e, M)
X=8x+T, (=1, -, 3XJ; j=1, -, K) )

where P; and S; are the elements of the area and configuration linking matrices, respectively.
R; and T; are the linking constants. N and J are the number of members and joints in the
truss. M and K are the number of area and configuration design variables, respectively. The
linking of design variables is often required in the truss design to satisfy some symmetry require-
ments, and furthermore it helps to reduce the number of design variables, since M and K are
much smaller than N and 3XJ, respectively.

The gradients of the objective function Eq. (1) and the constraints Egs. (2a), (2b) are evaluated
in closed form to speed up the optimization process. The side constraints which are the upper
and lower bounds on the design variables are handled by the optimizer.

3.1. Gradients of the objective function

The gradients of the objective function f with respect to the area and configuration design
variables can be evaluated as

a N
Tc{k = 2. ALP; ©)

—(7—f ZZ (P,,a,+R)ZSmk5§ (7)
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where JL,/0X,, are given in the Appendix.

3.2. Gradients of the constraints

The gradients of the system displacements {U} can be calculated as

UL o, ILK]
“oa = K] lePmk o Ul (8a)
{U} JLK]

where [K] is the system stiffness matrix. 8[K:|/&Xm can be evaluated by using the derivatives
given in the Appendix. The evaluation of J[K1/dA,, is straightforward. Having determined the
gradients of the system displacements, one can readily find the gradients of element displacements
{u} for the ith element.

Noting that the stress in the ith member can be written as

Oi— [Gi] {ui} 9

where [G:] is the stress-displacement relation, one can express the stress gradients as

‘;"' —[G]mZIP,,,A &{ A} (10a)
c?a, et 2LG.] Olu}
ZSmk( ox, IG5 ) (10b)

where J{u;}/dA4,, and (9{14,}/5)(,,, can be obtained from Egs. (8a), (8b) and 2{Gl/dA,, can be
evaluated by using the derivatives given in the Appendix.

The buckling coefficients need not be approximated with high order polynomials since the
design in the first step is only approximate. Assuming & as a cubic polynomial in terms of
A; as

’Q:CQ+C1Ai+C'2A[2+C'3A,'3 (11)
the gradients ¢ 6/da; and J6/0x, can be calculated as

~ N
f?;z - IEJ‘Q ZP,k(C()+2C1A,+3C2A,2+4C3A,3) (123.)
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where JL,"?/0X,, are given in the Appendix.

4. Numerical examples

In the following examples, the commercially available Schedule<40 aluminum pipes are used.
The sectional properties of the pipes (Weidlinger 1956) are tabulated in the Table 1. The unknown
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Table 1 Sectional properties of Schedule 40 aluminum pi-
pes (Weidlinger 1956)

Nominal Sectional Buckling
Size Area, A (in?) Coefficient «
1/8 0.0720 20254
1/4 0.1250 20935
3/8 0.1670 2.5814
1/2 0.2503 2.6922
3/4 0.3326 3.3036

1 0.4939 3.5342
1 0.6685 4.2998
12 0.8000 4.7855

2 1.075 5.6908
212 1.704 5.1988

3 2228 5.9963
312 2.680 6.5812

4 3.174 7.0854
412 3.688 7.5771

5 4.300 8.0938

6 5.581 89162

7 6.926 9.5714

8 8.399 10.141
10 1191 11.187
12 15.74 11.953

coefficients in the assumed polynomial for the buckling coefficients are determined by a curve-
fitting process as

K=2.5413+1.93804,—0.16554,°+0.00514,

where the cross-sectional areas are in in’. The buckling coefficients versus cross-sectional areas
are plotted in the Fig. 1. The fitted curve is also shown. The elasticity modulus is 10" psi and
the allowable stresses are + 20,000 psi. The lower and upper bounds on all design variables
are 0.1 and 10 times the initial design values, respectively.

4.1. 13-bar truss with stress and Euler buckling constraints

The initial geometry and the loading are shown in the Fig 2. The initial sizing is 1 in?
for all members. The sizing variables are linked as

a=A41=A4p, a;=A,=A4;5, a;=A;=4y,
ay=As=As, as=As=Ao, as=As=A)9

The coordinates that are varied are X,, X¢, Y, Y, and Y with a linking x,=X,= —X, and x,=Y,=Y,.
The design obtained is given in Table 2 where the first column shows the continuous design
obtained at the end of the first step and the second column shows the final design with available
sections obtained at the end of second step.The final configuration is shown in Fig. 3. In the
present solution, the compression members are at the Euler buckling limit and the members
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Fig. 1 Buckling coefficient vs. cross-sectional area for Schedule~40 aluminum pipes.
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Fig. 2 13-bar truss, loading and initial geometry.

5, 6,9 and 10 are fully stressed. The convergence of the design for both steps is shown in
Fig. 4. It is seen in this figure that the design starts from the infeasible domain in the first
step but approaches the optimum quickly, and the second step does not change the configuration
considerably but serves only as a correction for the replacement of the continuous design of
the first step by the available cross-sections.

4.2, 18-bar truss with stress and Euler buckling constraints

The initial geometry and the loading are shown in the Fig. 5. The initial sizes are
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Table 2 13-bar truss with stress and Euler buckling

constraints
Ist step 2nd step
a, (in?) 4923 5.581
a, (in? 1.106 1.704
as (in? 0.514 0.669
as (in? 5295 5.581
as (in% 0.183 0.250
as (in?) 1.227 1.704
A, (in?) 0.805 0.799
x; (in) 283.0 282.8
x; (in) 178.1 178.3
Ys (in) 260.0 260.5
Optimal weight (Ib) 737.7 795.2
# iterations 15 5
Y
€0,260.5)
5,561
(-282.8478.3) 5561 @82.8,178.3
0.799
. 51 0250 5581
' 0669 0.250 0669
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Fig. 3 Final geometry of 13-bar truss, coordinates are in inches, cross-sectional areas are in in”.
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Fig. 4 Convergence of design in 13-bar truss.
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Fig. 5 18-bar truss, loading and initial geometry.
Table 3 18-bar truss with stress and Euler buckling
constraints
Ist step 2nd step

a, (in 13.06 15.74

a; (in? 15.46 1574

a; (in? 3.201 3174

as (in?) 2.305 2.228

X5 (in) 968.3 9859

Y; (in) 225.0 231.0

X;s (in) 7170 719.6

Ys (in) 185.0 1934

X; (in) 4777 468.3

Y; (in) 1283 140.5

X (in) 2793 235.6

Ys (in) 69.80 752

Optimal weight (ib) 39819 4325.5

# iterations 26 15

Y 3174
tn0"=n'4 1574 (250.0,2500) 15.74 (50002500 1574 (750025000 1574 [nom,o.eﬁom 1574
R : < 95.9.;31.0) 574 (12500.230.0)
BTF (71961930

2.228

(60000

Fig. 6 Final geometry of 18-bar truss, coordinates are in inches, cross-sectional areas are in in’.

a|:A1:A4:A8:A12:A16: 10 inz,
a2:A2:A6:A10:A14:Alg:21.65 in?
a3:A3:A7:A11:A15:12.5 in?



A two-step method for the optimum design 67

6500

6000

5600

5000

Weight (b}

4500
Lst step

4000

3500lIlllllllllllLllllillLlll
0 5 10 15 20 25

|teration

Fig. 7 Convergence of design in 18-bar truss.
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The coordinates X;, Y3, Xs, Y5, X3, Y7, Xy and Y, are varied. The result obtained is given in
Table 3. In Fig. 6, the final configuration is shown. The convergence of the design is shown
in Fig. 7. It is seen that the effect of replacing the continuous solution with available sections
is more pronounced in this case as the second step changes the design more considerably compar-
ed with the previous example.

5. Conclusions

A two-step method has been presented for the optimum design of trusses with available sections
with constraints on strength and local stability. In the first step, the member sizes and truss
geometry are optimized by a continuous solution considering the properties of commercially
available sections in an approximate manner. In the second step, the member sizes determined
in the first step are fixed to the nearest available section and the geometry of the truss is further
changed to reach the optimum with available sections. The design is improved significantly
by considering the sectional properties of the available cross-sections throughout the optimization
process rather than heuristically converting a continuous solution to a discrete one at the end.
The method presented is also much faster than the discrete methods, therefore it is better suited
to the practical applications, however it cannot be applied to trusses for which the geometry
is to remain fixed.
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Appendix

Consider a truss member of length L with a nodal connectivity of m and » such that the origin
of the local coordinate is at m. The global coordinate system is XiXoX; where X,=X, X,=Y, X:=Z.
Let the direction cosines of the member be A, A, As. Then,

oL _
oxm — —Ai

L) _ 24
oxXm L

A7)
X
d(AjA/L)
oX™

where &; is the Kronecker delta. Note that

() 0 .
X :_%Xf_"%) and i j k=1, 2, 3.

= 3/1,}._,‘2_ 26,] /L‘

=8 ABAZ— 1)+ 8, ABAZ— 1)+ 3(1— 81— 8w) Aidj Ak (J#k)





