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Abstract.  For the structures containing multiple discontinuities (voids, inclusions, and cracks), the 
simulation technologies in the framework of extended finite element method (XFEM) are discussed in 
details. The level set method is used for representing the location of inner discontinuous interfaces so that the 
mesh does not need to align with these discontinuities. Several illustrations have been given to verify that the 
implemented XFEM program is effective. Then, the implemented XFEM program is used to investigate the 
effects of the voids, inclusions, and minor cracks on the path of major crack propagation. For a plate 
containing cracks and voids, two possibly crack path can be observed: i) the crack propagates into the void; 
ii) the crack initially curves towards the void, then, the crack reorients itself and propagates along its original 
orientation. For a plate with a soft inclusion, the final predicted crack paths tend to close with the inclusion, 
and an evident difference of crack paths can be observed with different inclusion material properties. 
However, for a plate with a hard inclusion, the paths tend to away from the inclusion, and a slightly 
difference of crack paths can only be seen with different inclusion material properties. For a plate with 
several minor cracks, the trend of crack paths can still be described as that the crack initially curves towards 
these minor cracks, and then, the crack reorients itself and propagates almost horizontally along its original 
orientation. 
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1. Introduction 

 

The standard finite element method (FEM) provides substantial advantages in dealing with 

continuous problems. However, for discontinues problems, it is computationally expensive to 

obtain accurate solutions in the FEM approximations: the mesh has to align with a discontinuity 

and a considerable mesh refinement is required around a discontinuous feature. The extended 

finite element method (XFEM) was first introduced by Belytschko and Black (1999), based on the 

idea of the partition of unity approach (Melenk and Babuška 1996). The XFEM ameliorates the 

drawbacks of the FEM mentioned above in solving discontinues problems. Therefore, the XFEM 

is widely used in many fields as soon as the method is introduced, such as fracture mechanics, 
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flow fields (Liao and Zhuang 2012), contact (Mayer et al. 2010), composites (Dréau et al. 2010), 

and so on. The XFEM approximation consists of standard finite elements which are used in the 

major part of the domain and enriched elements in the enriched sub-domain for capturing special 

solution properties such as discontinuities and singularities. The goal of using enriched elements in 

the standard XFEM is to expand the approximation function space of the standard FEM such that 

the enriched approximation can cover or closer to the exact solution. Therefore, the XFEM is a 

powerful tool for simulating discontinuous problems. 

Additionally, composite materials have attracted considerable interest due to potential to 

achieve a better performance, such as concrete composites (Du et al. 2012). Due to the nature of 

composite materials, multiple discontinuities will be contained in the structure when investigating 

the mechanical behavior of the structure. A few studies have been carried out for the modeling and 

simulation of several discontinuities. Yan and Park (2008) applied the XFEM for the simulation of 

near-interfacial crack propagation in a metal-ceramic layered structure. Singh et al. (2011) 

investigated the influences of number of voids/inclusions in the domain on the change in the stress 

intensity factor (SIF) of the main crack. Later, Singh et al. (2012) also evaluated the fatigue life of 

structures/components having multiple discontinuities such as holes, cracks and inclusions. Kim et 

al. (2011) analyzed the effect of equivalent initial flaw size distribution on a multiple site damage 

specimen. Chang et al. (2012) investigated the effect of reinforcing particles on the crack 

propagation behavior and fatigue performance during cyclic loading. Haboussa et al. (2011) was 

devoted to the crack-hole interaction problem. However, the simulation of crack propagation is 

still a challenging task especially when microscale/mesoscale structures are concerned. Sun et al. 

(2013) developed a novel algorithm based on the XFEM and an enhanced artificial bee colony 

algorithm to detect and quantify multiple flaws in structures. Wu and Wong (2013) investigated 

the effects of weak and stiff circular inclusions on the overall mechanical behavior, in particular 

the cracking processes (crack initiation, propagation and coalescence) of a rectangular rock mass 

under uniaxial compression. The outcome of this study can improve the understanding of the 

effects of voids, inclusions, and minor cracks on the major crack propagation paths. 

The aim of this paper is to investigate the effects of voids, inclusions, and minor cracks on the 

major crack propagation paths by developing XFEM. For the structures containing multiple 

discontinuities (voids, inclusions, and cracks), the simulation technologies in the framework of 

XFEM are discussed in details. The emphasis are paid on the selections of enrichment functions, 

the numerical integrations at the discontinuities, the evaluations of the SIF, as well as the criterion 

of crack propagation while the XFEM is used to study the mechanical behaviors of the structure 

containing the geometric and/or physical discontinuities. The level set method (LSM) is used for 

representing the location of inner discontinuous interfaces containing the boundaries of voids and 

inclusions, and the surface of cracks, so that the mesh does not need to align with these 

discontinuities. The governing equation for XFEM is deduced. Several illustrations have been 

given to verify that the implemented XFEM program is effective for modeling voids, inclusions, 

and crack propagation. Then, the implemented XFEM program is used to investigate the effects of 

the voids, inclusions, and minor cracks on the path of major crack propagation. 

 

 

2. Geometric description of voids, inclusions, and cracks 
 

2.1 Geometric description of voids and inclusions 
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Fig. 1 Domain with a circular interface 

 

 

A powerful tool for tracking interfaces is the LSM (Osher and Sethian 1988). In LSM, the 

interface of interest is represented as the zero level set of a function, ϕ(x). This function is one 

dimension higher than the dimension of the interface. 

Consider a domain, Ω, divided into two non-overlapping subdomains, Ω
+
 and Ω

-
, sharing a 

circular interface, Γ, as illustrated in Fig. 1. On Ω
+
, the level set function ϕ(x)>0; on Ω

-
, the level 

set function ϕ(x)<0; on Γ, ϕ(x)=0. 

The circular level set function can be expressed as (Sukumar et al. 2001) 

 
c

c c

1,2,...,
( ) min i i

i n
r


  x x x                           (1) 

where, nc is the number of circular voids/inclusions, and c

ix  is the location of the centre of the ith 

circular void/inclusion with the radius of c

ir . 

In the discritized domains, the values of the level set functions are stored only at the nodes, that 

is ϕi=ϕ(xi). The level set values can be interpolated over the mesh by 

h ( ) ( )i i

i

N x x                               (2) 

where Ni(x) is the standard finite element shape functions. 

 

2.2 Geometric description of cracks 
 
Two level sets ψ(x,t) and ϕ

k
(x,t)(k=1,2) are used to describe the crack. As shown in Fig. 2, the 

functions are written as ψ and ϕ
k
 in the simplified form. The crack tip level set ϕ

k
 is generally 

assumed to be orthogonal to ψ. The function ψ(x,t) can be expressed by the signed distance 

function, that is 

* *( , ) sign(( ) )t    x x x x x n                       (3) 

where, x is the coordinate of the point P; x
*
 is the projection of the point P on the crack surface; n 

is the unit outward normal to the crack surface; sign(x) is the signed function; sign(x)=1 for x>0; 

sign(x)=1 for x=0; and sign(x)= −1 for x<0. 

The function, ϕ
k
(x,t), can be defined as 

( , ) ( )k

kt   x x x t                             (4) 
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Fig. 2 Crack description by two level set functions Fig. 3 Update of the level set functions 

 

 

where xk is the coordinate of the kth crack tip and t is the unit tangential vector at the kth crack tip. 

The values of the level set functions are stored only at the nodes as in the previous case. The 

level set values can be interpolated over the mesh by (Stolarska and Chopp 2003) 

( , ) ( )( ( , ))

( , ) ( ) ( , )

k k

i i

i

i i

i

t N t

t N t

 

 

 










x x x

x x x
                         (5) 

Crack growth is modeled by appropriately updating the ϕ
k
 and ψ functions. The evolution of the 

level set functions ϕ
k
 and ψ is determined by the crack growth direction θc. As shown in Fig. 3, in 

each step, the displacement vector of the crack tip is T=(Tx,Ty). The coordinate of the crack tip 

CT1 is (x1,y1), and the coordinate of the crack tip CT2 is (x2,y2). The following steps describe the  

procedure of the evolution of the level set functions k
n  and ψn at the step n, that is to compute 

the level set functions k
n 1  and ψn+1 at the step n+1. 

Step 1: Compute the rotated level set ϕ
k,r

 of k
n , and ϕ

k,r
 at the node with the coordinate of  

(x,y) can be given by 

   ,

1 1

yk r x
TT

x x y y    
T T

                      (6) 

Step 2: Compute the level set ψn+1. If ϕ
k,r

<0, the level set ψn+1 will not be updated, that is ψn+1= 

ψn. If ϕ
k,r

>0, ψn+1 can be computed by 

   1 1 1

y x
n

T T
x x y y      

T T
                     (7) 

Step 3: Compute the level set k
n 1 , and k

n 1  can be given by 

1

k k

n n    T                              (8) 

At a point x, the polar coordinate r and θ with respect to the tangent to the crack tip are defined as 
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Fig. 4 Discretized domains in two dimensions with nodal subsets *

absI , *

brI , *

voidI , and *

incI  
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                        (9) 

 

 

3. Basic formulation of XFEM 
 
3.1 XFEM approximation 
 

The XFEM approximation for 2D domains with cracks/voids/inclusions can be written as 

* *
abs br

*
void

*
inc

h

4
* *

1

*

*

( ) ( )

( )[ ( ) ( )] ( ) [ ( ) ( )]

+ ( )[ ( ) ( )]

+ ( )[ ( ) ( )]

i i

i I

j

i i i i j j i i

ji I i I

i i i

i I

i i i

i I

N

N H H N F F

N V V

N  



 







   







  





u x x u

x x x a x x x b

x x x v

x x x c

     (10) 

where Ni(x) is the standard finite element shape function of node i; ui is the unknown of the  

standard finite element part at node i; I is the set of all nodes in the domain; )(* xNi is the partition 

of unity functions, and the function can hold the same form with the standard finite element shape 

function but are not necessarily; ia , 
j

ib , iv , and ic  is the nodal enriched degree of freedom; 
*

absI , 
*

brI , 
*

voidI , and 
*

incI  is the set of enrichment nodes shown in Fig. 4, and 
* * * *

abs br void inc, , ,I I I I I . 

For these elements which are cut completely by a crack, the nodes of these elements that are the  

nodal subset 
*

absI  are enriched by Heaviside function H(x). The definition of Heaviside function 
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H(x) follows 

*

*

1, ( ) 0
( )

1, ( ) 0
H

   
 

   

x x n
x

x x n
                        (11) 

where, x
*
 is the projection of a point x on the crack surface; n is the unit outward normal to the 

crack surface. 

For these elements which are cut partially by a crack, the nodes of these elements that are the  

nodal subset 
*

brI  are enriched by the crack tip enrichment function Fj(x). The definition of the 

crack tip enrichment function Fj(x) follows 

=1 2,3,4 ( , )= sin cos sin sin sin cos
2 2 2 2

jF r r r r r
   

  
 
 
 

， ， ， ，      (12) 

where r and θ are the local crack tip coordinate system. 

For these elements which are cut by the interface of a void, the nodes of these elements that are  

the nodal subset 
*

voidI  are enriched by the function V(x) (Sukumar et al. 2001). If the node lies in 

the void, V(x)=0, or else V(x)=1. 

For these elements which are cut by the interface of an inclusion, the nodes of these elements  

that are the nodal subset 
*

incI  are enriched by the following function φ(x) (Moës et al. 2003) 

* *

( ) ( ) ( )i i i i

i I i I

N N  
 

  x x x                       (13) 

 

3.2 Governing equations 
 

Considering a bounded domain 
2R , the boundary of the domain is partitioned into three 

parts, including the displacement boundary (Γu), traction boundary (Γt), and crack boundary (Γc) 

that is traction-free. According to the basic theory of elasto-statics, the equilibrium and boundary 

conditions for this problem may be described as 

s

t

u

c

0 in

in

= : in

= on

= on

=0 on

  
  

 



 




ζ b

ε u

ζ D ε

ζ n t

u u

ζ n

                           (14) 

where ζ is the Cauchy stress tensor, b is the body force vector, ε is the strain tensor, s  is the 

symmetric part of the gradient operator, u is the displacement field vector, D is the constitutive 

matrix, n is the unit outward normal vector, t  is the external traction vector, and u  is the 

prescribed displacement. 
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3.3 Weak form 
 
The admissible (trial) function space U is defined as 

 0

0 u u| , on and discontinuous onC    U u u u u u，         (15) 

The test function space V  is defined as 

 0

u u| , 0 on and discontinuous onC    V v v v v，          (16) 

Hence, the weak form of the equilibrium equation can be described as:  v V , find u U , 

such that 

t

( ) : ( )d : d : d
  

     ζ u ε v b v t v                     (17) 

 

3.4 Discritized form 
 
In this study, the XFEM program is implemented for the plane four nodes iso-parametric 

element. The approximating functions u
h
 of the trial functions hold the same form with the 

approximating functions v
h
 of the test functions v. The functions u

h
 and v

h
 both satisfy Eq. (10). 

The weak form for the discrete problem can be stated as: find 
h h u V V , such that 

t

h h h h( ) : ( )d : d : d
  

     ζ u ε v b v t v                  (18) 

By substituting the trial and test functions in Eq. (18) and using the arbitrariness of the nodal 

variations, the following discrete equations can be obtained: 

Kδ R                                   (19) 

where K is the global stiffness matrix assembled by the element stiffness matrix, δ is the vector of 

nodal displacements, and R is the global external force vector. 

The element stiffness matrix can be expressed by 

uu ua ub uv uc

au aa ab av ac

e bu ba bb bv bc

vu va vb vv vc

cu ca cb cv cc

 
 
 
 
 
 
 
 

k k k k k

k k k k k

k k k k k k

k k k k k

k k k k k

                       (20) 

where 

e e

T
T

1 2 3 4 1 2 3 4( ) d d ( , u,a,b,v,c)rs r s r r r r s s s s r s
 

           k B DB B B B B D B B B B   

(21) 
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u

0

0 , 1,2,3,4

i

i
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i i

N

x

N
i

y

N N

y x

 
 
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 
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 
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B
                      (22) 

 

 

   

*

*

a

* *

0

0 , ( ) ( ), 1,2,3,4

i

i

i i

i i

N H
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N H
H H H i

y

N H N H

y x
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 

 
 
    
 
 
  
 

   

B x x          (23) 

 

 
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b b1 b2 b3 b4
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 
 

 
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x x
B

             (24) 
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 
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*

*

v

* *
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i
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y
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y x
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 
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B x x             (25) 
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*

*
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
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 
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 

 
 
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  
 
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B x x            (26) 
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(a) Elements partitioned completely by an interface 

 

(b) Elements partitioned partially by a crack 

Fig. 5 Element partitioning method for these elements containing a discontinuous interface 

 

 

The element external force vector is 

T
e u a b v c   r r r r r r                        (27) 

where 

e e

t

e e
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e e
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e e
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e e

t

u T T

a * T * T

b * T * T

v * T * T

c * T * T

d d

( ) d ( ) d

( ) d ( ) d 1,2,3,4

( ) d ( ) d

( ) d ( ) d

j

j j j

 

 

 

 

 

   



  

    

   



  


 

 

 

 

 

r N b N t

r N H b N H t

r N F b N F t

r N V b N V t

r N φ b N φ t

，             (28) 

 
3.5 Integration schemes at the discontinuities 
 

For these elements partitioned by the boundary of an inclusion, a void, or a crack, the ordinary 

Gauss quadrature rules cannot accurately calculate the integration of enrichment function. The 

method subdividing the element into sub-quads is used. For these elements partitioned completely 

or partially by the boundary of an inclusion, a void, or a crack, the method subdividing these 

elements into sub-quads is shown in Fig. 5. 
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Fig. 6 Sketch map of the contour and domain integrals 

 
 
4. Computation of SIF 

 

Generally, the path-independent J-integral can be defined as follows (Rice 1968) 

1 ,1
0

lim ( ) dj ij i jJ W u n 


                           (29) 

where W is the strain energy density; the symbol δij is Kronecker delta; and nj is the outward 

normal vector to the contour Γ. 

Take the field 1  (1) (1) (1), ,ij ij iu   for the actual field, and the field 2  (2) (2) (2), ,ij ij iu   for the 

auxiliary field. The choice for the auxiliary field is the asymptotical field of linear elastic fracture 

mechanics at the crack-tip, and the numerical results of the XFEM is chosen for the actual field. 

For the linear elastic problems, the J-integral can be used for the superposition of the actual and 

auxiliary fields, that is 

                
    1 2

1 2 1 2 1 2 1 2

1
0

1

1
lim d

2

i i

ik ik ik ik j ij ij j

u u
J n

x
      





  
      
 
 

    (30) 

Rewritten the Eq. (30), one can obtain the following formula 

       1 2 1 2 1,2
J J J M


                            (31) 

Naturally, M
(1,2)

 is called the interaction integral, and it holds the following form 

              1,2 2 1 2 1 1 2

1 ,1 ,1
0

lim dik ik j ij i ij i jM u u n    


                   (32) 

Let the contour integral to be converted easily into a domain form, the Eq. (32) can be rewritten 

as 

 
dqmuuM jjikikiijiij )(lim 1

)1()2()1(
1,

)2()2(
1,

)1(

0

)2,1(

0

               (33) 

where   cc210

~
 and 2

~
  is the opposite integral path of Γ2; mj is a unit outward 
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normal vector of the contour Γ0, evidently mj=−nj on Γ2; q is an arbitrary weight function with 

values varying smoothly from 1 on Γ2 to 0 on Γ1; see Fig. 6. 

According to divergence theorem, the equivalent domain integral of Eq. (33) can be written as 

              1,2 1 2 2 1 2 1

,1 ,1 1
A

dAij i ij i ik ik j

j

q
M u u

x
    


  

                 (34) 

where A is the circle domain with the center at the crack tip and the radius R. The radius R is 

defined as 

k eR r h                                  (35) 

where he is the crack-tip element size; rk is a user-specified scalar multiple, and here we set rk=2. q 

is the weight function; if a node lies in the domain A, then q=1; else if the node is out of the 

domain A or lies in the boundary of the domain A, then q=0. In the interior of an element, the 

weight function q is obtained by the interpolation of the nodal value, that is 

4

1

i i

i

q N q


                                (36) 

The Eq. (34) can be expanded as 

 

                            

                

1 2 1 2 2 1 2 1 2 1 2 1 2 1

11 1,1 12 2,1 11 1,1 21 2,1 11 11 12 12 22 22
1,2

A 1 2 1 2 2 1 2 1

12 1,1 22 2,1 12 1,1 22 2,1

2

dA

q
u u u u

x
M

q
u u u u

y

         

   

 
      

 
    

  

  

(37) 

Additionally, the interaction integral is related to SIF through the relation 

 1,2 aux aux

I I II II*

2
M K K K K

E
                           (38) 

where 
aux

IK and 
aux

IIK are the local auxiliary SIFs for the auxiliary fields, respectively; the 

definitions of E
*
 follows 

 

 
*

2

plane stress

plane strain
1

E

E E






 



                         (39) 

Setting 
aux

I 1K   and 
aux

II 0K  , here 
 1,2 (1,2)

1M M , we obtain the expression of KI as 

follows 

* (1,2)

I 1 2K E M                               (40) 

Similarly, we can obtain 

* (1,2)

II 2 2K E M                               (41) 
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by setting 
aux

I 0K   and 
aux

II 1K  , here 
 1,2 (1,2)

2M M . 

 

 

5. Crack propagation criteria 
 

The maximum circumferential stress criterion (Erdogan and Sih 1963) is used to determine the 

crack growth direction. Once KI and KII are calculated, the criterion gives the following crack 

growth direction 

2

1 I I
c

II II

1
2 tan 8

4

K K

K K
 

 
     

  
 

                      (42) 

where θc is the crack growth angle in the local crack-tip coordinate system. If KII=0, then θc=0. It 

should also be noted that if KII>0, the crack growth angle θc<0, and if KII<0, then θc>0. By a 

private communication with Suo, Sukumar and Prévost (2003) gives an improve expression for θc 

 

1 II I
c

2

II I

2
2 tan

1 1 8

K K

K K
 

 
 

 
  

                       (43) 

The equivalent SIF then follows 

2c c
e I II ccos cos 1.5 sin

2 2
K K K

 


 
  

 
                    (44) 

If Ke≥KIC, then the crack grows, where KIC is the material’s fracture toughness. 

 

 

6. Numerical verification 
 

We have implemented the corresponding XFEM program by Fortran language in the 

environment of Microsoft Visual Stidio 2005. In this section, we mainly give several classic 

examples to verify the effectiveness of the implemented XFEM program. 

 
6.1 Finite tensile plate with cracks 
 

In this section, some of the basic problems of fracture mechanics with available analytical SIF 

solutions are illustrated. As shown in Fig. 7, the finite tensile plate problems that include an edge 

crack, a central crack, and double edge cracks will be considered. The plate with the width (b) of 1 

m and the height (h) of 2 m is subjected to a tensile load (σ) of 1.0 kPa. The Young’s modulus (E) 

of the plate is set to 1.0 MPa and Poisson’s ratio (v) is 0.2. The plane strain condition is assumed. 

In numerical model, the plate is discritized into a rectangular 59×119 meshes. To remove rigid 

body modes, appropriate displacement constraints are added. 

For edge crack problem, available analytical SIF solutions are (Mohammadi 2008) 

       
2 3 4

I 1.12 0.23 10.56 21.74 30.42 πK a b a b a b a b a     
 

     (45) 
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                   (a) Edge crack       (b) Central crack    (c) Double edge cracks 

Fig. 7 Finite tensile plate problems 

 

  
(a) Edge crack (b) Central crack 

 
(c) Double edge crack 

Fig. 8 Comparisons of numerical and analytical results for SIFs 

 

 

For central crack problem, available analytical SIF solutions are (Mohammadi 2008) 

     
2 3

I 1 0.256 1.152 12.2 πK a b a b a b a    
 

            (46) 
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For double edge crack problem, available analytical SIF solutions are (Mohammadi 2008) 

     
2 3

I 1.12 0.43 4.79 15.46 πK a b a b a b a    
 

           (47) 

Through the numerical analysis of the plate, it can be concluded that the numerical method 

yields an excellent agreement with the analytical solutions as shown in Fig. 8. This verification 

indicates that the implemented XFEM program in the paper is effective for the simulation of crack 

propagation. 

 

6.2 A circle domain with a circle inclusion 
 

As shown in Fig. 9, a circle domain with a radius of b is partitioned by its internal circular 

interface with a radius of a into two sub-domains 1 and 2. On 1, the Lamé constants are 

1=1=0.4, and these on 2 are 2=5.7692 and 2=3.8461. These correspond to the elastic modulus 

E1=1 Pa, E2=10 Pa and Possion ratio 1=0.25, 2=0.3. On Γ2, the prescribed displacement 

boundary conditions are ur=r, uθ=0. The plane strain conditions are assumed. In the numerical 

model, the plate in XFEM is discritized into 721 nodes and 684 elements, and the plate in FEM is 

discritized into 2265 nodes and 2204 elements. 

The exact displacement solutions are (Sukumar et al. 2001) 

 

 

2 2 2 2

r
2 2

θ

1 , 0
( )

,

0

b a b a r r a
u r

r b r b r a r b

u





        
    
 

                 (48) 

where 

2

1 1 2

2 2 2 2

2 2 1 1 2

( )

( ) ( )( )

b

a b a b

  


    

 


    
                  (49) 

The numerical accuracy is investigated by the following equation 

h 2 2

1 1

1 1
err= ( ( ) ( )) ( )

NP NP

i i i

i i

u u u
NP NP 

 x x x                (50) 

where NP is the number of nodes in the discritized domain; u(xi) is the exact result at the point xi; 

u
h
(xi) is the numerical result at the point xi. 

Fig. 10 shows the numerical accuracy variation of XFEM for the problem against the number 

of nodes. With the increase of the number of nodes, the errors in the domain will decrease. The 

errors decrease from 1.40% to 1.02% with the increase of nodes from 505 nodes to 1561 nodes. 

Comparisons of the x-directional displacement/stress solutions in XFEM with those in FEM are 

presented in Fig. 11 and Fig. 12. The displacement solutions in FEM are completed by ABAQUS 

software. A satisfactory agreement can be observed. This verification indicates that the 

implemented XFEM program is effective for modeling inclusions. 
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Fig. 9 A circle domain with a circle inclusion 
Fig. 10 Numerical accuracy variation for the 

problem with respect to the number of nodes 

 

  
(a) XFEM (b) FEM 

Fig. 11 Contour plot of the x-directional displacement / m 

 

  
(a) XFEM (b) FEM 

Fig. 12 Contour plot of the x-directional stress / Pa 

 

 

6.3 A finite plate with a circle void 
 

As shown in Fig. 13, a square plate with length (l) of 2 m contains a traction-free circular void 

with radius (r) of 0.4 m at its center. The plate is subjected to a uniaxial tension load (σ) of 1000 

Pa. The plane strain condition is assumed. The Young’s modulus (E) of the plate is set to 100000 

Pa and Poisson’s ratio (v) is 0.3. In the numerical model, the plate in XFEM is discritized into  
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Fig. 13 A square plate with a traction-free circular hole 

 

  
(a) XFEM (b) FEM 

Fig. 14 Contour plot of the x-directional displacement / mm 

 

  
(a) XFEM (b) FEM 

Fig. 15  Contour plot of the y-directional displacement / mm. 

 

 

39×39 meshes of 4-node quadrilateral elements, with 1600 nodes and 1521 elements, and in FEM, 

the plate is discritized into 1669 nodes and 1564 elements. To remove rigid body modes, 

appropriate displacement constraints are added. 

Comparisons of the displacement solutions in XFEM with those in FEM are presented in Fig. 

14 and Fig. 15. The displacement solutions in FEM are completed by ABAQUS software. A 

perfect agreement can be observed. This verification indicates that the implemented XFEM 

program in the paper is effective for modeling voids. 
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(a) Geometry of the plate         (b) XFEM mesh of the plate 

Fig. 16 A plate with an edge crack and a circular void / mm 

 

 

7. Numerical examples 

 
7.1 Crack path deflection because of voids 
 

As shown in Fig. 16(a), a plate with an edge crack and a circular void of radius (r) is 

considered. The width (b) of the plate is set to be 15 mm and the height (h) is set to be 20 mm. The 

plate is subjected to uniform tension load (σ) of 1000 MPa at its top and bottom edges. The matrix 

material is assumed to be purely elastic. The matrix material properties are the Young’s modulus 

(E) of 98,000 MPa and Poisson’s ratio (v) of 0.3. The plane stress condition is assumed. Thickness 

of the plate is set to be 1 mm. The value of KIC is assumed to be 1000 N/mm
3/2

 in this study. In 

numerical model, the plate is discritized into 67×50 meshes of 4-node quadrilateral elements with 

3648 nodes and 3350 elements shown in Fig. 16(b). 

In this section, we investigate the effects of the location, dimension, and quantity of void on the 

path of crack propagation. As shown in Fig. 17, keeping the radius (r) at 2.5 mm, the effects of the 

distance (d) varying from 4.0 mm to 6.0 mm on the final predicted crack paths are observed. The 

distance between the center of the void and the left edge of the plate is 7.5 mm. The crack 

propagates into the void when the distance (d) equals to 4.0 mm. With the increase of the distance 

(d), the crack initially curves towards the void, then, the crack reorients itself and propagates 

almost horizontally along width of the plate.  

Additionally, we also observe the effects of the radius (r) varying from 2.0 mm to 3.0 mm on 

the final predicted crack paths while keeping the distance (d) at 5.0 mm. The distance between the 

center of the void and the left edge of the plate is 7.5 mm. The crack propagates into the void when 

the radius (r) equals to 3.0 mm. With the decrease of the radius (r), the crack initially curves 

towards the void, then, the crack reorients itself and propagates almost horizontally along width of 

the plate. 

In Fig. 19, we change the quantity of voids from one to three, but the ratio of voids remains 

unchanged. For the plate containing a void, the radius of the void is set to be 2.5 mm. The distance 

between the center of the void and the left edge of the plate is 7.5 mm. For the plate containing 

two voids, the radius of each void is set to be 1.768 mm. The distance between the center of the 

first (second) void and the left (right) edge of the plate is 5.0 mm. For the plate containing three  

613



 

 

 

 

 

 

Shouyan Jiang, Chengbin Du and Chongshi Gu 

 

Fig. 17 Final predicted crack paths of the plate with a void under different distances d (r=2.5 mm) 

 

 

Fig. 18 Final predicted crack paths of the plate with a void under different radius r (d=5 mm) 

 

 

Fig. 19 Final predicted crack paths of the plate with different void’s quantity 

 

 

voids, the radius of each void is set to be 1.443 mm. The distance between the center of the first 

(third) void and the left (right) edge of the plate is 3.75 mm. From the figure, we still can observe 

that the crack initially curves towards the void, then, the crack reorients itself and propagates 

almost horizontally along width of the plate. 

For the plate containing cracks and voids, two possibly crack path can be observed: i) the crack 

propagates into the void with a bigger void size or a closer distance between the void and the 

crack; ii) with a smaller void size or a far distance between the void and the crack, the crack  
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(a) Soft inclusion        (b) Hard inclusion 

Fig. 20 Effects of inclusion properties on the final predicted crack paths 

 

 

initially curves towards the void, then, the crack reorients itself and propagates along its original 

orientation. 

 

7.2 Crack path deflection because of inclusions 
 

In this section, we mainly investigate the effects of the inclusion on the path of crack 

propagation. The geometric dimensions, material properties, the load conditions, and the boundary 

conditions of the plate both are identical with these described in section 7.1, but the plate contains 

an inclusion instead of a void. The Young’s modulus (E’) of the inclusion varies from 98 MPa to 

98,000,000 MPa, and its Poisson’s ratio (v’) keeps at 0.3. In numerical model, the XFEM mesh is 

identical with the mesh given in Fig. 16(b). Defining δ=E’/E, as shown in Fig. 20, keeping the 

radius (r) of 2.5 mm and the distance (d) of 5.0 mm, the effects of inclusion properties on the final 

predicted crack paths are mainly concerned. As δ varying from 0.001 to 0.1 with a soft inclusion, 

the final predicted crack paths tend to close with the inclusion. As δ varying from 10 to 1000 with 

a hard inclusion, the final predicted crack paths tend to away from the inclusion. An evident 

difference of crack paths can be observed as δ varying from 0.001 to 0.1 with a soft inclusion. 

However, as δ varying from 10 to 1000, a slightly difference of crack paths can only be seen.  

 

7.3 Crack path deflection because of minor cracks 
 

In this section, we mainly investigate the effects of the minor cracks on the path of major crack 

propagation. The geometric dimensions, material properties, the load conditions, and the boundary 

conditions of the plate both are identical with these described in section 7.1, but the plate contains 

several minor cracks with no propagation apart from a major crack. In numerical model, the 

XFEM mesh is identical with the mesh given in Fig. 16(b). Fig. 21 show several distribution 

models of minor cracks in the plate.  

As shown in Fig. 22, the final predicted major crack paths for the plate with several distribution 

models of minor cracks are given. No matter what distribution models of minor cracks, the trend 

of major crack paths can still be described as that the crack initially curves towards the minor 

cracks, then, the crack reorients itself and propagates almost horizontally along width of the plate.  
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Fig. 21 Several distribution models of minor cracks in the plate, (a) the plate with one minor crack; (b) 

the plate with two minor cracks; (c) the plate with three minor cracks; (d) the plate with six minor 

cracks; (e) the plate with twelve minor cracks 

 

   

  

Fig. 22 The final predicted major crack paths for the plate with several distribution models of minor 

cracks, (a) the plate with one minor crack; (b) the plate with two minor cracks; (c) the plate with three 

minor cracks; (d) the plate with six minor cracks; (e) the plate with twelve minor cracks 

(a) (b) (c) 

(d) (e) 
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8. Conclusions 
 

For structures containing multiple discontinuities (voids, inclusions, and cracks), the simulation 

technologies in the framework of XFEM are discussed in details. The emphasis are paid on the 

selections of enrichment functions, the numerical integrations at the discontinuities, the 

evaluations of SIF, as well as the criterion of crack propagation. The LSM is used for representing 

the location of inner discontinuous interfaces containing the boundaries of voids and inclusions, 

and the surface of cracks, so that the mesh does not need to align with these discontinuities. The 

governing equation for XFEM is deduced. Several illustrations have been given to verify that the 

implemented XFEM program is effective for modeling voids, inclusions, and crack propagation. 

Then, the implemented XFEM program is used to investigate the effects of the voids, inclusions, 

and minor cracks on the path of major crack propagation. The following conclusions can be 

drawn: 

For a plate containing cracks and voids, two possibly crack path can be observed: i) the crack 

propagates into the void; ii) the crack initially curves towards the void, then, the crack reorients 

itself and propagates along its original orientation.  

For a plate with a soft inclusion, the final predicted crack paths tend to close with the inclusion, 

and an evident difference of crack paths can be observed with different inclusion material 

properties. However, for the plate with a hard inclusion, the paths tend to away from the inclusion, 

and a slightly difference of crack paths can only be seen with different inclusion material 

properties. 

For a plate with several minor cracks, the trend of major crack paths can still be described as 

that the crack initially curves towards the minor cracks, then, the crack reorients itself and 

propagates almost horizontally along width of the plate. 
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